
Recovering Lost Device-Bound Credentials

Foteini Baldimtsi1, Jan Camenisch2, Lucjan Hanzlik3(B), Stephan Krenn4,
Anja Lehmann2, and Gregory Neven2

1 Boston University, Boston, USA
foteini@bu.edu

2 IBM Research – Zurich, Rüschlikon, Switzerland
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Abstract. Anonymous credential systems allow users to authenticate
in a secure and private fashion. To protect credentials from theft as well
as from being shared among multiple users, credentials can be bound to
physical devices such as smart cards or tablets. However, device-bound
credentials cannot be exported and backed up for the case that the
device breaks down or is stolen. Restoring the credentials one by one
and re-enabling the legitimate owner to use them may require significant
efforts from the user. We present a mechanism that allows users to store
some partial backup information of their credentials that will allow them
to restore them through a single interaction with a device registration
authority, while security and privacy are maintained. We therefore define
anonymous credentials with backup and provide a generic construction
that can be built on top of many existing credential systems.

Keywords: Anonymous credentials · Backup · Restore credentials

1 Introduction

Digital credentials are used to certify a set of attributes for a user (i.e., birth
date, sex, clearances, access rights, or qualifications), similar to traditional
paper-based credentials such as identity cards or driving licenses. However, their
electronic nature makes them easy to duplicate and share. This is particularly
problematic when users have an incentive to share their credentials, e.g., when
they give access to payed subscription services such as music or video streaming.
The problem becomes even worse when anonymous credentials are used, since
a service provider cannot determine whether two presentations (i.e., authentica-
tions) were performed using the same or different credentials.
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Service providers therefore often protect credentials by “binding” them to an
uncloneable hardware device that can perform authentications, but from which
the credentials are not easily extracted. The main idea is that physical access to
the device is required to be able to present the credential. A high-security way of
doing so is by embedding the credentials on tamperproof smart cards or secure
elements; while for lower-security use cases, storing the credentials in obfuscated
form on the user’s phone or tablet PC may suffice.

Unfortunately, both those techniques do not allow users to make backups of
their credentials in order to recover if the device breaks down, or is lost or stolen.
Instead, they will have to re-issue all the credentials and possibly also revoke the
old ones. However, a single device may store many such credentials and replac-
ing all of them is often costly and impracticable since it might require off-line
authentication steps such as appearing in person at an office, receiving a let-
ter by paper mail, or answering secondary security questions. Although efficient
backup mechanisms for credentials—and in particular, anonymous credentials—
seem essential, no such construction has been proposed so far in the literature.

Our Contributions. In this paper, we describe a scheme for efficient backup and
restoration of device-bound credentials. Rather than binding the credentials to
the device directly, we propose binding credentials to the user, while devices
are registered to users as well. To perform a correct authentication, the user
must prove that the credential is bound to the same user to which the device
is registered. Credentials can then be exported and backed up in the traditional
way, while a device registration authority prevents credential sharing and theft
by ensuring that users can only register a limited number of devices and cannot
register devices in other users’ names.

We consider very strong security features for users as well as service providers.
We assume that users store their backups on untrusted media that could fall into
the wrong hands of malicious users, or even of malicious device manufacturers.
In spite of having access to the backup and being able to register new devices to
any user, the attacker should not be able to impersonate the user. We do so by
requiring the user to keep a strong secret in an offline vault, e.g., on a piece of
paper stored in a safe place. To maintain an acceptable level of usability, however,
the vault secret is solely needed for device registration but not for everyday use.

We first give a high level description of an anonymous credential system
with backup (BPABC) in Sect. 2, where we also define the syntax of BPABC and
give an overview of the related security requirements. Besides the basic func-
tionalities and backup, our framework covers advanced issuance (i.e., attributes
can be carried over into new credentials without revealing them to the issuer),
scope-exclusive pseudonyms (i.e., pseudonyms that are linkable for a fixed scope
string, but unlinkable across scopes), revocation, and equality predicates (i.e.,
users can prove equality of hidden attributes, potentially across multiple creden-
tials). In Sect. 3 we give a high-level description of the generic construction of a
BPABC scheme together with a sketch of its security proof.



Recovering Lost Device-Bound Credentials 309

Related Work. Anonymous credentials were originally envisioned by Chaum
[Cha81,Cha85], and subsequently a large number of schemes have been
proposed, e.g., [BL13,BCC+09,CH02,CL01,CL02,CL04,Bra99,PZ13,CMZ14,
GGM14]. Various formalizations of basic credential schemes have been pro-
posed in the literature, typically only considering a limited set of features,
e.g., Camenisch and Lysyanskaya [CL01] or Garman et al. [GGM14]. Recently,
Camenisch et al. [CKL+14] presented the so far most holistic definitional frame-
work for attribute-based credential systems, covering the same features as our
framework, except that theirs was limited to software credentials only and thus
there was no need for backup. Following their approach of a unified definitional
framework, we extend their syntax, definitions, and generic construction to addi-
tionally support device-bound credentials.

2 Device-Bound Credentials with Backup

A privacy-enhancing attribute-based credential system (PABC) consists of users
U that can request credentials on their attributes from issuers, I, and verifiers,
V, to whom users can present (i.e., prove possession of) an arbitrary set of their
credentials. Additionally, in a PABC system with backup (BPABC), device man-
ufacturers DM generate hardware tokens, and device credential issuers DI can
issue device credentials that can only be used if the device is physically present.
The idea is that software credentials certify the users’ attributes, whereas device
credentials only guarantee that a user has physical access to a valid device.
Then, upon presentation, the user shows that he possesses a valid device, and
an arbitrary set of software credentials that also belong to the same user.

When joining the system, every user computes a user secret key usk, which is
used to bind credentials to the user and allows him to derive unique pseudonyms
for different scopes, where a scope may be an arbitrary bit string. Pseudonyms
are linkable if computed twice for the same scope, but are completely unlinkable
across scopes. Furthermore, a user computes a vault user secret/public key pair
(vusk, vupk). Upon presentation, the user needs to know vupk, whereas the vault
user secret key vusk can be stored in a secure vault (e.g., it could be written on
paper and stored in a safe), and is only needed to “authenticate” the user every
time he obtains a new device or in order to restore a lost device.

