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Abstract. Hardware and software consistency protocols rely on global
observability of consistency events. Acknowledged broadcast is an obvi-
ous choice to propagate these events. This paper presents a generalized
ring topology for parallel event propagation with acknowledged delivery.
Implementations for various many-core architectures show increased per-
formance over conventional approaches. Therefore, diamond rings are a
prime candidate for implementations of distributed memory models.

1 Introduction

A central component of consistency protocols are low-latency, high-throughput
notification mechanisms that guarantee global observability to the initiator [1].
For this purpose, we propose a new broadcast topology called diamond rings.
Its design targets broadcasting of events that are rather small while the final
acknowledgement of their propagation is crucial. The event processing may be
postponed locally as long as the propagation goes on. Usually, larger data is just
referenced by the events instead of being transmitted directly. It is the nodes’
task to copy or update any additional data as necessary.

A prime example for such mechanisms are coherence protocols that provide
multiple reader single writer (MRSW) access on memory locations. Before writ-
ing to a location, exclusive access has to be obtained for the writer by sending a
request for ownership. Every node that has a valid copy must be informed of this
request in order to invalidate their outdated copy and revoke any previous write
access. The writer can proceed only after all other nodes have been notified and
acknowledging the successful broadcast is therefore essential. A similar scenario
are update protocols. A central node sequences the atomic data modification
requests and then broadcasts the updates. The individual requests are complete
once their update has reached all replica.

Low latency is clearly desirable for such broadcasts in order to reduce the stall
time of writers [2]. Just as much desirable is high throughput in order to reduce
the congestion when pipelining updates and independent ownership requests.

Broadcast topologies provide a trade-off between latency and throughput.
The latency is caused by overheads along the longest path. Keeping it short
c© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 722–733, 2015.
DOI: 10.1007/978-3-319-27308-2 58



Diamond Rings: Acknowledged Event Propagation in Many-Core Processors 723

requires asymmetric topologies with a large number of communication partners
per node [2], which introduces imbalanced overhead among the nodes.

The throughput is increased by pipelining multiple broadcasts and is limited
by the single node with the highest processing overhead. Thus, topologies with
balanced overhead and few communication partners per node are required. The
highest throughput is achieved by rings with a single successor per node [3].

Ignoring the delivery acknowledgement, conventional balanced trees present
a sensible trade-off between latency and throughput. However, the acknowledge-
ments require additional reductions from the leaves to the tree root. In this
scenario, the proposed diamond rings provide better throughput and latency
than conventional balanced trees. In comparison to asymmetric topologies, they
provide better throughput in exchange for slightly worse latency.

Section 2 reviews related work. The new diamond rings are introduced in
Sect. 3 and compared qualitatively against conventional topologies. The broad-
cast mechanism was implemented for a variety of many-core architectures as
discussed in Sects. 4 and 5 compares them quantitatively.

2 Related Work

Efficient broadcasts received a lot of research, which can be divided into three
categories: theoretical foundations, software-, and hardware-implementations.

The theoretical work focuses on finding optimal broadcasting trees for specific
models of computation and communication networks. [4] summarises early work
for very simple models of communication that ignore, for example, the message
latency The most prominent enhanced models are POSTAL [5] and LogP [6]. The
POSTAL model considers communication latency and simultaneous send/receive
operations. The LogP model extends this by incorporating processor overhead,
communication bandwidth, finite network capacity and multi-port I/O. Optimal
broadcast algorithms in the LogP model were presented by [2].

Implementations face additional challenges like varying network latency and
the efficient computation of optimal topologies at runtime [7]. Minimal-height
lopsided trees can be constructed to cope with mixed-latency networks [8]. Other
works focus on specific network architectures. For instance, [9] evaluates different
broadcast algorithms on the Intel SCC [10] processor. They show that exploiting
the SCC’s 2D mesh with flat trees performs better than naive balanced trees.
Finally, [3] points out that rings provide even better throughput.

Hardware-based approaches [1,11,12] optimise broadcast operations by ded-
icated support on the router and switch level. In practice, they apply the same
ideas and topologies as software-based algorithms but have to cope with stricter
resource constraints. Likewise, our proposed diamond ring topology can be
applied in soft- or hardware and requires just point-to-point communication.

