
Leveraging Static Probe Instrumentation
for VM-based Anomaly Detection System

Ady Wahyudi Paundu(B), Takeshi Okuda, Youki Kadobayashi,
and Suguru Yamaguchi

Nara Institute of Science and Technology,
8916-5 Takayama, Ikoma, Nara 630-0192, Japan

{ady.paundu.ak9,okuda,youki-k,suguru}@is.naist.jp

Abstract. In this preliminary study, we introduce a framework to pre-
dict anomaly behavior from Virtual Machines (VMs) deployed in public
IaaS cloud model. Within this framework we propose to use a static probe
instrumentation technique inside hypervisor in order to collect monitor-
ing data and a black-box signature based feature selection method using
Linear Discriminant Analysis. As a proof of concept, we run several eval-
uation tests to measure the output quality and computation overhead
of our Anomaly Detection System (ADS) using feature selection. The
results show that our feature selection technique does not significantly
reduce the anomaly prediction quality when compared with full featured
ADS and gives a better accuracy when compared to ADS with system-
call data. Furthermore, ADS with feature selection method creates lower
computing overhead compared to the other two ADS.

Keywords: Anomaly detection system · Virtual Machine · Static probe
instrumentation · Cloud security

1 Introduction

One main security threat in virtualization environments of cloud computing is
the guest VMs [1]. A VM can be seen as a single point of failure inside a virtu-
alization. To monitor each VM however is not an easy task. In public IaaS there
is usually an agreement between a provider and a consumer about privacy that
restricts any intervention from hypervisor administrator into the guest internal
system. The lack of insider information from guest OS will decrease the quality
of information collected from the VM. Hypervisor administrators need to find a
method to collect information on the VM’s internal operation as clear as possible
without guest OS intervention. In this paper, we present a novel, the first to the
best of our knowledge using static probe instrumentation inside hypervisor for
host-based Virtual Machine monitoring process. This approach applies specifi-
cally to Anomaly Detection System (ADS). This technique employs embedded
tracepoints inside Virtual Machine Monitor (VMM) to observe VM behavior.
To reduce the big dimension of monitoring points inside the hypervisor, we apply
c© Springer International Publishing Switzerland 2016
S. Qing et al. (Eds.): ICICS 2015, LNCS 9543, pp. 320–334, 2016.
DOI: 10.1007/978-3-319-29814-6_27

Leveraging Static Probe Instrumentation 321

Linear Discriminant Analysis (LDA) technique using system performance aspect
of VM. Another main contribution is an empirical evaluation for our framework
where we answer questions regarding its feasibility, effectivity, efficiency, scalabil-
ity, impact and adaptability. We also compare some of these evaluations to two
other ADSes which are full-featured static instrumentation ADS and system-call
based ADS.

The remainder of this paper is organized as follows. In Sect. 2 we discuss
previous related work on anomaly detection in the cloud. We follow this in Sect. 3
by defining our architectural framework for using static-probe instrumentation
technique to monitor VM behavior. Then we discuss our empirical evaluation
in Sect. 4 to assess the performance of our approach. We use Sect. 5 to discuss
some issues in detail, and finally conclude the paper in Sect. 6.

2 Related Work

There have been a lot of papers covering the domain of VM-based anomaly
detection system to date. However, most of these researches are focusing on
private cloud, where cloud administrator can enforce internal agents inside each
VM they monitor. For instance, in some approaches, the author collected VM’s
internal resources usage information using distributed monitoring system like
Ganglia [2,3]. Another example of this intrusive approach is using honeypot-
VM kernel sensors to detect intrusions [4]. The most well known method in
this subject is Virtual Machine Introspection (VMI) [5]. This approach does not
need to employ agents inside the monitored VM, and instead use a wealth of
information of VM from Virtual Machine Monitor, like CPU state, memory raw
content, I/O state. However, VMI highly depends on certain information from
the Operating System (OS) inside the VM to properly interpret the monitored
objects that it collected. Such information for example is debugging symbols
information file for Windows system or memory offset information file for Linux
that have to be copied to the monitoring program residing at the host. All these
approaches are not suitable in public cloud where customers are unlikely to allow
any intervention within their system.