Note here that any method to legitimately re-obtaining credentials (anony-
mous or not) requires some secret data to be stored outside the used hardware
tokens, e.g., on paper or an offline data stick. This is, because otherwise the
honest owner of a credential could not prove legitimate ownership of a creden-
tial once the adversary got access to his device, as the adversary would know
exactly the same information and could thus perfectly imitate the user. In tra-
ditional settings, this data may be the correct response to a security question
for a given service. For a backup mechanism to be practical, it is important that
the amount of secret data, as well as the number of modifications and look-ups
of this data are kept small. In our construction, the secret data consists of only
a single long-term signing key, independent of the number of credentials, and
needs to only be accessed when setting up a new device.
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Fig. 1. All steps of a BPABC system are user-centric, and no two actions taken by the
user can be linked unintentionally.

In Fig. 1 we describe the main steps of BPABC. Every user may possess sev-
eral devices, and store an arbitrary set of his software credentials on any of these
devices. Users can obtain software credentials from issuers as in a traditional cre-
dential system using 4 Issue, i.e., no device is required to obtain a credential. How-
ever, we assume that presenting credentials to verifiers using 5 Present always
requires possession of a device.1 Furthermore, certain credentials may be bound
to specific devices, i.e., they only can be used with this specific device, by binding
it to a device binding identifier dbid that is unique for every device.

The device manufacturer first generates a device containing a certificate of
genuineness using the algorithm 1 Produce. When buying a device, the user first
has to activate it in interaction with the manufacturer by running the protocol
2 Activate, at the end of which the device contains an initial device credential.
Now, the user has two possibilities to personalize his device. If the user wants
to register a new device, he runs 3a Register in interaction with the device cre-
dential issuer. If, on the other hand, the user wants to restore a lost device, he
runs 3b Restore with DI. In both cases, the user uses his vault secret key vusk
for this personalization; in the latter case, he further uses some backup token
that was computed prior to losing the device. Restoring a device can be seen as
a special way of registering a device: while for a plain registration, the device
receives a fresh dbid, restoring allows the user to register the new device with the
dbid of the lost device. Doing so allows the user to use all his software credentials
(including those that were bound to the lost device) with the new device. How-
ever, the security requirements of the system guarantee that no user can abuse
this restoring procedure to clone or duplicate devices, i.e., it is ensured that at
any point in time at most one device with a certain dbid is valid in the system.

We chose a multi-step approach for personalizing the device to ensure maxi-
mum security to all involved parties, and to model reality more accurately. For
instance, requiring to first activate the device with the manufacturer gives him
the chance to deny this activation, e.g., if the vendor reported the given device
to be stolen. However, as no personal information is involved in the Activate

1 Note that this is without loss of generality, as the system parameters could simply
contain a dummy issuer key for which a user can compute a dummy device credential
whenever the verifier’s policy does not require possession of a physical device.
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protocol on the user side, the manufacturer does not learn any information about
the user, but only that a given device is now activated. Splitting the activation
and personalization steps allows us to distinguish the device credential issuer
(e.g., a public authority) and the manufacturer (e.g., a smart card producer).

2.1 Syntax of Anonymous Credentials with Backup

In the following we formally specify the syntax and interfaces of an anonymous
credential system with backup (BPABC). We kept the syntax as close as possible
to that of PABC schemes without backup [CKL+14].

We denote algorithms by sans serif font, e.g., A,B. Drawing s uniformly at
random from a set S is denoted by s ←$ S. Similarly, a ←$ A denotes that a is
the output of a randomized algorithm A. For a two party protocol (A,B), we
write (outA; outB) ←$ 〈(A(inA);B(inB)〉 to denote that A obtained output outA
on input inA (accordingly for B). For sets P ⊆ S, we write Pc for the complement
of P, i.e., Pc = S\P. We write (xi)n

i=1 to denote the vector (x1, . . . , xn). Finally,
for n ∈ N, we write [n] := {1, . . . , n}.

A BPABC scheme consists of a specification of an attribute space
AS ⊆ ±{0, 1}�, algorithms SPGen, UKGen, VKGen, IKGen, DMKGen, Produce,
ITGen, ITVf, Present, Verify, Revoke, BTGen, and protocols 〈U .Issue, I.Issue〉,
〈U .Register, DI.Register〉, 〈U .Restore,DI.Restore〉, 〈U .Activate,DM.Activate〉
defined as:

SPGen →$ spar . On input 1κ, this system parameter generation algorithm gen-
erates system parameters spar.

UKGen →$ usk . On input system parameters spar, the user key generation
algorithm outputs a user secret key usk.

VKGen →$ (vusk , vupk). On input system parameters spar, the vault user key
generation algorithm outputs a vault user secret/public key pair.

IKGen →$ (isk , ipk ,RI ). On input spar, the (device) issuer key generation
algorithm outputs a public/private issuer key pair and some initial pub-
lic revocation information, RI. Formally, our construction does not require
to distinguish software and device credential issuers. However, to ease pre-
sentation, we will write (disk, dipk,RIDI) whenever an issuer is currently in
the role of a device credential issuer.

DMKGen →$ (dmsk ,dmpk). On input spar, the device manufacturer key gen-
eration algorithm outputs a public/secret manufacturer key pair.

Produce →$ cert. On input a secret manufacturer key dmsk, the device produc-
tion algorithm outputs a genuineness certificate.

〈U .Activate;DM.Activate〉 →$ ((dsk ,dbid ,dcred init), ε). In this interactive
device activation protocol, the user takes inputs (dmpk, cert), whereas the
device manufacturer takes input dmsk. At the end of the protocol, the user
obtains a device secret key dsk, a device binding identifier dbid and the initial
device credential dcredinit.

