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Abstract. Insurers use advanced risk management models to, among
other things, compute required capital for different sources of financial
risks. In these models the application of nested simulations becomes
increasingly important. To keep computation times within acceptable
limits high-performance computing is required. In this work we present
a framework designed to significantly improve the performance of nested
simulations by using heterogeneous computing. Specifically, we use mod-
ern features from CUDA - streams, Hyper-Q, and Multi-Process Service -
to take full advantage of the massive parallelism of modern GPUs. We
manage to reduce the execution time of such simulations from several
hours to tens of minutes.

Keywords: CPU-GPU heterogeneous computing - Asset & Liability
Management - Nested simulations - CUDA Streams - CUDA Hyper-Q

1 Introduction

Insurance companies sell products like variable annuities and universal life insur-
ance that include certain rights, such as guarantees and profit sharing. These
rights may bring profit to the policy holders but cannot cause a loss. The val-
uation of these embedded options in insurance contracts is quite challenging,
because insurance companies need to value their embedded options for many
applications - e.g., Solvency II' reporting, monitoring, product pricing and Asset
&Liability Management (ALM). For these various applications, one would ideally
use the same valuation method in order to maintain consistency, transparency,
and ease of interpretation. The preferred valuation method nowadays is risk
neutral Monte Carlo simulation [7].

Determining the current (¢ = 0) market value of the embedded option is
generally not a problem, since we can gather relevant market data, calibrate risk

1 Solvency II is a new regulatory framework for insurance companies that officially
starts as of January 1, 2016.
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neutral models and perform Monte Carlo valuations to obtain option values.
Performing these steps in a scenario simulation context for future time peri-
ods (t > 0) is more complicated. These so-called nested simulation valuations
are, amongst others, required for computing the Solvency Capital Requirement
(SCR) based on a 99.5% Value at Risk (VaR) on a l-year period?, the Own
Risk and Solvency Assessment, and ALM. Additionally, complementary models
for calibration and validation purposes also use nested simulations.

Most nested simulation applications found in financial applications can easily
run for days, an obvious bottleneck to their viability. Furthermore, these long-
running simulations discourage any research on new models and new method-
ologies.

Our aim in this work is to significantly improve the performance of nested
simulations, making them feasible for both production and more empirically-
driven research. Given that Graphical Processing Units (GPUs) are a proven
technology in finance for performing Monte Carlo valuation simulations ([1,10]),
we aim to make use of these massively parallel architectures to accelerate finan-
cial nested simulations. The main challenge here is efficiency, because the mul-
tiple layers of parallelism of nested simulations require a tight collaboration of
the CPU and the GPU.

Our work introduces a Financial Nested Simulations (FINS) framework, i.e. a
CPU-GPU heterogeneous solution for improving the performance of nested sim-
ulations in financial applications. FiNS is driven by two important requirements:
performance improvement and ease-of-use for financial specialists.

To address performance, FiNS makes extensive use of a set of advanced
CUDA abstractions available in the latest NVIDIA architectures (Kepler and
newer): CUDA streams [11], Hyper-Q [13], and MPS [14] are all used to effi-
ciently offload simulations to the GPU. To address usability, FiNS is built as a
skeleton that can be easily adapted to different applications.

To demonstrate both the performance and usability of FiNS, we build a
mock-up model of an existing ALM tool, which emulates the behavior of a full
nested simulation. An ALM tool uses many macroeconomic scenarios to provide
users insight in future performance of, for example, an insures’ or pension funds’
balance sheet.

Our results show significant performance improvement over the sequential
code, with speed-ups ranging between 26 and 6 for light and heavy cases, respec-
tively. This significant gain is due to our efficient use of both the CPU and the
GPU. Although the reference sequential code is by no means optimized, FiNS
brings a significant improvement in the way nested simulations can be used in
production and research.

Summarizing, the main contribution of this work is threefold:

1. We propose an original way to exploit streams for increasing the efficiency of
heterogeneous CPU-GPU platforms in the case of applications with multiple
layers of moderate parallelism;

2 This represents the amount of capital the insurer must hold against unforeseen losses
during a one-year period.
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Fig. 1. Risk neutral simulations in a real world simulation. The figure shows two real
world scenarios starting at t=0. For each real world scenario, a single nested simulation
with two risk neutral scenarios is shown (at t = 4 and ¢ = 5). In practice, thousands of
risk neutral scenarios are used for valuation in each time step of a real world scenario.

