File-Less Approach to Large Scale
Data Management

Bartosz Kryza®™) and Jacek Kitowski

Department of Computer Science, Faculty of Computer Science,
Electronics and Telecommunications,
AGH University of Science and Technology, Krakow, Poland
bkryza@agh.edu.pl

Abstract. With the continuously increasing amount of online resources
and data such use cases as discovery, maintenance and inter-operation
become more and more complex. In particular, data management is
becoming one of the main issues with respect to both scientific (large
scale simulations or data mining applications) as well as consumer use
cases (accessing photos or email attachments on mobile devices). We
believe that one of the main bottlenecks blocking development of solu-
tions providing truly seamless developer and user experience is the con-
cept of file and filesystem. We present Filess, vision and architecture of
file-less information systems where files are not necessary, neither in the
application nor operating system layers.

Keywords: File systems - Data management - Hypergraphs

1 Introduction

Files and filesystems have been part of computer systems since the times of punch
cards, stored in filing cabinets. Due to the technology used in the early days of
computing such as magnetic tapes and until recently magnetic hard drives, files
provided efficient way to store data in sequences of blocks which could be read
from such media into memory. However, even then several researchers raised
various problems related to such data storage [8,18,19]. In our opinion the main
problems of modern IT systems related to files and filesystems are the following:

— Data is unnaturally clustered into files - once data item is stored in a file it
becomes locked in this file, whether or not it is actually a part of a larger data
structure or could be accessible on its own (consider for instance an image in
a presentation, or a tag in an XML document),

— Very large unnecessary data redundancy - file based data management results
in very large duplication of data due to the necessity of including data directly
inside the file contents instead of referencing it (again images in presentations
and rich text documents, attachments in emails, etc.) [7,10]. Existing files and
filesystems do not provide means for uniform referencing of other files on a
global scale, a feature which is the basis of WWW in the form of hyper links,

© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 27-38, 2015.
DOI: 10.1007/978-3-319-27308-2_3

28 B. Kryza and J. Kitowski

— Inflexible hierarchical namespaces - although it was convenient to store files
in tree based directory structures when users had hundreds of files, with tens
or hundreds of thousands of files it is impossible to memorize where a given
file could be found without global filesystem indexing tools such as Spotlight,
Tracker or Search Charm, which however only match queries to files names or
using string based search over textual documents contents. No semantic search
can be achieved based on relations between elements contained in these files
(for instance Find all images included in this paper),

— Barrier for the operating system - it is impossible to address a specific piece
of data inside the file from the level of the operating system (for instance
for the use from the command line), thus it is in general impossible to get
metadata about an image or music file, an application or specific library has
to be executed to extract it, which are specific for each file format,

— Lack of versioning support - versioning of data can be achieved only by stor-
ing new files under different names (or in some cases storing text or binary
differences between version, in application specific ways).

Let’s consider for instance a single file such as a text document, presentation or
even simple e-mail, which usually contains large amount of information which is
lost in the structure of the file and thus not visible for querying by computers or
even humans. For example, a corporate document prepared within some orga-
nization by several people contains several independent items (tables, charts,
diagrams, paragraphs of text) of which each can have distinct author, different
authorization policies and can be used in several other documents, while cur-
rently all this provenance information is lost once the document is saved as a
file. The first problem is that for instance some figure from this document will be
duplicated in every copy of this document and also in every new document that
will use this figure. Additionally the information provided within the document
itself about the picture brings very little information to the reader and no infor-
mation at all that could be processed by computers. The main hypothesis of this
research is that in order to make information actually reusable into knowledge
in a world wide distributed setting, information must be stored in a way that it
can be freely shared, reused and processed.

We propose to address this issue by introducing an architecture for informa-
tion systems which departs from the concept of file and filesystem completely. We
introduce a flexible and scalable data model based on hypergraphs, where data
objects are stored in nodes and all relations are represented through hyperedges
(edges which can connect more than 2 nodes). The hypergraph is provided to
applications and operating systems via the same abstraction layer, which hides
the actual storage system used as well as the fact of data distribution between
devices. This paper refines the initial vision and requirements defined in our
previous work [12,13].