For monitoring public cloud systems, researchers need to use non-intrusive
approaches. One of the options is network-based approach that monitors traffic
from and to VM in order to create a model for anomaly detection [6,7]. This
method is only able to detect anomaly related to network operation. Another
approach is using the fact that from host’s point of view, each VM can be seen
as a normal user process. Therefore, to monitor the behavior of each VM, a
host can collect user process related data, such as CPU usage, memory usage or
I/O volume [8,9]. Others attempt to monitor system-call exchange between VM
in user-space process and host’s kernel-space [10,11]. Although non-intrusive
approaches uphold clients privacy and have high attack resistance, they lacks
visibility on internal VM operation. This problem is known as semantic gap
problem.

In our work, we use static probe instrumentation data of hypervisor to moni-
tor VM’s behavior. We argue that this approach can give better visibility into the

322 A.W. Paundu et al.

VM compared to system-call data or computation resource usage data because
it captures its data right inside the hypervisor. To our knowledge, our proposed
approach of using this instrumentation technique for VM-based monitoring is a
novel approach.

3 Architectural Framework

In this work, the object of our study is public IaaS clous system, so it renders out
any monitoring mechanism that requires any interference to guest VM operation.
Current external monitoring approach however still cannot give enough visibility
because of semantic gap problem. Therefore, we have sought to identify a solution
to increase monitoring visibility into the VM, transparently from VM user point
of view. Our approach works by instrumenting the hypervisor, which gives us
a better access into essential underlying operation of the VM without requiring
any guest interruption. Furthermore, our observation points are logically closer
to the object compared to previous approaches, and that will ensure a clearer
perspective into the VM.

The framework of our approach consists of three main processes, namely data
collection, feature extraction and anomaly prediction as depicted in Fig. 1.

Fig. 1. High level abstraction of architectural framework

3.1 Data Collection Process

In this paper, we propose the collection of monitoring data by using static probe
instrumentation inside the hypervisor. A probe is a small piece of code, usually
in a form of function call that, when executed, records a certain information,
such as its name which constitutes its location within the source code and its
parameters value. This information can usually be used to find out the current

Leveraging Static Probe Instrumentation 323

status and location of the program execution for debugging functions. We put our
probe points inside certain VMM’s functions and log them every time they are
called. Three information could be extracted from these tracepoints. First is their
occurrence frequency, second is their arguments value and third is their temporal
relation between tracepoints. In this preliminary research on VM monitoring we
only use their occurrence frequency (bag of tracepoints).

3.2 Feature Extraction Process

Generally speaking, debugging information from VMM can be huge enough to
overwhelm monitoring process. For example, Qemu, one of the most widely used
open source VMM, comes with around 1,200 trace points. For real-time anomaly
detection, this amount of tracepoints is still very big to observe. Furthermore,
from the machine learning point of view, not all of those tracepoints contain
significant information. Some of the tracepoints can even act as noises. Therefore,
we need to extract just small enough feature without compromising final anomaly
prediction quality.

The choice of the proper tracepoints is not easy. The ideal of course is by
having a complete understanding on how internal VMM works, which is usually
called white-box approach. This clear picture of VMM inner works enables us
to identify what functions are related to the processes we want to observe. In
this preliminary research, we do not assume any knowledge of VMM internal
operation. As a solution, we adopt black-box approach, where we compare each
input to its output and tries to figure out their relation. In specific, we decided
to use memory, I/O and network process signature as our basic profile. Many
well-known and common malicious activities can be directly related to abnor-
mal system performance [12], for instance Denial-of-Service, password dictionary
attack and fuzz testing.

The purpose of feature extraction is to select subset of variables that can
highly explain the change in memory usage, I/O read-write frequency or network
send-receive volume. Hence, we need to use dimension reduction technique that
considers class information. For that reason, we use Linear Discriminant Analy-
sis (LDA) technique. LDA seeks to reduce data dimensionality while preserving
as much of the class discriminatory information as possible, such that maxi-
mizing between-class to within-class covariance. For two class analysis, linear
discriminant is defined as the linear function y = wTx that maximizes criterion
function

J(w) =
|μ̃1 − μ̃2|2
s̃21 + s̃22

where μ̃i is mean value for class i and s̃2i is class i’s scatter value along w pro-
jection. The output of LDA is linear combinations of its variables input.