To the best of our knowledge, none of the previous research considered broad-
casts with acknowledgement as a combined operation and the trade-off between
latency versus throughput is often neglected. Research focused on the broadcast
latency alone or, as in [13], only on the acknowledgement path.
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(a) D2
2, c = 0, n = 9 (b) D2

2, c = −2, n = 7

(c) D2
2, c = 2, n = 11

Fig. 1. Diamond Rings of arity 2 with different values of contamination. The two root
nodes are conceptually the same but are drawn separately for clarity.

3 The Diamond Ring Structure

Based on the observation that the ring topology provides the best throughput
but worst latency [3], we propose a generalisation towards parallel rings. This
should trade loosing some of the throughput for a significantly reduced latency.

The diamond ring is a directed graph Dl
k with |V (Dl

k)| = n nodes. The
overall shape is a k-ary balanced tree of high l with the leaves merged to a
mirrored tree as shown in Fig. 1a. It consists of four classes of nodes, called root,
scatter, center, and gather nodes. The roots the two trees are merged into one
root node. Each of the kl center nodes is part of exactly one ring and the root
is the only node that lies on all kl rings.

This topology has a couple of advantages for the implementation of low over-
head broadcasts. The path length is bounded by O(log n) due to the construction
based on trees. The per-node memory requirement is O(k) because memory is
needed for each of the maximal k neighbours.

3.1 Extending to Arbitrary Node Counts

In practice, the desired node count does not match the size of a pure Dl
k. In

such cases, c additional nodes must be introduced or removed beyond its regular
topology, turning the graph into what we call a contaminated diamond ring.

The number of surplus nodes never exceeds the breadth of the ring center.
Therefore, all potential modifications can be accomplished by inserting or remov-
ing up to kl center nodes. With the center being the part exhibiting the highest
degree of parallelism, this also implies that the ring’s length is never increased
by more than 1.
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When deciding for the proper l for a given node count n, if n > |V (Dl
k)|+ kl

(i.e., more than kl nodes have to be added), just choose Dl+1
k and remove some

of the kl+1 nodes from the center. This always suffices, since the larger topology
Dl+1

k features additional kl nodes as counterpart to the old center nodes, as well
as kl+1 new center nodes, i.e.

|V (Dl+1
k )| = |V (Dl

k)| + kl + kl+1 .

There are alternative ways to handle contamination. For example, one can
only add further center nodes. This is beneficial since the removal of nodes in
the larger graph leads to multiple connections between the last level scatter
and first gather node. However, the length of the longest path is also increased
in this scheme. Figure 1 shows some examples for D2

2 with different values of
contamination.

3.2 Numbering and Addressing Scheme

A node is able to determine its neighbours solely by using its own node ID, the
graph arity, and number of nodes in the topology. Beyond that knowledge, no
further communication between the participating nodes is needed for topology
setup. The parameters l (level, or depth) and c (contamination) are determined
as min{l | −kl < c ≤ kl}, where c = n − |V (Dl

k)|.
The node class (scatter, gather, etc.) is then determined by (1). The neigh-

bours of a node are determined by (2) for a Dl
k with c = 0. The equations derive

directly from the number of nodes in a balanced tree. Considering contamination
requires some special cases, which are not shown here for brevity. Also omitted is
the computation of offsets for root and gather nodes that receive messages from
multiple predecessors, which requires basically a residue check. This is needed
when disjoint message buffers or queues are used for the k predecessors.

type(id) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

root node, if id = 0
scatter node, if n+kl+1+c

2 ≤ id

center node, if n−kl−1
2 < id < n+kl+1+c

2

gather node, otherwise

(1)

neighbours(id) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{n − i | i = 1..k}, if type(id) = root
{n − (k(n − id) + i) | i = 1..k}, if type(id) = scatter
{(id − 1)/k}, if type(id) = center
{(id − 1)/k}, if type(id) = gather

(2)

3.3 Comparison to Tree-Based Broadcast with Reduction

One advantage of diamond rings over broadcast trees is the significantly reduced
number of messages sent. Considering the center of a diamond ring with kl nodes,
the balanced tree requires exactly one more level to reach all nodes in the graph
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before beginning the reduction. Together with the first reduction step to get
back to the diamond ring’s center, it adds up to 2kl additional messages sent
for the tree based reduction. The total number of nodes in a broadcast tree is
kl+1 − 1. That means twice the number of messages for binary trees (k = 2).
The factor decreases with larger k. With the same reasoning, it becomes clear
that the longest path from the root, through all nodes, and back to the root is
exactly two hops shorter for diamond rings.