2 Related Work

Most research in the area of making the existing directory based file systems
more flexible can be classified into the area of semantic file systems [8], i.e.

File-Less Approach to Large Scale Data Management 29

file systems where files have attached meaning. This paper sketches a vision of
file systems where files can be annotated in some way, and the basic file sys-
tem operation such as copy or delete don’t take directory paths as arguments
but the semantic description of the files. The problem with these solutions is
that still all the information is either fragmented or clustered into files, and the
semantics deal only with meta data attached to these files in the form of some
attributes. Nevertheless, these solutions are very important for our work as these
approaches address important issues, mainly of how information can be found
in file based systems. One of the formal attempts at file system implementation
based on set theoretical basis is a file system using Formal Concept Analysis [5],
which employs the FCA formal model of classification, neighborhood estimation
and Boolean querying. A similar approach, although still bounded by the con-
straints of regular files, is the Logical File System project [16]. The basic role
of this file system is to allow searching for files using first-order logic formulas
instead of conventional directory paths. Unfortunately the use of first-order logic
inference can seriously impair the scalability of the system in highly distributed
settings. Until now, one major industrial attempt at abstracting the file concept
from the operating system was the WinFS (Windows File System), which is a
research effort from Microsoft [9]. Its basic assumption is to store all information
about data in the system, including what would usually be referred to as file in a
relational database. Furthermore, on the low level of storage device controllers,
there is a trend to move from block device based interfaces (i.e. supporting file
oriented systems) towards more flexible solutions such as OSB (Object-based
Storage Device) [1], where instead of storing data in fixed size chunks the data
can be stored in custom clusters of data along with relevant meta data. Unfor-
tunately, most operating system level approaches still use these devices to store
files, even if more efficiently [22,23]. However, with removal of the concept of
the file all together, this approach will be a significant factor along with further
adoption of SSD storage [17]. In fact Seagate has introduced recently an actual
network attached object based device called Kinetic Storage [21], which provides
a hardware back end for object based databases without any file system proto-
col access. Furthermore, certain technology enablers are emerging which provide
insight into how the future storage could be improved on the low level. These
include for instance various NVRAM (Non-Volatile RAM) solutions in particular
memristor [24]. For prototype development an interesting solution is SanDisk’s
UlltraDIMM SSD [20], which is an SSD storage in the form of DIMM mem-
ory units, which can physically replace computers RAM memory. As we can see,
there exists already several approaches and basic technologies which can support
the proposed research concept. However, none of the existing solutions addresses
abandoning the concept of a file as a whole, including all its repercussions on
the storage, operating system, application and user interface level.

3 Filess Vision

Since its emergence, Cloud computing has become the leading paradigm in com-
puting. The main reason for this was the fact that users found always-online

30 B. Kryza and J. Kitowski

resources to be much easier and efficient to use. Here resources include com-
puting services, web pages and data. This is also one of the reasons why Cloud
storage services such as Dropbox or Google Drive [4] are so popular, i.e. users are
mobile and have multiple devices and need access to their content wherever they
are. However, all these services have to be built on top of existing operating sys-
tems, since none of the mainstream OS has support for such functionality. In fact
most operating systems do not have any artifacts for supporting such scenarios as
over the network data access, process migration or check-pointing, which would
enable developers to provide users with truly seamless experience when using
multiple devices, such as working on a single file using multiple applications
on different devices simultaneously. Imagine for instance creation of a simple
conference presentation. It consists of some slides with text, images, equations
sometimes embedded movies. Whenever an image needs to be updated, it has
to be done in a separate application, saved into a file and imported into the
selected slide in the presentation editor. If the user wants to preview the presen-
tation on her tablet, it needs to be transferred manually there using yet another
application. In our vision all these applications would operate on a global data
space, managed entirely by the Filess middleware. Thus an image changed in
a photo editing application, would make the new image version automatically
updated in the presentation and whenever the contents of the presentation had
been modified, they would be instantly visible on the presentation preview on
users tablet. Then, when the presentation is ready, all the user needs to know
in order to present it during the talk is to know the ID of the root node in the
graph data model representing the presentation.