3.3 Anomaly Prediction Process

In our anomaly prediction process we implement a semi-supervised anomaly
detection system. This system introduces only one class model, which is normal

324 A.W. Paundu et al.

profile. Any data input that does not conform to this model will be categorized
into new class and considered as an anomaly. This approach is also known as
one-class novelty detection system as all the learning data to create the pre-
diction model come from one single class. This approach works better under
assumption that a VM in the cloud works for one specific service, for example:
web server, application server or mail server. Since this kind of servers create
almost homogenous operation, it is easier to provide a sound training dataset.

We use one-class SVM as our prediction engine. This predictor uses several
advantageous properties of Support Vector Machine (SVM) where it is more
robusts to noise and can easily work with high dimensional data while allowing
smooth and flexible nonlinear mappings. Data points that cannot be separated in
their original space dimension are mapped to another higher dimension feature
space where there is a straight hyperplane that separates one class to another.
When the resulted hyperplane is projected back into the original input dimen-
sion, it would form some non-linear curve.

3.4 Threat Model and Limitations

In our threat model, we assume that the cloud provider and its infrastructures
are trusted. We consider two threat scenarios, either attacks are coming from
inside the VM we monitor or the attacks coming from outside, targeting a specific
monitored VM.

The approach we present in this paper is a passive approach, since it can
only detect anomalies after they happen. However, in the case of long anomaly
process, administrator can react upon this information to minimize the impact
of malicious anomalies.

As for anomaly detection system in general, our approach cannot distinguish
between malicious and non-malicious anomalies. For that purpose, additional
steps need to be taken which are beyond the scope of our paper. In our frame-
work, the decision of process maliciousness is decided by manual inspection from
the system administrator.

4 Evaluation

Within this section we performed several evaluations on the framework that we
described in Sect. 3. There are four research questions that we want to answer
in this segment:

1. Feasibility: Can the normal data collected for learning phase converge to a
stable model with low false-positives values?

2. Effectiveness: How sensitive is the model created by the training data to
distinguish normal to abnormal VM operation?

3. Efficiency and Scalability: What is the cost for a host to monitor the VMs,
in term of CPU usage and execution time? Will they scale well over multiple
observed VMs?

4. Impact: How much is the monitoring process affecting the performance of the
monitored VM?

Leveraging Static Probe Instrumentation 325

4.1 General Setup

Hardware Setup. Diagram of our setup is shown in Fig. 2. Host specification
was a dual Intel Xeon CPU 1.86GHz with 8GB memory and 320GB hard-
disk running Ubuntu 14.04. For the hypervisor we employed the combination of
Qemu-KVM. Next, we deployed eight VMs inside the host. The VMs, for better
measurements, were all identical with single Qemu Virtual CPU, 1GB memory
and 30GB harddisk. All of the VMs were using Ubuntu 14.04 operating system
and serve Apache-MySQL-PHP (AMP) services.

Fig. 2. Hardware setup

Normal Profile. For normal VM operation, we decided to implement a web
service. Beside the fact that web service is among the most served function on
the internet, it also allowed us to experience multiple normal profiles for our
evaluation purpose. To emulate the operation of a web server, we used RUBiS
(Rice University Bidding System) application. Using RUBiS, we can emulate a
scalable dynamic web server operation.

Data Collection. There were two kinds of data collection in this evaluation
process. The first data collection was static probe instrumentation as our sug-
gested approach, while the second was system-call data that will be used as
comparison methods to our approach. In the case of static probe instrumenta-
tion, we utilized “ust” (user space tracer) backend from LTTng user space tracing
(LTTng-UST) library. For system-call collection we used “strace” tool. A single
data unit was a collection of occurrence frequency of observed features within
two seconds.