〈U .Register;DI.Register〉 →$ (dcred ,RI ′DI). In this device registration pro-
tocol, the user takes inputs (dipk, dmpk, vusk, vupk, dsk, dbid, dcredinit, drh),
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while the device credential issuer takes inputs (disk, dmpk,RIDI , drh), where
the inputs and outputs are defined as before. Moreover, drh is the revocation
handle for the new device. As the result of this protocol, the user obtains
the device credential dcred, while the issuer receives an updated revocation
information RI′DI .

ITGen →$ (nym ,pit , sit). To issue a software credential, a user needs to gen-
erate an issuance token that defines the attributes of the credentials to be
issued, where (some of) the attributes and the secret key can be hidden from
the issuer and can be blindly “carried over” from credentials that the user
already possesses (so that the issuer is guaranteed that hidden attributes
were vouched for by another issuer).
Taking inputs

(
usk, scopeU , rh,

(
ipki,RIi, credi, (ai,j)ni

j=1, Ri

)k+1

i=1
, E,M, vupk,

dbid
)
, the issuance token generation algorithm outputs a user pseudonym

nym and a public/secret issuance token (pit, sit). The inputs are defined as
follows:
• usk is the user’s secret key;
• scopeU is the scope of the generated user pseudonym nym, where scope = ε

if no pseudonym is to be generated (in which case nym = ε);
• rh is the revocation handle for credk+1 (e.g., chosen by the issuer before);
• (ipki,RIi)k

i=1 are the issuers’ public keys and current revocation informa-
tion for (credi)k

i=1; (ipkk+1,RIk+1) correspond to the issuer of the new
credential;

• (credi)k
i=1 are credentials owned by the user and involved in this issuance

and credk+1 = ε is a placeholder for the new credential to be issued;
• Ri ⊆ [ni] is the set of attribute indices for which the value is revealed;
• for i ∈ [k], (ai,j)ni

j=1 is the list of attribute values certified in credi;
(ak+1,j)j∈Rk+1 are the attributes of credk+1 that are revealed to the issuer;

• (ak+1,j)j �∈Rk+1 are the attributes of credk+1 that remain hidden;
• ((k + 1, j), (i′, j′)) ∈ E means that the jth attribute of the new credential

will have the same value as the j′th attribute of the i′th credential;
• M ∈ {0, 1}∗ is a message to which the issuance token is to be bound;
• vupk is the user’s vault public key;
• dbid is the device’s binding identifier which can be set to ε if the new

credential should not be device bound.
ITVf →$ accept/reject. On inputs

(
nym, pit, scopeU , rh, (ipki,RIi, (ai,j)j∈Ri

)k+1
i=1 ,

E,M
)
, this issuance token verification algorithm outputs whether to accept

or to reject the issuance token. For j = 1, . . . , k all inputs are as before, but
for k + 1 they are for the new credential to be issued based on pit.

〈U .Issue; I.Issue〉 →$ (cred ,RI ′). In the interactive issuance protocol, the user
takes input sit, whereas the issuer takes inputs (isk, pit,RI), where pit has
been verified by the issuer before. At the end of the protocol, the user obtains
a credential cred as an output, while the issuer receives an updated revocation
information RI′.

Present →$ (pt ,nym ,dnym). On input
(
usk, scopeU ,

(
ipki,RIi, credi, (ai,j)ni

j=1,

Ri

)k

i=1
, E,M, dsk, scopeD,

(
dipk,RIDI , dcred

)
,BD, vupk

)
, the presentation
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algorithm outputs a presentation token pt, a user pseudonym nym, and a
device pseudonym dnym. Most of the inputs are as before, but:
• E ⊆ {(i, j) : i ∈ [k], j ∈ [ni]}, where ((i, j), (i′, j′)) ∈ E means that the

presentation token proves that ai,j = ai′,j′ without revealing the actual
attribute values. That is, E enables one to prove equality predicates;

• M is a message to which the presentation is bound. This might, e.g., be a
nonce chosen by V to prevent replay attacks, where V uses a presentation
token to impersonate a user towards another verifier;

• dsk is the user’s device secret key stored in the secure element of the device;
• scopeD is the scope of the generated device pseudonym dnym;
• dipk and RIDI are the public key and current revocation information of

the issuer of the device credential dcred;
• BD ⊆ [k] is a set of indices specifying which credentials are device-bound;
• vupk is the user’s vault public key;

Verify →$ accept/reject. The presentation verification algorithm takes
(
pt,nym,

scopeU , (ipki,RIi, (ai,j)j∈Ri
)k
i=1, E,M, dnym, scopeD, dipk,RIDI ,BD)

defined
as before as inputs, and outputs whether to accept or to reject a presentation
token. For notational convenience, we assume that a term like (ai,j)j∈Ri

implicitly also describes the set Ri.
Revoke →$ RI ′. The revocation algorithm takes as inputs (isk,RI, rh), where isk

is the issuer’s secret key, RI is the current revocation information, and rh
is the revocation handle to be revoked. It outputs an updated revocation
information RI′.

BTGen →$ (dnym ,pbt , sbt). The backup token generation algorithm takes as
input

(
dsk, vupk, dipk,RIDI , dcred, dbid

)
, where all the values are as before.

It outputs a device pseudonym dnym and a public/secret backup token
(pbt, sbt), which will allow the user to carry over the current dbid into a
new device upon restoring. In theory, the entire backup token may be stored
in a public cloud, as no adversary would be able to use it to get a new
device credential re-issued. However, as sbt may contain personally identi-
fying information, it is recommended to store sbt privately or only in an
encrypted form.

〈U .Restore;DI.Restore〉 →$ (dcred ,RI ′
DI). In the device restoring protocol,

the user takes as input (sbt, dipk, dmpk, vusk, dsk, dcredinit, drh), whereas the
device issuer takes as input (dnym, pbt, disk, dmpk,RIDI , drh). At the end of
the protocol, the user outputs a fresh device credential dcred, while the issuer
receives an updated revocation information RI′DI .

2.2 Security Definitions (Informal)

We now next describe the security properties of an attribute-based credential
system with backup. Our definitions extend that of Camenisch et al. [CKL+14],
who gave a comprehensive formal definitional framework for traditional creden-
tial schemes. As our system involves more types of parties and offers more inter-
faces, the formal definitions are quite complex, thus we only sketch the intuition
here and refer to the full version for the formal definitions.