Overview of basic assumptions and requirements for this work, as discussed
in our previous work [13], is presented below:

— There are no files - neither in the storage, middleware, operating system or
user interface layers. Of course, at the prototype stage such approach would
be very expensive in order to remove files completely from existing operating
systems which use files even for communication with hardware devices,

— Documents, E-mails, images, movies, web pages and all other concepts, which
are in practice today synonyms for files, in our architecture are only manifes-
tations/renderings of interconnected groups of objects shown to the user in a
context dependent way,

— Data and meta data exist at the same level - for instance there is no difference
between the Image object and the object describing its author or authorization
policy - we do not plan to introduce a meta data mechanism such as Dublin
Core or even Semantic Web,

— Data and information replication should be controlled by the middleware - it
is not necessary for users to copy and store the information for either security
or efficiency reasons. As a consequence data redundancy can be optimized by
the middleware,

— The proposed approach inherently supports the ubiquitous computing para-
digm i.e., there is no Load document, Save document operations. It is possible
to work on a laptop, then literally just shut it down and switch to pocket

File-Less Approach to Large Scale Data Management 31

PC or mobile phone and all the changes will be seamlessly available there,
assuming of course network access is omnipresent,

— Security, especially authorization is intertwined within the global informa-
tion space along with the information itself, i.e. security assertions (and any
annotations for that matter) are first class objects in the infrastructure.

4 Filess Data Model

The basic assumption of the underlying data model is that all data are stored as
objects in the nodes of a hypergraph structure. Hypergraphs provide flexible and
scalable data model, where data objects are stored in nodes and all relations are
represented through hyperedges (edges which can connect more than 2 nodes).
The hypergraph is provided to applications and operating systems via the same
abstraction layer, which hides the actual storage system used as well as the fact of
data distribution between devices. Hypergraphs enable more natural modeling of
n-m relationships and modeling of objects with multiple properties using smaller
number of edges. It has been shown, that hypergraphs enable modeling various
common data models such as relational model, XML, JSON or even Semantic
Web standards such as OWL [11].

4.1 Hypergraphs

Hypergraphs have been studied and applied in various areas of computer
science [2,3,6]. Basically a hypergraph is a tuple H = (V,E) where V =
{v1,v2,v3,...,v,} is the set of vertices and E = {eq,ea,e3,...,¢e,} is the set of
hyperedges. The main difference and generalization over regular graphs is that
a hypergraph edges, called hyperedges, can connect any number of vertices. In
case of undirected hypergraphs hyperedges are simple subsets of the power set
of Vie. E C 2V. In case of directed hypergraphs, edges are tuples composed

€1 €2 €3 €4
U1
V2
U3
V4
Us
Ve
€1
€2
€3
€4

(|

—_ =
oo
—

0
0
0 -1
0
0
1

cCoooo0O R
coococorO

I

—_

(a) Hypergraph

(b) Incidence matrix

Fig. 1. Example of directed hypergraph

32 B. Kryza and J. Kitowski

PR

Qe _-“Filess - firé—less architecture..."
o« R

{ /' PRESENTATION1

47 SMBEL

Fig. 2. Filess data model example

of head and tail sets: E = (Tg, Hg). Hyperedges in general can connect both
vertices and other edges. In our model, we assume that edges can appear only in
the tail set of the edge (i.e. they can only be used to assign attributes through
other edges to vertices. Thus, Ty C VUFE and Hg C V. We will also define the
index sets for vertices and edges of graph H as Iy (H) and Ig(H) respectively.
Let’s consider an example graph in Fig.la and it’s incidence matrix Fig. 1b.
In the incidence matrix, edges are also as rows in order to model edges which
have properties themselves (e.g. €3 on the graph). The example graph can be
defined as:

H :({Ul,UQ,U37U4,U5,U6},{61 - ({Ul,UQ}’{US,U4})’

e2 = ({vs}, {vs}),es = ({ex}, {v6}), ea = ({vs, v4},0)})

The usage of hypergraphs as the underlying formalism for the proposed data
model allows us to reuse a large number of theorems and algorithms for their
processing and validation.