326 A.W. Paundu et al.

Feature Selection. We collected five datasets, each with 100 unit data. Those
datasets represented the following scenarios: idle, stress-memory, stress-I/O,
stress-disk and stress-network. We used “stress” Linux application for generating
memory, I/O and disk data while for network we use ping with flood option.
Next we paired the idle dataset with each of stress dataset which resulted in
four pair scenarios. For each pair we applied Linear Discriminant Analysis to
extract tracepoints that best separate each scenario. Table 1 gives the best tra-
cepoint with its associative scenario and its LDA score. All operations within
this feature selection process were done using R [13,14].

Table 1. List of selected tracepoints with its associative scenario and LDA score

idle vs TP name LDA score

stress network tap_send qemu_deliver_packet 0.9913
stress IO bdrv_aio_flush 0.9869
stress memory virtqueue_fill 0.5795
stress hd memory_region_ops_write 0.9992

Anomaly Prediction. Results of one-class SVM are influenced by its ν and
γ parameters. ν is a constant > 0 that determines the upper bound on the
fraction of training errors and the lower bound of the fraction of support vec-
tors. Over-minimizing ν will reduce training error, but increasing false-positives.
On the other hand, not small enough ν will over-fit the model and increase
false-negatives. γ is the coefficient (Lagrange multipliers) for our Radial Basis
Function kernel. Therefore, as part of the setup, we try to find the best combi-
nation of these two paramaters to use throughout our evaluation. Using ν and γ
as controlled variables, we try to optimize estimator output by performing grid
search. We search within values range 0.01 – 0.1 with 0.01 step for both ν and
γ parameters. We used False Positive as target variable. That is, we search for a
combination of ν and γ values that gave the smallest False Positive result. From
our normal profile dataset, we randomly prepared five subsets data. The average
result from grid search of each subset data gave ν = 0.01 and γ = 0.01 as our
optimal value. For this grid-search process and all anomaly prediction operaton
in evaluation section, we use python scripts and scikit-learn [15] library.

4.2 Feasibility with Limited Data

One characteristic of public cloud service is to pay for what is used. Therefore,
it is common to see short-lived VMs hosted in the cloud. An anomaly detection
system that is able to generate a normal model from smaller input without sac-
rificing the output quality of the system is preferred. The model created must be
able to produce low enough false-positives to be considered effective. For evalu-
ation, we used five-fold cross-validation over 500 units data of normal scenario

Leveraging Static Probe Instrumentation 327

from selected feature of static probe instrumentation approach. The 500 data
were divided into 5 subsets of 100 data. Each subset was then used as evaluation
input for anomaly detection model created from increased number of data from
the other four subsets. Due to the fact that all the data used in this specific
evaluation were normal, an anomaly status would be considered false-positive.
Figure 3 shows the average result for false-positive value of 5 subsets, predicted
by normal model that was created from different size of training data. It shows
that using selected feature data from static probe instrumentation monitoring
on normal scenario can create a stable learning model. Furthermore, to achieve
at most 5% false positives, we need at least 100 unit learning data.

0

25

50

75

0 100 200 300 400

training_data

fa
ls

e_
p

o
si

ti
ve

s

Fig. 3. Percentage of false positives as the number of training data increased

4.3 Effectiveness Against Diverse Attacks

For this evaluation part we emulated several attack scenarios as anomaly data
and then observed if the predictor was able to identify them as anomaly or
not. There were already many kinds of attacks that have happened in the cloud.
However, one of our primary concern in this research is semantic gap information
for non-intrusive VM monitoring. Therefore we try to imitate attacks that can
represent either processes that extensively use computer resources and can be
easily detected without semantic context or processes that in contrary happened
in higher layer which makes it very hard to detect. For that reason we utilized
these four attacks:

1. Synchronous-packet flood attack. This scenario was emulated using “hping3”
tool and targeting port 80.

2. Password brute force attack. Using “ncrack” tool we try to crack an http basic
authentication procedure.

3. Slow HTTP attack. We emulated this scenario using “httpslowtest” tool with
attack in the body option.

328 A.W. Paundu et al.

synfs
synft

shttps
shttpt
poscs
posct
passs
passt
med

(a) F−Measure

0.0 0.2 0.4 0.6 0.8

synfs
synft

shttps
shttpt
poscs
posct
passs
passt
med

(b) Sensitivity

0.0 0.2 0.4 0.6 0.8 1.0

sprobe_all sprobe_selected sys−call

Fig. 4. Prediction results for three monitoring approaches and eight anomaly scenarios