2. We design FiNS, a generic framework for using heterogeneous platforms in
financial nested simulations;

3. We demonstrate how FiNS can be used to accelerate ALM, a specific case
of nested simulation used in risk management for institutional investors like
insurance companies or pension funds.

2 Financial Background

For risk management, an insurer wishes to compute all relevant balance sheet
components at each time step of a real world scenario. One generally starts with
generating real world scenarios (the outer scenarios) for ¢ > 0. To obtain the
value of the embedded options at each time-step of a real world scenario, risk
neutral scenarios (the inner scenarios) are required to perform a Monte Carlo
valuation [7]. Within a Monte Carlo valuation the discounted pay-off cash flows
resulting from the inner scenarios are averaged to obtain the option price. This
concept of nested simulations is illustrated in Fig. 1.

While Monte Carlo valuation can easily be used for ¢ = 0 applications, it is
computationally expensive to apply it in a scenario environment. This problem
emerges because Monte Carlo valuations need to be performed in each time step
of a real world scenario.

Consider, for example, the case of 2,000 real world scenarios with a hori-
zon of 5 years (annual frequency), then 10,000 + 1 (including ¢ = 0) valuations
are required in total. Assuming one valuation takes a few seconds®, then the
total computation time for valuation is &~ 6h, which is unacceptable in prac-
tice*. Therefore, high performance computing is required to reduce the overall
computation time.

3 As measured in production using sequential code on a state-of-the-art CPU.
4 Tt should be noted that, in practice, multiple valuations are required at each time
step for Solvency II and hedging. This results in even higher computation times.
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3 GPU Background

GPUs® are massively parallel processing units, originally designed for graphics.
A GPU has multiple streaming processors (SMs), each grouping tens of simple
cores. With hundreds to thousands such cores, the performance to be achieved
can easily reach a couple of TFLOPs for applications with enough concurrency.
Additionally, GPUs have a layered memory system, including private memory
per core, shared memory and L1 cache per SM, L2 cache and a global, off-chip
memory. Memory bandwidth is typically significantly higher than for CPUs, but
it is still the limiting factor for performance in many applications.

GPUs are working as accelerators - i.e., they are not stand-alone processing
units, but require a host to manage their involvement in computation. Such
host is typically a CPU; in such a CPU-GPU platform, the GPU is called a
device. Note that the host and the device run separate codes: the host code is
the main application from which parts are being offloaded for computation by
kernels running on the device. Also note that the memory spaces of the CPU and
GPU are separated, which means that any application that offloads computation
kernels to the GPU might also need to copy data from host to device and/or the
other way.

For programming these GPU kernels, the most popular solution is CUDA,
a proprietary programming model from NVIDIA. While portable models like
OpenCL and higher level models like OpenACC exist and can be successfully
used for many applications, they are not suitable for this work because the special
features we are using are not yet available in these models. We further describe
these features in the paragraphs below.

3.1 CUDA Streams and Hyper-Q

A CUDA stream is an abstraction of a series of tasks run by the GPU. By
tasks we mean (1) memory copies, (2) synchronization, and (3) kernels (i.e.,
computational tasks). The tasks in a single stream are ordered, but they are
independent from tasks in different streams.

Using streams can improve the concurrency of an application. For example,
within nested simulation we repeat a sequence of tasks for every outer scenario
in every period. By embedding this sequence of tasks in a stream, and launching
a new stream for each node in the outer simulation (as is displayed in Fig. 1),
we have an elegant solution to launch multiple inner simulations that will not
interfere with each other.

The most important features of streams necessary for this work are: first,
stream launches can be asynchronous, allowing the CPU to compute while
the GPU is running. Furthermore, tasks for different hardware engines within
streams can run concurrently, i.e. computational tasks (kernels), executed by

5 In this work we focus on NVIDIA GPUs and we make heavy use of CUDA concepts.
In theory all other GPUs have the required features, yet programming them remains
a challenge which is beyond the scope of this work.
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the GPU SMs and memory copies (D2H and H2D), executed by the GPU copy
engines. And finally, streams can run concurrently on the device. We further
detail the way we exploit these features in the following paragraphs.