4.2 Overview

First of all, all data in Filess is stored in data objects which are values assigned
to the hypergraph vertices. Edges provide means for creating named relations
and attributes between vertices. Leveraging the hypergraph property of allowing
multi-vertice edges, it is natural to create n-m relations between data objects.
An important aspect of the proposed data model is that of namespaces, which
provide means for separating the global data object graph into subgraphs, which
can intersect, i.e. each data object can belong to multiple namespaces simulta-
neously. Namespaces are an important part of the model as they provide means

File-Less Approach to Large Scale Data Management 33

for optimizing search and discovery of data in the distributed graph as well as
enable basic security. The most important namespace is the user’s namespace
which is created automatically for each new user after login, which uniquely
identifies users objects and relations. Furthermore, namespaces can be assigned
to edges in order to provide means for disambiguating their meaning, in a form
typical for existing on the web URI. An important notion is that namespaces
are flat, i.e. there is no namespace hierarchy as in the case of filesystem direc-
tory structure. Namespaces can be considered as system level attributes which
can be assigned to any element of the global hypergraph. The uniqueness of
namespaces is achieved by using GUID’s to define them, while each namespace
can have multiple user-friendly names (for instance in various languages). Once
a new actor (user or service) joins the global Filess model, the initial node with
the actor identity is created in a new namespace. From then on, the data objects
can be connected with data objects of other actors through global relations. An
overview of this approach is presented in Fig. 2. Each data object can store basic
types of values or be a composite object which only contains connections to other
data objects:

— Number - this is a union data type which allows to store any numeric data
type while providing users with a simple API, which handles actual data type
identification on the library level,

— String - this data object provides means for storing any text in UTFS,

— List - most graph data modeling frameworks do not provide lists or arrays,
which can be very inefficient when modeling using graph nodes. This data
object provides a simple means for compositing a set of data objects into an
ordered structure,

— Binary - this data object provides means for storing large binary data such as
videos, where the actual data is hashed and stored in a separate distributed
key-value store,

— Composite - composite data objects are objects which do not need to store any
actual value in their node, but provide links for other data objects. Any object
containing a value can also be a Composite object, in which case the value
represents a flattened representation of the objects structure. This situation
can occur during decomposition of an object into a graph,

— Stream - buffer objects provide abstraction over I/O functionality of the oper-
ating system, these objects cannot be transferred between nodes, and are
volatile, i.e. their state and value cannot be synchronized and no version
information for these objects is maintained, only read or write operations are
allowed. These objects enable complete removal of file and filesystem concepts
from the applications code.

4.3 Object Composition and Decomposition

The most important operations on data objects from the point of view of the
abstract model are composition and decomposition.

Composition. Data object composition provides natural way for creating struc-
ture in the data model using hyperedges connecting various data objects, thus

34 B. Kryza and J. Kitowski

enabling data discovery and graph traversal on the middleware level. Any set of
data objects can be composed into other composite data objects using these oper-
ations without affecting or unnecessarily replicating the referenced data objects.
Formally, composition transforms the initial hypergraph

H = ({Ui}iGIV(H)v {ej}jGIE(H)) as follows:
H' = ({vi} U{v'} e} U{({v'} {vkdrery ()}

i.e. it always extends the vertex set with one element (the new composite data
object, v) and adds any number of necessary edges connecting vertices from the
initial graph H.

Decomposition. Respectively, each data object can be decomposed into data
objects which introduce structure into otherwise flat data object values.
For instance consider data object containing a string value "John Smith".
This object could be decomposed using 2 edges: (_:firstName, "John") and
(-:lastName, "Smith"). However, since the object already existed in the previous
form, some applications might rely on its flat representation thus it should remain
in the Composite object after decomposition. In the future we are planning to
enable adding stored procedures to the data objects which will enable automatic
flattening of the composite data objects into various representations (e.g. text,
XML, JSON, etc.). Furthermore, a mapping language will be defined for auto-
matic translation of legacy data models such as relational into the hypergraph
based data models, similar to our previous work presented in [14]. Formally,
decomposition transforms the initial hypergraph H = ({vi}icr, (#1), {€5}jers)
as follows:

H' = ({vi} U{vihigry) {ei } U {{vs Yo 1) {0k Yrerv ())

The difference is that composition adds a single vertex grouping a subgraph
of objects while decomposition connects existing vertex to new vertices.