4. Port scan attack. We emulated this attack using “nmap” tool and executed
vertical port-scan attack.

For each type of attacks above, we performed both ‘source attack’ where the
attack originates from the monitored VM and ‘target attack’ where monitored
VM is the intended target of the attack. It resulted in total of eight anomaly
type. We collected 500 unit data for each anomaly types. Just like normal data
collection, one unit data was the list of variable occurrence within two-seconds
of observation. We did the same amount of collection for the three data sources
(static probe instrumentation using all feature, static probe instrumentation
using selected feature and system-call) we want to compare. In total there were
24 scenarios that we evaluated.

To measure effectiveness, we used F-measure metric. F-measure defined as
the harmonic-mean of sensitivity and precision.

Sensitivity =
TP

P
;Precision =

TP

TP + FP
;Fmeasure =

2
1

Precision + 1
Sensitivity

We divided 500 unit data for each scenario into five subsets. We then paired
each subset of normal and anomaly, and feed them into one-class SVM outlier
predictor. Over the five subsets, we calculated the averages of true-positives
(TP), false-positives (FP), true-negatives (TN) and false-negatives (FN). Using
these values, we calculated f-measure value of each scenario. We summarize the
results of this evaluation in Fig. 4.a.

From Fig. 4.a. we note that, aside from synflood scenario, our static-probe
instrumentation approach and system-call approach still give poor prediction
values, which are below 90%. The median of all scenario f-measure value for
static-probe using all tracepoints, static-probe using selected tracepoints and
system-call monitoring is 73%, 62% and 50% respectively. It is also useful to
look in detail to sensitivity value. This metric measure how accurate the system

Leveraging Static Probe Instrumentation 329

is in detecting real positive data (anomaly data) only. The sensitivity results
of this evaluation are given in Fig. 4.b. The median of all scenario sensitivity
value for static-probe using all tracepoints, static-probe using selected trace-
points and system-call monitoring is 61%, 46% and 40% respectively. Syn-flood
scenario can be easily recognized because it directly affects the volume of send
and receive data. However, since slowhttp scenario and portscan scenario do not
change transfer rate, prediction is proved more difficult. Due to the fact that
our approach works only by monitoring frequency of function-call, it can only
detect changes in volume. It cannot however detect changes in sequence pattern
for example, which might help increase accuracy. This Fig. 4.b also shows, that
in all of scenario test, system-call prediction value was lower than static probe
instrumentation prediction.

Prediction Comparison

There are several previous attempts to predict anomaly in IaaS environment
without data collection from inside guest VM. Alarifi et al. [11] use bag of system-
call data and implement heuristic approach by comparing the frequency table
of each system-call to the testing data and calculate their difference. They reg-
ister sequences of system calls using sliding window technique. For evaluation,
they use unmalicious stress test in guest VM to emulate what they called “over-
committed migration” attack. They reported that by choosing a window size of
10, they can achieve perfect prediction results, 100% sensitivity and 0% fall-out
(False Positive Rate). Dean et al. [8] monitored guest VM’s behavior through
system-level metrics (e.g. CPU usage, memory allocation, network I/O, disk I/O)
then applied unsupervised Self-Organizing Maps algorithm to predict anomaly.
Injected faults to the guest’s VM operation, such as memleak, CPUleak and
nethog were used to evaluate the prediction system. As the result of their app-
roach, their ADS can achieve up to 98% sensitivity and 1.7% fall-out. Wang et al.
[9] proposed a method called EbAT to detect anomaly for utility cloud computing
by analyzing metric distributions rather than individual metric threshold. Ass-
esment were conducted by using application faulty and CPU exhaustion. Their
results show that their proposed method gave 86% sensitivity and 4% fall-out,
which is better than threshold-based methods. Doelitzscher et al. [16] tracked
user behavior, such as time the VM created or destroyed and the number of run-
ning VMs and analyze them using supervised feed-forward neural network. To
generate data for evaluation, they created a simulator of cloud environment. The
reported result from their approach is 0.01375% detection error rate. Sha et al.
[10] applied Multi-order Markov chain to detect anomaly in cloud server systems.
For evaluation purpose, they use system-call information from DARPA’s 1998
Intrusion Detection Evaluation data set. In their paper however, there are no
specific information on what is the quantified results on their anomaly detection
scheme.