CPU-GPU Concurrency. Stream launches are asynchronous by default. To
ensure a asynchronous launch, care must be taken that memory copies are ini-
tialized with the asynchronous API and that the host memory allocations are
pinned [13]. If synchronization between device and host is required, this can
be accomplished by either several CUDA synchronize methods or by implicit
synchronization. Unintentionally synchronizing the streams on the device is the
main difficulty of working with streams.

Compute and Memory Accesses Overlap. Within a stream, it is possible
to overlap the memory transfers with computational work by invoking the tasks
with the asynchronous API. If this is crucial for the application performance, one
needs to chunk the work such that the overlap is optimal. Furthermore, memory
copies of a stream can overlap the computations of another stream.

We note that, implicitly, this solution increases application parallelism by
decreasing the granularity of the tasks and making use of the engine parallelism
in the hardware platform.

Concurrent Kernel Execution. The latest developments in NVIDIA cards
increase the concurrency possibilities of the streams within a work queue. This
is accomplished by NVIDIAs Hyper-Q feature [13].

Concurrent kernel execution is strictly bound by computational capacity and
the device architecture. The latter is at the time of writing a dominant factor.
The Kepler (and newer) cards support Hyper-Queuing, which has an important
effect on performance.

To illustrate this effect, we present in Figs.2 and 3 a comparison of the
Fermi and Kepler architectures for streams concurrency. The streams contain
two kernels: a large generatePaths kernel followed by the tiny priceOptions
kernel. In Fig. 2 we observe a two-way concurrency; because the final (tiny) task
of a stream is running concurrently with the first (much larger) task of the
subsequent stream. Hardware utilization in this case is low. On the contrary,
Fig. 3 displays the benefits of the hyper-Q allowing higher concurrency between
streams, resulting in higher hardware utilization.

3.2 Multi Processing Service

Another way to increase the utilization of GPUs is to share the device for ker-
nels from different (local) processes. In order to manage GPU sharing between
processes, we used NVIDIA’s Multi Processing Service (MPS) [14]. This soft-
ware layer provides a context manager to handle work launched from differ-
ent processes. MPS is exclusively available on Linux and is only provided with
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Fig. 2. Stream concurrency on fermi Fig. 3. Stream concurrency on kepler
architecture architecture

NVIDIA Tesla cards with compute capability 5 or higher. Although these restric-
tions limit applicability, it is a relatively cheap way to explore the concept of
kernel offloading from multiple processes to a single GPU. This is an important
feature when a single host process cannot generate sufficient work for the GPU,
as it allows multiple cores or even multiple machines to collaborate in keeping a
single device busy.

We note that previous work on offloading streams in a multi-threaded or
multiprocessing environment [20] showed significant GPU utilization in bench-
mark cases. We implemented the same ideas as [20] for local Python processes.
Section 5 provides more detail on how this feature affects our FiNS framework.

4 Framework Architecture

An ideal scenario is for the outer and inner scenarios to run in parallel. In this
case, a perfect overlap provides optimal performance. Specifically, this means
that within the duration of a real world simulation step (typically tens to hun-
dreds of milliseconds), we must complete a full risk neutral simulation. This
requirement demands a heterogeneous solution, which matches CPU + GPU
architectures quite well, as seen in Fig. 7. Our work therefor focuses on building
a framework that significantly outperforms existing solutions for nested simu-
lations, but is flexible enough to support multiple types of such applications,
where the analysis and end-results of the inner and outer simulations can vary
in complexity.

The key to efficient heterogeneous programming is in designing the right solu-
tion to utilize the available hardware efficiently. In our case, the main challenge
is GPU utilization: one inner simulation offloaded to the GPU can not, for most
applications, fully utilize a GPU on its own. In order to increase GPU utilization
multiple inner simulations will have to run concurrently. Without the concept of
streams a custom implementation is needed, and it can become quite complex as
one needs to build an aggregated kernel, as an artificial concatenation of kernels,
which limits their flexibility in accepting different data sources or data types.
When using CUDA streams these kernels can remain independent - thus flexible
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Fig.4. Using streams in FiNS. The CPU and all GPU streams can run concurrently.
The level of concurrency achieved in practice is determined by the actual hardware.

and fully reusable - and the task of concurrently executing them is offloaded to
the device itself. From the perspective of flexibility this is an ideal solution for
a generic framework, even if it comes with a small performance penalty (below
10 % according to our results [5]).