The most important property is the reduced workload on inner nodes. Each
node is an active part of the diamond ring broadcast exactly once. In contrast,
balanced trees require the inner nodes to forward the messages and the acknowl-
edgements. Hence, they are active twice for a single broadcast. In the diamond
ring this is the case only for the root node, sending out a request and later receiv-
ing the acknowledgement. Inner nodes in the balanced tree engage in 2(k + 1)
active communications either sending or receiving a message.

However, there is also a drawback for diamond rings in comparison to bal-
anced trees regarding latency. In the tree broadcast the first thing a receiving
node does is forward the message. Then it will continue with the required work
before handling the acknowledgement. In a diamond ring, all work that needs
to be acknowledged must be performed before the message is forwarded to the
neighbours. Depending on the amount of work that is required for each mes-
sage, latency may be worse for the diamond rings despite the marginally shorter
hop count. If message reception (i.e., observability) is the only criterion that
needs acknowledgement, forwarding may take place immediately. In a pipelined
scenario, this increased latency does not affect overall throughput.

3.4 Root Node Overhead

In the proposed diamond ring, the root node sends messages to k different neigh-
bours and receives k messages. In comparison, all other nodes communicate with
at most k + 1 neighbours. This constitutes a throughput bottleneck, which can
be alleviated quite easily.

An additional gather node can be introduced as companion to the root. It
takes the position of node n in Fig. 1 and forwards the acknowledgement as
a single message to the root. The path length thereby increases by one, which
increases the latency slightly. Both, root and helper node, can issue acknowledged
broadcasts. All nodes would have at most k+1 communication neighbours, thus
eliminating throughput bottleneck.

4 Implementation Notes and Benchmark Variants

The diamond ring topology as introduced in the previous section defines the basic
communication scheme. It can be implemented in very different communication
models ranging from shared memory to hardware-based message passing. As
a first step we implemented a simple task-based framework targeting Tilera,
Xeon, and XeonPhi processors. The next section details this framework. Then,
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the three evaluated broadcast variants diamond rings (DR), sequenced diamond
rings (SDR), and balanced trees (BT) are presented.

4.1 Communication and Task Scheduling

The three target many-core architectures provide a Linux environment. To sim-
plify porting, we implemented the framework as multi-threaded C++ appli-
cation. The POSIX threads API is used to create one application thread per
hardware thread (or core) and bind them via thread affinity. All threads operate
in the same cache-coherent shared memory, which is used for communication.

In order to be able to compare throughput effects, a large number of concur-
rent broadcasts needs to be pipelined. Thus, each thread has to manage several
overlapping activities. These are represented by task objects akin to active mes-
sages and contain a function pointer and additional payload for this function.
Each thread has a thread-local LIFO task scheduler based on a double-ended
queue from the C++ STL. For asynchronous inter-thread communication, each
thread owns a multi-producer singe-consumer FIFO queue. The scheduler polls
this queue when no local tasks are available or when send operations are stalled
due to congestion. Received tasks are enqueued to the back of the local dequeue.

On the Xeon and XeonPhi processors, the communication queues were imple-
mented as fixed-size ring buffers. Just pointers to statically allocated tasks resid-
ing in shared memory are communicated in order to avoid dynamic memory
management. The Tilera architecture has a low-latency point-to-point network
called UDN. It can be used to send small messages directly from one core to
another and the intermediate network behaves as a FIFO queue. Our implemen-
tation uses the UDN for inter-thread communication by sending task pointers.

This is a quite general framework providing more than the simple broadcasts
might require. However, actual applications usually need more than just broad-
casts. In our experience, over-simplified broadcast communication channels tend
to not cooperate well with the higher-level communication and scheduling.

4.2 Benchmark Variants

The following three benchmark variants were implemented for the evaluation as
presented in the next section.