All the works mentioned above evaluate their work using anomaly scheme
that significantly change the pattern of computing resources usage, such as CPU,
memory or I/O. These approaches are indeed useful for detecting volume based
attacks. In reality however, many attacks on computer system do not change

330 A.W. Paundu et al.

these resources data, hence are harder to detect. To detect those non-volume
based attacks, higher semantic information is needed and for that researchers
usually monitor internal operation of observed VMs. Our work were focused on
trying to extract clearer semantic information without requiring to interrupt
guest VM operation. That is why we choose to evaluate our framework using
varied anomaly scenarios, from volume based attack scenarios such as Syncflood
attack to non volume based attack such as Slow HTTP attack.

4.4 Efficiency and Scalability

We measured CPU usage and time needed to capture one unit data for certain
numbers of VMs using “perf”. For scalability evaluation purpose, we used one
until eight VMs. The average results over five measurements for static-probe
data source and system-call data source are given in Fig. 5.

200

400

600

X1 X2 X3 X4 X5 X6 X7 X8
vmno

m
se

c

(a) CPU Usage

4

8

12

16

X1 X2 X3 X4 X5 X6 X7 X8
vmno

se
c

(b) Total Execution Time

scenario inst−all inst−sel syscall

Fig. 5. “perf-stat” result to capture one unit data as the number of VM increased

The figure shows that as the number of VMs increased, the CPU time and
the total execution time needed to capture one unit data for each VM increased
as well. However, the increase rate of system-call approach is higher than both
of static-probe instrumentation methods. From the increase rate we could also
see that when we divided the cost, that is task-clock or execution-time, with the
number of VMs, then the average cost to capture one unit data per VM using
static-probe instrumentation would decrease as the number of VM increased,
while relatively constant for system-call method. This is because for static-probe
instrumentation methods, data units for all the VMs were collected collectively
by one process, which is LTTng. On the other hand, data units for each VM in
system-call approach were collected by different independent processes, therefore
it created more overhead.

Leveraging Static Probe Instrumentation 331

4.5 Performance Impact

We compared CPU and database (MySQL) performance of a VM when it is
instrumented and when it is not using sysbench tool from inside one VM. In
CPU benchmark, we took note on total execution time to calculate first 2000
prime numbers, while in database benchmark we counted how many transaction
can be processed within one minute. Again, in this evaluation, we compared
performance of both static instrumentation method, all-feature and selected-
feature. Figure 6 presents the averages from ten benchmarking results.

65

70

75

wo_mon ins_all ins_sel sys_call
scenario

se
co

n
d

s

(a) CPU Benchmark

15000

15500

16000

16500

17000

17500

wo_mon ins_all ins_sel sys_call
scenario

tr
an

sa
ct

io
n

s

(b) DB Benchmark

Fig. 6. The impact of monitoring for VM’s performance

Both box-plot in Fig. 6 show that the monitoring process, either using static-
probe instrumentation or system-call method affects the monitored VM. For
CPU benchmark, static-probe instrumentation using all tracepoints, static-probe
instrumentation using selected tracepoints and monitoring using system-call
added 3.2%, 2.8% and 13% benchmark execution time respectively, while for
database benchmark they decrease 4%, 2% and 9% number of database trans-
action per-minute, respectively. In general, static-probe instrumentation using
selected tracepoints gave the least impact on monitored VM, while system-call
monitoring on the other hand gave the biggest impact.