5 Representing Existing Data Structures and Formats
in Filess

Typical data structures can be represented in hypergraphs in the following ways.
Sets can be trivially created by creating a 1-N directed hyperedge. Lists can be
created by linking consecutive nodes through a single hyperedge with identical
ID such as “_next”, the actual property name is irrevelavant as long as the
application wants to interpret a path as a list it is allowed to. However for
performance reasons, a special type of node which allows to create order lists
has been added. Maps are naturally represented by creating an hyperedge from
a head node to any number of tail nodes.

JSON is a text format used to represent key-value pairs, where keys are
always strings, and values can be any of the following types: Number, String,
Boolean, Array, Object and null. These types map almost naturally into Filess
data model. Boolean values can be modelled using Number data object type,

File-Less Approach to Large Scale Data Management 35

Array’s by creating lists and null values can be achieved using hyperedges with
empty head sets. Object values can be directly represented using Composite data
objects. One issue is that of namespaces, as the edges created from the JSON
key’s must be attached to some namespace in order to disambiguate them from
other edges. By default JSON has no concept of namespace, so it is up to the
application to provide one.

XML (eXtensible Markup Language) is a W3C recommendation which is a
tree based model for representing structure data on the Internet. In contrast
to JSON, it provides means for specifying unique namespaces for all elements,
ordering of the nodes as well as assigning attributes to nodes (unordered). The
mapping of XML data into directed hypergraph can be achieved as follows.
All simple tags (containing only values) are converted to simple data objects.
All complex tags, which contain children tags are converted to composite data
objects. All tag attributes are added to respective data objects using edges.

The representation of relational model using directed hypergraphs can be
achieved as follows, assuming that the database is at least in the 3rd normal
form. Each relation is composed of a set of value tuples, called rows. Each row
is simply mapped to a single composite data object with edges representing
the columns and their particular values as target data objects. Each relation
(i.e. table) can be represented as a set of data objects representing rows. More
interesting is the case of foreign key dependencies. In case of relational model it
is impossible to directly create n:m relations. Consider the relations Author and
Book, where it is possible that a single book could have many authors as well as
a single author could have published several books. In the relational model this
requires introduction of intermediate relation (e.g. BookAuthors), which assigns
authors to books. In case of a hypergraph this relation is not necessary (i.e. it
is not necessary to create a new data object), as the relevant property can be
modelled directly using hyperedges.

6 Prototype Design and Implementation

Filess provides users with an abstract API enabling basic operations on the
data objects such as searching, creating and opening. As mentioned above, each
user sees the global data space from their own perspective, which is identical
on all devices from which they access the system. Current Filess prototype is
implemented as an intermediate layer between user applications and distributed
graph database backend (see Fig.3). The current prototype implementation is
created in Java language. libfiless library provides methods which can be used
directly by users application. The Filess API provides lower level system calls
which provide abstraction over currently used data storage backends, so that
users applications do not get locked in into particular solution. For the prototype
it also keeps the authentication sessions information in memory, however this will
be in the future migrated to external database. The Filess layer provides an API
with the following groups of operations:

36 B. Kryza and J. Kitowski

— Session - These operation enable the user to login and logout of the system.
Each session combines the users key with current machine ID so that the same
user can be logged in from multiple devices simultaneously, and see the same
state of affairs from these devices,

— (et - This category of operations allows for searching and access data objects.
Currently the search is limited to node GUI’s, as the Filess layer aims to be
agnostic of actual graph database backend, an ongoing work is to develop an
abstract query language for this purpose,

— Put - These operations enable adding new data objects and relating them to
other objects,

— Join - These operations enable composing existing objects into more complex
objects,

— Split - These operations enable decomposing existing binary or text objects
into graph form,