314 F. Baldimtsi et al.

Oracles. In our definitions, the adversary is granted access to three oracles: a
device manufacturer oracle Oproducer, an issuer oracle Oissuer, and a user ora-
cle Ouser, allowing the adversary to interact with honest device manufacturers,
issuers, and users, respectively. While most of the interfaces of the oracles are
natural, Ouser has additional interfaces that allow the adversary to “steal” a
device with a specific set of credentials from an honest user. Furthermore, the
adversary is given interfaces to use such a device. His available options depend
on the assumed security guarantees of the devices. We explicitly distinguish the
following three types of devices, but our definitions are flexible enough to be eas-
ily adopted for other settings as well. First, if the devices are assumed to have
secure memory and are protected by strong PINs, then the adversary essentially
cannot profit from the stolen device at all. Second, if the memory is assumed to
be secure but no strong PINs are used, then the adversary can use (i.e., backup,
present, etc.) the stolen device and the credentials on them, but he does not
learn the precise values of the user secret key or the credentials. Finally, if no
assumption on the device are made, the adversary learns all the information
stored on the device, including the user secret key and the credentials.

We believe that parameterizing our security definitions by the assumed secu-
rity of the devices is useful to realistically model a broad range of real world
scenarios, as, for instance, the security guarantees of eID cards, smart phones,
or public transport tickets might drastically differ in practice. Clearly, making
no assumptions on the devices results in the strongest definitions; however, as
the computational capacity of embedded devices is often limited, our approach
of considering additional properties is essential to obtain practical protocols.

Completeness. If all parties behave honestly, all protocols can be run successfully.
In particular, honest users interacting with an honest counterpart can always
activate, register, and restore devices, as well as obtain and present credentials.

Unforgeability. We define unforgeability as a game between an adversary and
the Oproducer, Oissuer, Ouser oracles. The adversary can produce new devices,
obtain and revoke credentials from honest issuers, instruct honest users to obtain
credentials on inputs of his choice, request presentation tokens and receive
backup tokens for given device credentials. Moreover, as mentioned above, he
can “steal” devices and receive the device credential together with the software
credentials and secret keys. At the end of the game the adversary outputs a
number of presentation tokens and pseudonyms and wins if at least one of the
presentation tokens is a forgery, or an issuance token successfully submitted to
the honest issuer oracle was a forgery. A token is a forgery if it is inconsistent
with the world the adversary interacts with using oracles Oproducer, Oissuer, and
Ouser. Informally, being consistent here means that for each token returned by
the adversary, all software credentials are bound to the same use secret key, the
pseudonym nym is sound for the given scope scopeU , values of revealed attributes
are correct, the equality relation E is satisfied, all credentials presented in the
token are either bound to the same device binding identifier dbid or to ε and
bound to the same vault public key. Moreover, presentation tokens must have
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been created using a valid device credential (issued for a genuine device using
restore or register), the device pseudonym dnym is sound for the given scope
scopeD and the device credential must be signed such that the signature is veri-
fiable with the vault public key.

Privacy. Similar to Camenisch et al. [CKL+14], we define privacy via a simu-
lation based approach. We consider a set of honest users and let the adversary
control all other parties in the system (device manufacturers, issuers, and ver-
ifiers). It should be computational infeasible for the adversary to distinguish
whether he is communicating with the real set of honest users, or with a simula-
tor, S, that only has access to the public information of the respective protocol
(e.g., revealed attributes, scopes, public keys). For this, we define a filter F
that has the same interfaces as the user oracle Ouser, but sanitizes the inputs
beforeforwarding them to the S. For instance, unlinkability of presentation is
ensured by not forwarding the credential identifiers cid (that the adversary gives
to Ouser) to S. Furthermore, the filter performs comprehensive book keeping to
exclude trivial distinguishing attacks that would result from requesting presen-
tation tokens from invalid credentials which would be answered by the S but not
by Ouser.

3 A Generic Construction and Its Security

One possible way to realize recoverable device-bound credentials would be to
choose a unique “recovery secret” a for each device-bound credential and embed
its image through a one-way function f(a) as an additional attribute in the
credential. This attribute is not revealed during presentation, but to backup
a credential cred, he stores a presentation token pt revealing f(a) on insecure
backup media, and stores a in a secure offline vault. To restore cred upon loss,
the user sends pt and a to the issuer, who checks if pt and f(a) are correct, and
then participates in an advanced issuance protocol that allows the user to blindly
carry over all attributes from cred into a new credential that will be bound to
freshly chosen recovery secret a′.2

One drawback of this construction is that a malicious device issuer getting
access to a user’s device carrying some software credentials could simply re-
issue himself a new device credential, as he would then just omit the proof of
knowledge for a. The device issuer could then use the user’s software credentials
with the new device, and the user would have no option to revoke the malicious
device credential as it would contain a fresh revocation handle.

This problem could be mitigated by encrypting credentials before loading
them onto the device. The decryption key could be stored inside the secure ele-
ment of the device, and the credentials would only be decrypted in this secure
environment. So a malicious device issuer finding a user’s device would not learn
2 Alternatively, one could also use the same a for all device-bound credentials, and

then only prove in zero-knowledge that one knows the trapdoor a to the attribute
f(a).
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the user’s software credentials and thus could not impersonate him. However,
reality shows that virtually any tamperproof device can be broken by a suffi-
ciently powerful adversary. In this case a user could again be impersonated.

One solution to this problem is to let the verifier not only check that the user
owns a valid device credential, but also that the user “accepted” this credential.
On a very high level, this can be done by letting the user sign his device creden-
tial, and embed the verification key of this signature into all his credentials as an
attribute. Then, at presentation, the user shows that he owns a device credential
and a signature thereon, and that the public verification key is also contained in
all the other credentials. As a malicious device issuer may never learn the sign-
ing key of this user (as it is stored in a secure vault), he may not impersonate
the user with a fresh device credential any more, as this would require forging a
signature on this credential.