5 Discussion

5.1 Windowing to Increase Accuracy

The quality outputs of anomaly prediction as described in Sect. 4.3 are given by
evaluating each unit data independently. We argue that by assessing the anomaly
status in groups of sequenced data, the accuracy can be increased. This argument
comes from an assumption that a change of status from normal to anomaly or
reversed from anomaly to normal would not happen in a small space of time,

332 A.W. Paundu et al.

as our data unit describes a VM operation in 2 s. To illustrate this suggestion,
consider a sequence of predictor results for an abnormal scenario [... -1 -1 1 -1
-1 -1 -1 1 1 -1 ...]. In our experiment, the sequence might have gave 30% False
Negative value. However, in a system where sequenced data are read collectively,
say in a windows of five, the above sequence result will give 0 False Negative
because all the windows are dominate by the value -1. The length of sequence
to use for ADS had been proposed by several previous research, such as 6 in [17]
and 10 in [11]. We argue that these values are unique for each case, so further
studies could be taken to decide a proper window size to improve these anomaly
prediction results.

5.2 Reducing False Positives

Even with the assumption that a normal scenario within a VM is rarely changed
as they usually built with specific service in mind, in real life operation changes
are unavoidable. One example for web operation is peak time when there is
a significant increase on user using its service. Researchers in [6] show that
migration process affects the quality of network anomaly detection in the cloud
negatively and they still work on how to solve it. An unknown normal scenario
will increase false positives which will decrease overall prediction quality.

We have conducted small side-experiment with peak web scenario and dis-
covered that by using one-class SVM approach, we can simply capture dataset
for the new normal scenario and incorporate it to our previous learning dataset.
After re-learning process we have 1% false positives where before re-learning
we had 82% false-positives. Further evaluation using anomaly scenario from
Sect. 4.3 shows that the new normal-model after re-learning did not significantly
reduce anomaly prediction quality.

5.3 Opportunity for Further Improvements

On Implementation. Our direct concern is on how to implement the feature-
selection and collecting learning scenario data for new deployed VM in live opera-
tion. Several aspects to consider are many combinations of VM virtual hardware,
VM operating system and VM service in real-life, not to mention their life span
in the cloud. This opens many new research questions. For example how to find a
generic set of initial selected-feature over multiple combination of virtual hard-
ware and operating system? How effective it is to use unsupervised anomaly
detection system within this framework? How to deploy an adaptive anomaly
prediction method?

On VM’s CPU Operation. Qemu+KVM VMM combo gave many advan-
tages for this static-probe instrumentation monitoring approach. The fact that
Qemu is an open-source product and it work as user process inside host OS
makes instrumentation proses easier. Moreover, since CPU is directly translated

Leveraging Static Probe Instrumentation 333

to native by KVM, the instrumentation on Qemu does not affect much perfor-
mance of guest VMs. However it cost us visibility, because CPU operation can
hardly be monitored. One simple solution is to concurently instrument KVM
on kernel-space. This however will need another synchronization technique to
combine both instrumentations.

6 Conclusion

In this preliminary work, we introduced a framework for anomaly detection sys-
tem in public IaaS Cloud that use Qemu-KVM hypervisor. For VM monitoring
we proposed a novel approach using static probe instrumentation method. In
addition, to streamline the features used, we also introduced black-box based
feature selection method using Linear Discriminant Analysis. Finally we suc-
cessfully conducted several empirical evaluations to answer questions regarding
its feasibility, effectivity, efficiency, scalability, and impact and also compared
some of those evaluations to two other ADSes which are full-featured static
probe instrumentation ADS and system-call based ADS.

From our evaluation we found out that our anomaly prediction system still
did not provide satisfying prediction quality with just 62% f-measure value as
median for the eight anomaly scenarios that we tested. However, further com-
parison with static probe instrumentation using all tracepoints and system-call
monitoring shows that using static probe instrumentation with selected trace-
points gave overall best solution.

We are very encouraged by these preliminary results and are considering to
extend this research in the following ways:

– We would like to investigate further how to increase prediction quality
using this static probe instrumentation approach. Due to the logical distance
between observation points, which are within hypervisor internal operation,
and VMs as the monitored objects are close, we believe there are generic
guest VM’s operation information that can be recognized using static-probe
data within hypervisor. One forward approach that we want to investigate
is by utilizing tracepoint’s parameters and their temporal relations (sequence
pattern).

– Moreover, for future research in this topic, additional study on Qemu-KVM
internal operation should be considered. A deeper understanding on how
Qemu/KVM works will help to improve anomaly prediction system, for
instance to enable researcher to implement more heuristic approaches or cor-
rectly choose the right tracepoints.