Balanced Trees (BT). The reference implementation is based on a balanced
n-ary tree topology. Upon receiving a broadcast message, each node sends the
broadcast message to its children and, then, processes the broadcast event locally.
An acknowledgement message is sent back to the parent node after the local
processing is completed and acknowledgement messages were received from all
children. A separate node-local acknowledgement counter is used for each broad-
cast to track the outstanding acknowledgements at each node.
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Diamond Rings (DR). The nodes operate differently depending on their posi-
tion in the diamond ring. All scatter, center, and gather nodes begin processing
the broadcast event on the first message received. They propagate the broad-
cast message to their successors after the local processing is complete and the
broadcast message was received from each predecessor. Scatter and center nodes
have just a single predecessor. The root node first sends the broadcast to its suc-
cessors and, then, processes the event itself. The broadcast is completed at the
root node after the local event processing completed and the broadcast message
was received from each of the root’s predecessors. Again, a node-local counter is
used by gather nodes and the root to track outstanding messages.

Sequenced Diamond Rings (SDR). Tree and diamond ring topologies do not
mandate any ordering of concurrently propagated events. The communication
layer and the node-local task scheduling can reorder their messages and tasks.
However, many application scenarios like, for example, request for ownership
and distributed atomic updates require a strict ordering according to the event
sequence at the root node.

The sequenced diamond ring implementation enforces in-order processing of
pipelined broadcasts at each node. For this purpose, the root node assigns a
sequence number to each event. A node-local sequence counter is used to delay
broadcast tasks that are out of sequence. The sequencing can be implemented
orthogonal to the broadcasts but a combined implementation was chosen to
exploit cross-cutting optimisation opportunities.

5 Evaluation

This section compares the latency and throughput of acknowledged event broad-
casts based on diamond rings against balanced trees. Trees are commonly used
to propagate events and collect acknowledgements. Balanced trees were chosen
because they achieve better throughput than skewed/asymmetric trees.

Based on the analysis in Sect. 3.3, following hypotheses are examined: (1)
The longest path is shorter in diamond rings than in balanced trees. Hence,
diamond rings should have a slightly lower latency as long as processing the
broadcast event itself costs no time. (2) The balanced tree nodes have to process
more messages than diamond ring nodes. Hence, the latter should provide higher
throughput. In consequence, diamond rings would provide a better trade-off
between throughput and latency than balanced trees and tree in general.

In order to evaluate these hypotheses, latency and throughput were mea-
sured in micro-benchmarks without actual application-level event payload. The
latency is the time needed to complete individual broadcasts on otherwise idle
cores. The throughput is measured with bursts of up to 128 pipelined broad-
casts. In contrast to application benchmarks, this approach allows to study the
performance differences in isolation.

The next subsection presents individual results for the three evaluation archi-
tectures and the last subsection discusses the overall results.
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Fig. 2. Median latency and throughput on Tilera TILE-Gx72.

5.1 Benchmark Results

The measurements are carried out on the Tilera TILE-Gx72 and Intel Xeon-
Phi 5110P many-core processors. For comparison, a large multi-core Intel Xeon
machine is included. Both many-core architectures are based on in-order execu-
tion cores whereas the multi-core utilises out-of-order execution.

72-Core Tilera TILE-Gx72. This many-core processor contains 72 three-
issue in-order VLIW cores running at 1 GHz. The cores are interconnected
through several 2D mesh networks. The benchmark implementation uses Tilera’s
low-latency user-dynamic network (UDN) to communicate the pointers to mes-
sages and shared memory to access the message contents.

Figure 2 shows the latency and throughput results for arity 1, 2, and 3. All
measurements were repeated 100 times. The mapping of topology nodes to cores
was not specifically optimised. The highest throughput was achieved with arity
1 and diamond rings. With arity 2, the throughput is similar for diamond rings
and balanced trees and diamond rings have a slightly better latency.

On this processor, processing overheads seem to dominate the communi-
cation overhead and latency significantly. The additional processing needed to
order pipelined broadcasts in the sequenced diamond rings increases the latency
compared to un-ordered balanced trees while the throughput is similar.

4x10-Core Intel Xeon E5 4640v2. This machine consists of 4 processors with
10 out-of-order cores per processor and two hardware-threads per core running
at 2.2 GHz. The processors are connected through a cache-coherent QPI net-
work. The communication is implemented via shared memory using a multiple-
producer/single-consumer ring-buffer.
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Fig. 3. Median latency and throughput on Intel Xeon E5 4640v2.