In order to enable evaluation of the idea, Filess prototype has been developed
using available technologies in the area of graph databases. We have evalu-
ated several solutions including [11,15]. Finally we chose OrientDB, which is a
multi-document database enabling modeling using document, key-value as well
as graph paradigms simultaneously. In order to support legacy applications, an
intermediate FUSE filesystem plugin was implemented which allows applications
to access the information in the form of files which are composed on demand from
the underlying graph when applications try to gain access to the data object.
The implementation is based on fuse-jna Java Fuse provider, which allowed us
to use direct OrientDB Java bindings. Due to very flexible graph model in Ori-
entDB, it was possible to create hypergraph structure by defining custom edge
class. Binary, read-only data objects are stored in a separate distributed data-
base called IPFS (Interplanetary File System), which provides efficient hashing
and distribution of large binary files between multiple nodes by diving them into
blocks and maintaining a tree structure based on the blocks hash values.

[User application)

! !
[fuse-jna] [libfiless)
! i

(Filess API)
¢

OrientDB - - IPFS

Fig. 3. Architecture of the Filess prototype

File-Less Approach to Large Scale Data Management 37

7 Conclusions

In this paper we have presented a novel approach to data management and
representation in information systems, which departs from the filesystem based
designs. Filesystem approach has become already intractable for average users
for several reasons such as difficult searching for required files or lack of OS level
synchronization of data between devices used to access the system. Presented
approach addressing these problems has the potential to enable much more nat-
ural access to information, while minimizing the redundancy and data transfer
on a global scale, allowing at the same time for highly fine grained access con-
trol, not based on files, but on actual data elements, which will enable creation of
much more sophisticated and natural computing infrastructures able to handle
information processing tasks on a global scale. The presented approach requires
both users and application developers to shift the paradigm in which the appli-
cations are developed and used. Future work will include design of security layer
enabling fine grained control over the operations performed by various users
on such global data model, practical evaluation of performance depending on
underlying storage solution and development of minimum viable prototype of
the truly file-less operating system.

Acknowledgment. This research has been funded by Polish National Science Centre
grant File-less architecture of large scale distributed information systems number: DEC-
2012/05/N/ST6/03463.

References

1. Bandulet, C.: Object-based storage devices (2007). http://developers.sun.com/
solaris/articles/osd.html

2. Berge, C.: Hypergraphs: Combinatorics of Finite Sets. North-Holland Mathemati-
cal Library, vol. 45. North-Holland, Amsterdam (1989)

3. Boyd, M., Mc¢brien, P.: Comparing and transforming between data models via an
intermediate hypergraph data model. In: Spaccapietra, S. (ed.) Journal on Data
Semantics IV. LNCS, vol. 3730, pp. 69-109. Springer, Heidelberg (2005)

4. Drago, 1., Mellia, M., Munafo, M.M., Sperotto, A., Sadre, R., Pras, A.: Inside
dropbox: understanding personal cloud storage services. In: Proceedings of the
2012 ACM Conference on Internet Measurement Conference, IMC 2012, pp. 481—
494. ACM, New York (2012)

5. Ferré, S., Ridoux, O.: A file system based on concept analysis. In: Palamidessi, C.,
Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K.,
Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 1033-1047.
Springer, Heidelberg (2000)

6. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and appli-
cations. Discrete Appl. Math. 42(2-3), 177-201 (1993)

7. Gantz, J., Reinsel, D.: The Digital Universe in 2020: Big Data, Bigger
Digital Shadows, and Biggest Growth in the Far East. International Data
Corporation, December 2010. https://www.emc.com/collateral/analyst-reports/
idc-digital-universe-united-states.pdf

http://developers.sun.com/solaris/articles/osd.html
http://developers.sun.com/solaris/articles/osd.html
https://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf
https://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-states.pdf

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

B. Kryza and J. Kitowski

Gifford, D.K., Jouvelot, P., Sheldon, M.A., O’Toole, Jr., J.W.: Semantic file sys-
tems. SIGOPS Oper. Syst. Rev. 25(5), 16-25 (1991)

Grimes, R.: Code name WinF'S: Revolutionary file storage system lets users search
and manage files based on content. MSDN Magazine 19(1) (2004). http://msdn.
microsoft.com/msdnmag/issues/04/01/WinF§S/