A bit more precisely, each user computes a signature key pair (vusk, vupk)
and stores vusk in a bank vault as his vault user secret key, and only needs
to access vusk when (re-)obtaining device credentials. After buying and acti-
vating a device, the user requests a device credential dcred, that certifies the
validity of the device and a unique device binding identifier dbid. The device
credential dcred is bound to vupk. All software credentials also get bound to
vupk, and optionally to dbid if the credential is to be bound to a specific device;
if no dbid is given, the credential can be used with any device. Upon loss of
a device, the user now only needs to get dcred re-issued, but all the software
credentials can be left unchanged. To ensure that only the legitimate user can
re-obtain and later prove possession of a device credential, we let the user sign
the (unique) revocation handle rh of dcred using vusk. Upon presentation, the
user now not only shows that he possesses a device credential, but also that he
knows a signature under vupk on rh. This signature protects against malicious
credential issuers, which cannot create such proof of signature knowledge on a
non-revoked token rh. Unfortunately, binding the credentials to vupk by adding
it as an attribute does not work here generically, as this would require that the
attribute space of the credential scheme subsumes the key (message) space of
the signature scheme. Furthermore, standard signatures would require the veri-
fier to learn the signature verification key vupk, which must not be revealed to
maintain unlinkability. Therefore, upon device registration, the user commits to
vupk and lets the issuer additionally sign this commitment. Using commuting
signatures [Fuc11] additionally allows us to perform the required proofs with
only publishing a commitment to vupk, but not vupk itself, therefore achieving
the required privacy goals.

What is left, is to bind this signature to the specific credential. To do so, the
issuer, instead of only signing the vault public key, signs a combination of vupk
and the revocation handle, rh, for the credential issued. Thus, once the creden-
tial gets revoked, the signature of the issuer becomes useless. Since revocation
handles do not necessarily belong to the message (key) space of commuting sig-
natures, we sign the value φ(rh) instead of signing the actual revocation handle
rh, for some appropriate mapping function φ. Finally, we also use a proof system
that allows to verify that commitments to rh and φ(rh) are consistent.
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3.1 Building Blocks

In the following, we briefly recap the non-standard building blocks required for
the generic construction presented in this section.

Privacy-Enhancing Attribute-Based Credentials. Because of space limitations
and to avoid redundancy, we refrain from giving formal definitions for PABC
systems, but refer to Camenisch et al. [CKL+14].

Informally, anonymous credentials (without backup) have the same inter-
faces as introduced in Sect. 2.1, except for all the backup-related parts. That
is, they consist of the following algorithms and protocols: SPGen,UKGen,
IKGen, ITGen, ITVf, 〈U .Issue; I.Issue〉,Present,Verify,Revoke. The input/output
behavior and the required security properties are again similar to Sects. 2.1 and
2.2, respectively.

Commuting Signatures and Verifiable Encryption. On a high level, commut-
ing signatures combine digital signatures, encryption, and proof systems, such
that one can commit to (any subset of) signature verification key, message,
and signature, and still be able to prove that the three values are a valid
key/message/signature tuple. In the following we give a slightly simplified ver-
sion of the interfaces introduced by Fuchsbauer [Fuc11].

SPGenCS. On input global system parameters sparg, this system parameter gen-
eration algorithms outputs signature parameters sparCS. These system para-
meters are input to all algorithms in the following, but we will sometimes
omit this for notational convenience.

KeyGenCS. On input sparCS, this key generation algorithm outputs a signature
key pair (sk, pk).

ComCS. On input a message m in the signature or the key space, this commitment
algorithm outputs a commitment csM and opening information ocsM.

ComM. On input a message m from the message space, this commitment algo-
rithm extends ComCS by, among others, proofs of consistency. Note that the
key space is consistent with the message space and therefore one can also
use this algorithm to commit to verification keys.

DComCS. On input a commitment csM and opening ocsM, this decommitment
algorithm outputs the committed message m.

CombComCS. On input two commitment/opening pairs (cs1, ocs1), (cs2, ocs2) to
m1,m2 in the message or key space, this commitment combining algorithm
outputs a commitment/opening pair (cs3, ocs3) of type ComM to m1 ⊗ m2.

VerCombComCS. On input three commitments csi, i = 1, 2, 3, this combined
commitment verification algorithm outputs 1, if and only if cs3 is the output
of CombComCS on input cs1, cs2.

SigComCS. On input a secret key sk and a commitment csM, this commit-
ment signing algorithm outputs a signature σ, a commitment/opening pair
(csσ, ocsσ) to σ, and a proof πσ of the validity of the signature.
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Fig. 2. RandSign((pk, cspk, ocspk), (csM, ocsM), (σ, csσ, ocsσ, πσ))

VerifyCS. On input a public key pk, a message m, a signature σ (or commitments
to (some of) these values), and a proof π, this verification algorithm outputs
accept if and only if π is a valid proof that σ is a signature on m for the
public key pk.

AdPrC. On input pk, csM, (csσ, ocsσ), and π such that VerifyCS(pk, csM, σ, π) =
accept (where σ is obtained using DComCS), this committing proof adaption
algorithm outputs a proof π′ such that VerifyCS(pk, csM, csσ, π′) = accept;
to decommit in a proof, AdPrDC works the other way round (i.e., adapts π
such that it verifies for σ and not for csσ).

AdPrCM. On input pk, (csM, ocsM), csσ, and π such that VerifyCS(pk,m, csσ,
π) = accept, this committing proof adaption algorithm outputs π′ such that
VerifyCS(pk, csM, csσ, π′) = accept; again, AdPrDCM works the other way
round,

AdPrCK. On input (cspk, ocspk), csM, csσ, and π such that VerifyCS(pk, csM, csσ,
π) = accept, the committing proof adaption algorithm outputs π′ such that
VerifyCS(cspk, csM, csσ, π′) = accept; AdPrDCK(cspk, csM, csσ, π) works the
other way round.