References

1. Chandramouli, R.: Security recomendations for hypervisor deployment. Draft
NIST Special Publication 800–125-A, NIST - National Institute of Standards and
Technology (2014)

334 A.W. Paundu et al.

2. Bhaduri, K., Das, K., Matthews, B.L.: Detecting abnormal machine characteristics
in cloud infrastructures. In: ICDMW 2011 Proceedings of the IEEE 11th Interna-
tional Conference on Data Mining Workshops (2011)

3. Vallis, O., Hochenbaum, J., Kejariwal, A.: A novel technique for long term anom-
aly detection in the cloud. In: 6th USENIX Conference on Hot Topics in Cloud
Computing (2014)

4. Asrigo, K., Litty, L., Lie, D.: Using vmm-based sensors to monitor honeypots. In:
Proceedings of the 2nd International Conference on Virtual Execution Environ-
ments, VEE 2006, pp. 13–23 (2006)

5. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: The 10th Annual Network and Distributed System
Security Symposium (2003)

6. Adamova, K., Schatzmann, D., Plattner, B., Smith, P.: Network anomaly detection
in the cloud: the challenge of virtual service migration. In: 2014 IEEE International
Conference on Communications (ICC), Proceedings, pp. 3770–3775 (2014)

7. Huang, T., Zhu, Y., Zhang, Q., Zhu, Y., Wang, D., Qiu, M., Liu, L.: An lof-
based adaptive anomaly detection scheme for cloud computing. In: IEEE 37th
Annual Computer Software and Applications Conference Workshops (COMP-
SACW) (2013)

8. Dean, D.J., Nguyen, H., Xiaohui, G.: Ubl: unsupervised behavior learning for pre-
dicting performance anomalies in virtualized cloud systems. In: ICAC 2012 Pro-
ceedings of the 9th International Conference on Autonomic Computing (2012)

9. Wang, C., Viswanathan, K., Choudur, L., Talwar, V., Satterfield, W., Schwann, K.:
Statistical techniques for online anomaly detection in data centers. In: IFIP/IEEE
International Symposium on Integrated Network Management (2011)

10. Sha, W., Zhu, Y., Chen, M., Huang, T.: Statistical learning for anomaly detection
in cloud server systems: a multi-order markov chain framework. IEEE Trans. Cloud
Comput. PrePrinted (99) (2015). Doi:10.1109/TCC.2015.2415813

11. Alarifi, S.S., Wolthusen, S.D.: Detecting anomalies in iaas environment through
virtual machine host system call analysis. In: The 7th International Conference for
Internet Technology and Secured Transactions (ICITST), 2012 (2012)

12. Avritzer, A., Tanikella, R., James, K., Cole, R.G., Weyuker, E.J.: Monitoring for
security intrusion using performance signatures. In: WOSP/SIPEW, pp. 93–104
(2010)

13. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2014)

14. Cerdeira, J.O., Silva, P.D., Cadima, J., Minhoto, M.: Subselect: selecting variable
subsets, R package version 0.12-4 (2014)

15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

16. Doelitzscher, F., Knahl, M., Reich, C., Clarke, N.: Anomaly detection in iaas
clouds. In: IEEE International Conference on Cloud Computing Technology and
Science (2013)

17. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system call. J. Comput. Secur. 6(3), 151–180 (1998)

http://dx.doi.org/10.1109/TCC.2015.2415813

	Leveraging Static Probe Instrumentation for VM-based Anomaly Detection System
	1 Introduction
	2 Related Work
	3 Architectural Framework
	3.1 Data Collection Process
	3.2 Feature Extraction Process
	3.3 Anomaly Prediction Process
	3.4 Threat Model and Limitations

	4 Evaluation
	4.1 General Setup
	4.2 Feasibility with Limited Data
	4.3 Effectiveness Against Diverse Attacks
	4.4 Efficiency and Scalability
	4.5 Performance Impact

	5 Discussion
	5.1 Windowing to Increase Accuracy
	5.2 Reducing False Positives
	5.3 Opportunity for Further Improvements

	6 Conclusion
	References