4.1 The Framework

FiNS is a development framework, that offers a skeleton-like infrastructure for
the designers of nested simulation applications. Essentially, we provide a high-
concurrency template that needs to be instantiated for a specific application.
Using FiNS a developer needs to focus only on the implementation of the outer
and inner simulation functionality. The framework will make sure that the map-
ping of these tasks on the real heterogeneous platform will be optimized for
massive parallelism and efficient usage for both the CPU and the GPU.

To achieve this high level of flexibility we make use of CUDA streams, as
seen in Fig. 4, displaying the concurrency between host and a number of streams
running on the device. The CPU prepares the workload for the GPU and launches
the work in streams to the device. The device receives the streams and stacks the
work in a Hyper-Q. Note here that the issue order of the streams is not necessarily
the order of execution, which clearly requires the computations in streams to
be completely independent. If this is not the case, FiNS cannot be used. As
mentioned earlier, it is important to have all host memory allocations page-
locked or else the CPU-GPU concurrency will break when memory transfers are
initialized. Furthermore, the Hyper-Q takes care of optimal hardware utilization
by scheduling the streams concurrently. All streams are launched asynchronously,
so that the GPU computations can overlap with the CPU tasks. These tasks
can consist of, for example, calculating real-world simulation steps, calculating
statistics or memory flushes to the hard drive.
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4.2 Streams in Practice

To show the performance behavior of kernel concurrency with streams, we set
up a sample workload of 256 streams for the generatePaths kernel. We evalu-
ated different sizes of offloaded work, determined by the number of risk neutral
scenarios. To understand the performance gain for concurrency, we launched
the sample both with and without kernel concurrency. We observe that the
average duration of the kernel increases when streams are running concurrently
(Fig.5). However, for a lower number of scenarios (till around 2, 000), the concur-
rency contributes such that it is faster than the non-concurrent variant (Fig. 6).
Moreover, for larger numbers of scenarios there is no performance penalty. This
behavior indicates that the CUDA Work Scheduler assigns more resources to
single sequential streams than it does to concurrent streams. As a result, kernel
concurrency in streams only benefits performance when the offloaded kernels are
not large enough to fully utilize the GPU, whereas for larger cases performance
remains equal.

5 Nested Simulation for ALM Tooling: A Case Study

Section 2 already described the need for nested simulations in practice. Due
to performance reasons the available ALM software is not equipped with the
nested simulation features. Instead, we use analytical methodologies, often less
accurate. This also means that we have no real reference code to compare against.
Therefore, we build a mock-up model of an ALM tool. In this mock-up model
outer simulations are emulated by a sleep statement. Since we are interested
in the impact on the user-time performance (wall-clock performance) for this
application, we assumed three benchmark cases. They differ in the duration
of a real world simulation step per scenario per period. We assumed normal
distributed duration with means 75, 150 and 300ms for respectively a light,
medium and a heavy case and a 5 ms standard deviation.

5.1 Application Description

Figure 7 displays the concept of offloading risk neutral calculations to the GPU
in comparison with a sequential version. With this concept the goal is to perform
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Fig. 7. Overlapping real and nested simulations. Note that all RNs are different, yet
independent, thus they can be executed concurrently.

all risk neutral tasks within the runtime of a real world period. This is important
since ALM models are used in a decision-making process. Any additional runtime
on current methodologies is unwanted by its users.

In contrast, with Fig. 7 modern ALM tools perform real world simulations in
a multiprocess or multi-threading setting. This makes it more challenging finish-
ing the offloaded risk neutral simulation within the duration of its parent real
world simulation step, since the GPU will be receiving tasks from all processes
simultaneously.

5.2 Using the Framework

The framework presented in Sect.4 serves as the greatest common divisor of
several FiNS applications. For the ALM applications we extended the framework
with multiprocessing support. This way, each host process is launching streams
for its risk neutral calculation tasks to a daemon process hosted by the MPS
Sect. 3.2. This daemon process manages all GPU requests from its slave processes
and queues all received streams in a single hyper-Q. Using a single hyper-Q
results in concurrent stream execution over the different processes.