We require that (ComCS,DComCS) is a secure extractable commitment
scheme. We also require strong unforgeability (under chosen message attack),
i.e., the adversary cannot output a new pair message/signature (m,σ). Moreover,
all the proofs must be simulatable using an appropriate trapdoor, for details we
refer to Fuchsbauer [Fuc11].

In addition to the above algorithms, Fig. 2 specifies the algorithm RandSign
that we will use in our construction. The procedure takes as input a commuting
signature for which the signature is given as commitment and adapts it to a com-
muting signature for which the signature, the message and optionally the public
key are given as commitments (the commitment to signature is re-randomized),
such that the inputs csσ and πσ cannot be linked to cs′

σ and π′
σ.

3.2 The Construction

In the following we show how to build a BPABC system from a PABC system
and a commuting signature scheme (ComM, . . . ). In the construction, let HAS :
{0, 1}∗ → AS and HMS : {0, 1}∗ → MS be collision-resistant hash functions,
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where AS is the attribute space of the PABC system, and MS is the message
space of presentation tokens used in the PABC system. Let (Comc, . . . ) be a
standard commitment scheme. Furthermore, let φ be a homomorphism from the
message space of Comc to the message space of ComM, that additionally has the
property that φ(m1) ⊗ φ(m2) = φ(m1 ⊕ m2), where m1,m2,m1 ⊕ m2 are in the
message space of Comc. Finally, let (Proveφ,Verifyφ) be a zero-knowledge proof
system for statements:

ZKP [(α) : c1 = ComM(φ(α)) ∧ c2 = Comc(α)] .

Below we give a simplified generic construction of our BPABC scheme, based on
the PABC credential scheme [CKL+14] and commuting signatures. The complete
construction is given in the full version and actually does not build upon PABC’s,
but rather extends the generic PABC-construction, as we require access to the
commitment values produced and consumed by the building blocks of the PABC
scheme. In the description below, we assume, for the sake of simplicity, that
we can extract the commitments from PABC presentation and issuance tokens,
which allows us to focus on the extensions needed to obtain the BPABC.

Setup and Key Generation

SPGen: The system parameters spar consist of the parameters sparPABC of the
PABC system, sparCS of the commuting signature scheme, and two attributes
{initial, activated} ∈ AS. These parameters in particular specify all required
domains, e.g., of revocation handles, etc.

UKGen: As in PABC, i.e., compute the user key as usk ←$ UKGen(sparPABC).

VKGen: Compute the vault keys as (vusk, vupk) ←$ KeyGenCS(sparCS), e.g., being
keys for the commuting signature scheme.

IKGen: The issuer key consists of an issuer’s key for the PABC system and a key
for the commuting signature scheme. For device credential issuers the key also
comprises two scopes and list to keep track of used pseudonyms:

– Compute (iskPABC, ipkPABC,RIPABC) ←$ IKGenPABC(sparPABC).
– Compute (iskCS, ipkCS) ←$ KeyGenCS(sparCS).
– Set ipk = (ipkPABC, ipkCS), isk = (iskPABC, iskCS, ipk), and RI = RIPABC.
– For device credential issuers further generate two scopes scopebup, scopereg

←$ SCP (for backup pseudonyms and for registration pseudonyms) and an
empty list Ldnym to store used pseudonyms.
Set dipk = (ipk, scopebup, scopereg), disk = isk, and RIDI = (RI,Ldnym).

DMKGen: The device manufacturer’s key consists of an issuer’s key for the PABC
system, a scope for activation pseudonyms and an empty list Lcert to store used
pseudonyms:

– Compute (dmskPABC, dmpkPABC,RIPABC) ←$ IKGenPABC(sparPABC).
– Generate empty list Lcert and scopeact ←$ SCP.
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– Set dmpk = (dmpkPABC,RIPABC,Lcert, scopeact), and the secret key to dmsk =
(dmskPABC, dmpkPABC).

Produce: Generate an initial device secret key dskcert and issue a device credential
under dmsk.

– Compute device secret key dskcert ←$ UKGenPABC(sparPABC).
– Choose a random revocation handle drh.
– Issue (locally) a PABC credential credcert for the attribute initial, device key
dskcert and revocation handle drh under the device manufacturer’s issuance
key dmskPABC.

– Set cert = (credcert, dskcert).

Device Activation and Registration

Activate: To activate a device, the user runs a protocol with the device manu-
facturer where U derives a new device secret key dsk as dsk = dsk′ ⊕ dskcert for
a randomly chosen dsk′. The user also obtains a credential on dsk from DM.
Thereby, DM can verify that dsk is correctly derived from a previously certified
dskcert but does not learn the new device key. A simplified version of the acti-
vation protocol is depicted in Fig. 3. For the sake of simplicity, we therein omit
the openings from the in- and outputs of the commitment algorithms.

Register: To register a device with a device credential issuer DI, the user (assisted
by his device) runs a protocol with DI. Therein, U shows that he has an acti-
vation credential dcredinit from DM on some (secret) device key dsk and iden-
tifier dbid. The device credential issuer then blindly carries over dsk, dbid into a

Fig. 3. Device activation
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Fig. 4. Device registration

new credential that also includes a revocation handle drh. In addition, DI also
signs a commitment on a combination of drh and the user’s vault public key
vupk, and the user signs a commitment of φ(drh), both using the commuting sig-
nature scheme. The registration information then consists of the credential and
both signatures. The simplified registration protocol is given in Fig. 4. For sim-
plicity, we again omit the openings from the in- and outputs of the commitment
algorithms.