Figure 3 shows the results for this machine. Again, the highest throughput
was achieved with arity 1 and diamond rings. With arity 2 and 3, the throughput
of sequenced diamond rings the best while the latency is similar for all three.

Surprisingly, the sequenced diamond rings perform best, which could benefit
from two characteristics of the architecture: The cores are designed for good
single-thread performance, which compensates the additional processing over-
head; And the enforced ordering might reduce the pressure on the limited band-
width of inter-processor QPI links.
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Fig. 4. Median latency and throughput on Intel XeonPhi 5110P.
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Fig. 5. Comparison of the single-broadcast latency against the largest observed
throughput with pipelined broadcasts. Both figures show the same dataset but the
lower figure excludes arity 1 for better readability. The arity is encoded by color and
is, in addition, written left to interesting points. The better variants are to the lower
right corner. Please note the different scales.

60-Core Intel XeonPhi 5110P. This many-core processor contains 60 in-
order cores with 4 hardware-threads per core running at around 1 GHz. The
cores are connected through two bi-directional rings. The benchmark uses the
same ring-buffer implementation as above.

Figure 4 shows the results for this machine. The best throughput was achieved
with arity 2 instead of 1. This is probably due to the arity 1 pipeline being much
longer (240 stages) than the number of pipelined broadcasts. Diamond rings
achieved better throughput and latency than balanced trees.

Ramos and Hoefler [14] presented an optimal design for small broadcasts and
reductions on the XeonPhi processor using dedicated communication structures.
For 60 cores, they report 10µs latency for broadcasts plus 10 µs latency for
reductions, i.e. acknowledgements. In comparison, the balanced 2-ary tree (24µs)
and 2-ary diamond ring (15µs) presented here perform quite well while reaching
all 240 threads and using a more general task-based model.
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5.2 Discussion of the Results

Figure 5 compares the trade-off between latency and throughput directly for a
larger selection of tree arities. The x-axis shows the peak median throughput
and the y-axis the median latency for each benchmark variant.

The first column shows the TILE-Gx72. The Pareto optimal variants, begin-
ning with lowest latency, are diamond rings with arity 6 (1.6µs, 0.7 per µs), 4,
3, 2 (1.8 µs, 1.5 per µs), and finally diamond rings with arity 1 (8µs, 2 per µs).
For most arities, diamond rings performed better than balanced trees, which
performed better than sequenced diamond rings.

The second column shows the results for the multi-core Xeon. The Pareto
optimal variants, beginning with lowest latency, are sequenced diamond rings
with arity 6 (5.4µs, 0.35 per µs), then arity 2(6 µs, 0.65 per µs), and finally
diamond rings with arity 1(17µs, 1.45 per µs). For most arities, sequenced dia-
mond rings performed better than diamond rings, which performed better than
balanced trees.

Finally, the third column represents the many-core XeonPhi. The Pareto
optimal variants, beginning with lowest latency, are diamond rings with arity 3
(15 µs, 0.37 per µs) and finally arity 2 (17µs, 0.55 per µs). For most arities, the
diamond rings performed better than sequenced diamond rings, which performed
better than balanced trees.

On all three architectures, diamond rings achieved a higher throughput than
balanced trees. The latency can be reduced by using larger arities. However, the
latency does not decrease much beyond arity 2 while the throughput degrades
quickly. In conclusion, diamond rings and sequenced diamond rings with arity 2
are a good choice for acknowledged event delivery.

6 Conclusions

We have presented a novel topology for efficient acknowledged broadcast to
be used in memory consistency protocols. By combining the advantages of low
latency in tree-based topologies and the high throughput achieved in ring-shaped
communication, our diamond ring topology balances the overall utilization of the
network and resource requirements on the participating nodes. We have imple-
mented diamond rings on a multitude of platforms and compared their perfor-
mance to existing approaches. Referring to the hypotheses made in Sect. 5, our
evaluation results show that (1) the shorter path lengths in diamond rings result
in lower latencies on all measured platforms, (2) the reduced computational load
per node gives rise to higher overall throughput performance in diamond rings
when compared to balanced trees. The choice of arity offers a trade-off deci-
sion between both those performance indicators, with higher arity reducing the
latency at the cost of throughput. This shows that diamond rings constitute
a prime candidate for use as an underlying communication layer in software
memory consistency protocols.
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