IDC iView: The Digital Universe Decade - Are You Ready? International Data Cor-
poration, Framingham, MA, USA (2010). http://www.emc.com/digital_universe
Tordanov, B.: HyperGraphDB: a generalized graph database. In: Shen, H.T., Pei,
J., Ozsu, M.T., Zou, L., Lu, J., Ling, T.-W., Yu, G., Zhuang, Y., Shao, J. (eds.)
WAIM 2010. LNCS, vol. 6185, pp. 25-36. Springer, Heidelberg (2010)

Kryza, B., Kitowski, J.: Comparison of information representation formalisms for
scalable file agnostic information infrastructures. Comput. Inf. 34, 473-494 (2015)
Kryza, B., Kitowski, J.: Filess - file-less architecture for future information systems.
In: 2014 IEEE Fourth International Conference on Big Data and Cloud Computing,
BDCloud 2014, Sydney, Australia, 3-5 December 2014, pp. 281282 (2014)
Mylka, A., Mylka, A., Kryza, B., Kitowski, J.: Integration of heterogeneous data
sources in an ontological knowledge base. Comput. Inf. 31(1), 189-223 (2012)
Orient Technologies: OrientDB project website. http://www.orientechnologies.com
Padioleau, Y., Ridoux, O.: A logic file system. In: Proceedings of the General Track:
2003 USENIX Annual Technical Conference, San Antonio, Texas, USA, 9-14 June
2003, pp. 99-112 (2003)

Rajimwale, A., Prabhakaran, V., Davis, J.D.: Block management in solid-state
devices. In: Proceedings of the 2009 Conference on USENIX Annual Technical
Conference, USENIX 2009, pp. 21-21. USENIX Association, Berkeley (2009)
Reiser, H.: Futurue vision of reiserfs (2006). https://reiser4.wiki.kernel.org/index.
php/Future_Vision

Salton, G.: Another look at automatic text-retrieval systems. Commun. ACM
29(7), 648-656 (1986). http://doi.acm.org/10.1145/6138.6149

SanDisk: Ulltradimm product page. http://www.sandisk.com/enterprise/
ulltradimm-ssd/

Seagate Technology LLC: The seagate kinetic open storage vision. Seagate Tech-
nology LLC (2013). http://www.seagate.com/tech-insights/kinetic-vision-how-
seagate-new-developertools-meets-the-needs-of-cloud-storage- platforms-master-ti/
Stender, J., Hogqvist, M., Kolbeck, B.: Loosely time-synchronized snapshots in
object-based file systems. In: IPCCC, pp. 188-197. IEEE (2010)

Wang, F., Brandt, S.A., Miller, E.L., Long, D.D.E.: OBFS: a file system for object-
based storage devices. In: Proceedings of the 21st IEEE/12TH NASA Goddard
Conference on Mass Storage Systems and Technologies, College Park, MD, pp.
283-300 (2004)

Williams, R.: How we found the missing memristor. IEEE Spectr. 45(12), 28-35
(2008)

http://msdn.microsoft.com/msdnmag/issues/04/01/WinFS/
http://msdn.microsoft.com/msdnmag/issues/04/01/WinFS/
http://www.emc.com/digital_universe
http://www.orientechnologies.com
https://reiser4.wiki.kernel.org/index.php/Future_Vision
https://reiser4.wiki.kernel.org/index.php/Future_Vision
http://doi.acm.org/10.1145/6138.6149
http://www.sandisk.com/enterprise/ulltradimm-ssd/
http://www.sandisk.com/enterprise/ulltradimm-ssd/
http://www.seagate.com/tech-insights/kinetic-vision-how-seagate-new-developertools-meets-the-needs-of-cloud-storage-platforms-master-ti/
http://www.seagate.com/tech-insights/kinetic-vision-how-seagate-new-developertools-meets-the-needs-of-cloud-storage-platforms-master-ti/

	File-Less Approach to Large Scale Data Management
	1 Introduction
	2 Related Work
	3 Filess Vision
	4 Filess Data Model
	4.1 Hypergraphs
	4.2 Overview
	4.3 Object Composition and Decomposition

	5 Representing Existing Data Structures and Formats in Filess
	6 Prototype Design and Implementation
	7 Conclusions
	References