Credential Issuance and Presentation

ITGen: This algorithm produces an issuance token for input (usk, scopeU , rh, (ipki,
RIi, credi, (ai,j)ni

j=1, Ri)k+1
i=1 , E,M, vupk, dbidD ) and combines an PABC issuance

token with a commuting signature as follows:

1. Compute PABC issuance token. First, the input to ITGenPABC needs to be
prepared such that is also captures the device-binding property, i.e., the rela-
tion E gets extended to express which credentials are device-bound, and that
they are all bound to the same device. More precisely, given k credentials
credi = (cred′

i, dbidi, rhi, (σI,i, csσ,i, ocsσ,i, πσ,i)), one first verifies whether all
device-bound credentials with dbidi �= ε contain the same device identifier
dbid∗. We denote BD for the set of all device-bound credentials. If at least
one credential is device-bound, then the new credential should be also device-
bound as well, i.e., verify that dbidD = dbid∗ and set dbidk+1 = dbidD. Abort
with output ⊥ if any of the checks fails. Update the relation expression to
E′ = E ∪ {((i, ni + 1), (j, nj + 1)) : i, j ∈ BD ∪ {k + 1}} and use E′ to obtain
the PABC issuance token. That is, we run ITGenPABC(usk, scopeU , rh, (ipki,RIi,
cred′

i, ((ai,j)ni
j=1, dbidi), Ri)k+1

i=1 , E′,M) receiving (nym′, pit′, sit′).



322 F. Baldimtsi et al.

2. Adapt and randomize the Issuer’s signatures σI,i. The second part is based on
the commuting signatures the user has obtained for all credentials credi. The
issuer’s signatures σI,i = (σi, csσ,i, ocsσ,i, πσ,i) originally signed φ(rhi)⊗vupk.
We now adapt them to be signatures on fresh commitments of the same mes-
sages: we first compute CS commitments csrh,i (with openings ocsrh,i) for the
individual revocation handles φ(rhi) of all credentials. Then, we compute a
CS commitment csvupk (with opening ocsvupk) for the user’s vault public key
vupk and combine csvupk with each csrh,i via CombComCS to obtain commit-
ments csM,i for messages φ(rhi)⊗vupk. We then adopt and re-randomize the
issuer’s signatures using RandSign, which adapts the committed signatures to
be signatures on the freshly computed commitments csM,i. We denote the
randomized and adapted signatures as (cs′

σ,i, π
′
σ,i).

3. Combine both parts. Finally, we have to bind the PABC and the commuting
signature part together. This is done by proving that the revocation handles
committed in csrh,i are the same revocation handles to which the PABC-
issuance token commits as (crh,i, orh,i) (which we extract from pit′). For
each rhi we therefore compute πφ

rh,i ←$ Proveφ((crh,i, orh,i), (csrh,i, ocsrh,i)).
We set pit = (pit′,BD, csvupk, (csM,i, csrh,i, π

φ
rh,i, cs

′
σ,i, π

′
σ,i)

k
i=1), sit = (sit′,

dbidD, csvupk, ocsvupk) and nym = nym′.

ITVf: Verify the PABC issuance token pit′, proofs πφ
rh,i, that (cs′

σ,i, π
′
σ,i) are valid

issuer signatures on csM,i, and that VerCombComCS(csrhi
, csvupk, csM,i) = 1 for

i = 1, . . . , k. Output reject if any of the check fails, and accept otherwise.

Issue: Issuance of a software credential (possibly bound to a device if dbidD �= ε)
consists of a PABC issuance protocol, and a commuting signature generated by
the issuer as depicted in Fig. 5.

Present: A presentation token for (usk, scopeU , (ipki,RIi, credi, (ai,j)ni
j=1, Ri)k

i=1,
E,M, dsk, scopeD, (dipk,RIDI , dcred),BD, vupk) consists of two PABC presenta-
tion tokens (one for the software credentials, and one for the device credential)
and randomized commuting signatures:

1. Compute PABC presentation token pt′ for the software credentials. Parse
each credential as credi = (cred′

i, dbidi, rhi, σI,i). Adapt the relation E to
include the device-binding relations, i.e., use the indices in set BD to com-
pute E′ = E ∪{((i, ni +1), (j, nj +1)) : i, j ∈ BD}. Compute (nym, pt′) for all
software credentials cred1, . . . , credk by running PresentPABC(usk, scopeU , (ipki,
RIi, cred′

i, ((ai,j)ni
j=1, dbidi), Ri)k

i=1, E
′,M).

2. Compute PABC presentation token pt′′ for the device credential. If dcred �=
ε, parse dcred = (dcred′, drh, σDI , σU ), and compute presentation token
(dnym, pt′′) as PresentPABC(dsk, scopeD, (ipkDI ,RIDI , dcred′, (dbidD)), ∅,M).
If dcred = ε abort with output ⊥.

3. Bind pt′ and pt′′ together. Extract (cdbid,D, odbid,D) from pt′′ and, for some
i ∈ BD, (cdbid,i, odbid,i) from pt′. Prove that both commit to the same value
in πdbid.
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Fig. 5. Credential issuance

4. Adapt and randomize the Issuer’s signatures σI,i and σDI . Similarly as in the
ITGen algorithm we adapt the issuer’s signatures σI,i = (σi, csσ,i, ocsσ,i, πσ,i)
on φ(rhi)⊗vupk to be signatures on fresh commitments of the same messages.
To this end, we first compute CS commitments csrh,i (with openings ocsrh,i)
for the individual revocation handles φ(rhi) for all i = 1, . . . , k,D. Then,
we compute a CS commitment csvupk (with opening ocsvupk) for the user’s
vault public key vupk and combine csvupk with each csrh,i via CombComCS to
obtain commitments csM,i for messages φ(rhi)⊗vupk. We then adopt and re-
randomize the issuer’s signatures using RandSign, which adapts the commit-
ted signatures to be signatures on the freshly computed commitments csM,i.
We denote the randomized and adapted signatures for all i = 1, . . . , k,D as
(cs′

σ,i, π
′
σ,i), where (cs′

σ,D, π′
σ,D) stands for the adapted signature of the device

credential issuer.
5. Adapt and randomize the User’s signature σU (contained in dcred). In a sim-

ilar vein, we adapt the user’s signature σU = (σ, csσ,U , ocsσ,U , πσ,U ) on the
revocation handle of the device credential φ(drh) using procedure RandSign.
However, here we also adapt the proof using a commitment to vupk. Note
that this ensures that the final signature proof is not only for a committed
signature on a committed message, but that also the public key is given as
a commitment. This is required here, as the user’s public key would serve
as a unique identifier otherwise. We denote the randomized user signature
on message csrh,D and under key csvupk (computed in the step above) as
(cs′

σ,U , π′
σ,U ).

6. Bind the PABC part and CS part together. This is again similar to the ITGen
algorithm: we bind both parts together by extracting the commitments for all
revocation handles from the PABC tokens and proving that they contain the
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same values as the CS commitments used in the commuting signatures part.
That is, for all i = 1, . . . , k we extract (crh,i, orh,i) from pt′ and (crh,D, orh,D)
from pt′′ and compute πφ

rh,i ←$ Proveφ((crh,i, orh,i), (csrh,i, ocsrh,i)).
Finally, we compose the presentation token as pt = ((pt′, pt′′, πdbid, csvupk,
(csM,i, csrh,i, π

φ
rh,i, cs

′
σ,i, π

′
σ,i)

k,D
i=1, cs

′
σ,U , π′

σ,U ),nym, dnym).

Verify: Verify both presentation tokens (nym, pt′), (dnym, pt′′), proofs πdbid, πφ
rh,i

and that all csM,i are valid combinations of commitments csrh,i and csvupk (for
i = 1, . . . , k,D). Moreover, verify the credential issuer’s signatures under csM,i

and the user’s signature under csrh,D and for key csvupk. Output reject if any of
the checks fails, and accept otherwise.

Revoke: On input (isk,RI, rh) parse isk as (iskPABC, iskCS, ipk) and run the PABC
revocation algorithm RevokePABC(iskPABC,RIPABC, rh).

Backup and Restore

BTGen: Upon input (dsk, vupk, dipk,RIDI , dcred, dbidD) parse dcred = (dcred′,
drh, σDI , σU ) and compute the presentation token (dnym, pt) ← PresentPABC
(dsk, scopebup, (ipkDI ,RIDI , dcred′, (dbidD)), ∅,M) for the device credential.
Extract the commitment and opening (cdbid, odbid) to the device identifier dbidD
and commitment and opening (cdrh, odrh) to the device revocation handle. Set
the public part to pbt = (pt, drh, odrh), sbt = (dbid, cdbid, odbid) and output
(dnym, pbt, sbt).

Restore: The restore procedure is initiated by the user when he obtained his new
(and activated) device including a new device key dsk′ and activation credential
dcred′

init. The user then runs the restore protocol with the device credential
issuer DI where he obtains a new device credential cred′ that contains the device
identifier dbid from the backup token. The simplified protocol is given in Fig. 6.

Theorem 1 (Informal). The BPABC-system constructed above is unforgeable
for all types of devices, if the underlying PABC- and the CS-schemes are unforge-
able and Proveφ is extractable and sound. It is further private for devices with
secure memory without PINs, if the PABC-scheme is private, Proveφ is zero-
knowledge, and the CS scheme can be simulated given commitments to messages
or/and verification keys.

3.3 Intuition Underlying the Security Proofs

Due to space limitations, we only give the intuition of our security proofs.

Privacy. Our generic construction can be shown to be private, if one assumes
secure memory without strong PINs, cf. Sect. 2.2. Note that without assuming
secure memory, the adversary could in particular learn the user’s secret key
from which it could (deterministically) derive pseudonyms for arbitrary scopes,
and could thus easily link arbitrary presentations to the user; achieving privacy
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Fig. 6. Restore protocol

with insecure memory would therefore require to update usk upon re-issuance if
scope-exclusive pseudonyms are required.

To prove the above statement we essentially need to show that the commuting
signature part, the PABC scheme and the Proveφ prove system can be simulated.
As our privacy definitions extend those given by Camenisch et al. [CKL+14], it
can be shown that the parts related to the classic PABC system used in our
construction can be simulated using their simulator. Simulating the Proveφ sys-
tem that is used to bind revocation handles in PABC and CS commitments can
be done by the zero-knowledge property of the used proof system. Finally we
have to show that commuting signatures can be simulated. First note that in
all used commuting signatures, the messages and the signatures are given as
commitments. Moreover, the verification keys for those commuting signatures
are either the publicly known keys of issuers or the users vault public key given
also as commitment. Therefore, we can use the results from [Fuc11], that there
exists a simulator, that given commitments to messages and verification keys
can compute commitments to signatures and valid proofs of correctness.

Unforgeability. Our generic construction satisfies the unforgeability property for
all types of devices. This means that there exists no forgery among the issuance
and presentation tokens returned by the adversary in the unforgeability game.

First note that credentials in our generic construction are classic PABC sys-
tem credentials with an additional commuting signature under φ(rh)⊗vupk. From
the unforgeability property of the PABC system, it follows that all presentation
or issuance tokens returned by the adversary satisfy that all software credentials
are bound to the same user secret key, the pseudonym nym is sound for the
given scopeU , the revealed attribute values are correct, the equality relation E
for blinded attributes is satisfied, the committed device binding identifier are the
same in all presented credentials (this is also ensured by the E relation) except
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the ones that are given opening information to ε, and the device pseudonym
dnym is sound for the given scopeU . Moreover, from the binding property of the
CS commitments scheme and the soundness property of the proof system Proveφ

we have that the adversary cannot return presentation or issuance tokens that
present credentials bound to different vault public keys. The initial credential
and scope specific pseudonyms for static scopes ensure that the adversary can-
not create tokens for devices that are restored from a backup token twice and
restored or register without activation. Finally, the unforgeability of commuting
signatures and the soundness property of Proveφ ensure that the adversary can-
not create presentation tokens for software credentials with a device the device
credential of which was revoked.

3.4 Instantiation

Due to space restrictions, we omit a full instantiation of our generic construction
here. Similar to Camenisch et al. [CKL+14], it can be instantiated using Pedersen
commitments [Ped91,DF02], CL-signatures [CL02], a variant of the Nakanishi
et al. revocation scheme [NFHF09], and the pseudonym scheme used in the IBM
identity mixer [IBM10]. The new parts of the construction based on commuting
signatures can be instantiated using the scheme proposed by Fuchsbauer [Fuc11],
and the proof system Proveφ can be obtained using standard techniques.
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