5.3 Evaluation

Consider, again, the case of 2,000 real world scenarios with a horizon of 5 years
(annual frequency), which are common dimensions for an insurer’s ALM study.
In a single process setting, simulations for the benchmark cases take resp. 12.5,
25 and 50min. Note that we assumed perfect performance scaling for higher
numbers processes. We measured that a single inner simulation of 1,000 with a
horizon of 100 years and a ﬁ time steps per year takes 1.875s on a state-of-
the-art CPU. These simulation dimensions are representative for current CPU
models. Given that the inner simulations are run 10,000 + 1 (including ¢ = 0)
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Table 1. Runtime full nested simulation on Table 2. User time speed ups

GPU framework (mazimum theoretical speed up)

Case # Cores | Light | Medium | Heavy Case # Cores | Light | Medium | Heavy
(in minutes) (26.0)| (13.5) | (7.25)

1 12.3 |24.9 51.3 1 26.46 |13.53 | 7.07

2 6.6 |12.8 25.3 2 24.68 |13.17 7.16

4 3.7 6.5 12.7 4 22.03 [12.95 7.12

8 3.7 3.9 6.4 8 11.01 |10.83 7.05

16 3.3 3.4 3.9 16 6.10 | 6.15 5.76

times for the complete run, the inner simulations represent a workload of over
5h in a single process setting.

For evaluating the use case on FiNS we used a NVIDIA K20 GPU. Table 1
displays the measured runtime of the mockup model with the heterogeneous
framework. We observe that for the lower number of cores the GPU is keeping
up with the offloaded work. For a larger number of cores offloading work to the
GPU, we observe that tasks stack in the hyper-Q and the CPU has to wait
for the GPU results to be finished. Note that the single core results are below
the theoretical reference for the Light and Medium case; this is caused by the
assumption of normal distributed benchmark timings for the outer simulation.

The maximum speed up of the heterogeneous framework versus the theoret-
ical sequential runtime is bound by the fraction of the tasks to be offloaded.

1
Amdahl’s law tell us that maximum achieved speed up is defined by — where B

represents the fraction of time the models is strictly serial. This results in the-
oretical maximum speedups of 26.0, 13.5 and 7.25 for all processes in resp. the
Light, Medium and Heavy benchmark case. Table 2 displays the speedup of the
GPU accelerated model versus the theoretical CPU runtime. The results show
that for most of the cases a near to maximum speed up is reached.

The results in Tablel indicate that, if resources can be scaled (usage of
multiple GPUs), the proposed architecture would in theory be able to close in to
the theoretical maximum speed up for every case defined in Table2. Although
scalability of the architecture is not implemented yet, we can conclude that the
proposed architecture is most promising, since streams are easily distributable
over multi GPUs and MPS has multi GPU support. To reveal the importance
of NVIDIA MPS we also run the same tests with MPS disabled. We observed
that speeds ups as displayed in Table 2 were up to 40 % lower.

6 Related Work

The utility of GPUs in Monte Carlo valuation methods is becoming a proven
technology in finance [10]. Such work is focusing strictly on improving the perfor-
mance of risk neutral simulation. In [1], a CPU-GPU performance comparison
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is made, achieving up to 10x speedup for both European and American con-
tracts. Additionally, a lot of research has been dedicated to GPU-accelerated
solutions for several risk neutral models [4,6,8,18,19]; the observed speedups
range between 4 and 150. In our work, we focus on simulation models that require
the cooperation of the CPU and the GPUs towards efficient nested simulations.

Financial nested simulations are increasingly important due to new regula-
tions, so their performance becomes a production-level concern. Therefore, [3]
describes several numerical methods for reducing the computational intensity
of Solvency Capital Requirement (SCR) calculation, making it computationally
feasible. Complementary to their study, our work demonstrates that the FiNS
framework can render the same simulations feasible by using CPU-GPU hetero-
geneous computing.

Using heterogeneous computing for large scale simulations is already estab-
lished as a feasible solution to improve performance for many classes of appli-
cations. Systems such as Glinda, Qilin, or Insieme [9,12,16,17] focus on static
partitioning of one workload to multiple devices, under the assumption that
the GPU is overloaded. Such systems are not suitable for our nested simula-
tions, because in our scenarios the GPU is “underloaded”. An alternative is to
use a runtime-based system for heterogeneous computing, such as OmpSS or
StarPU [2,15]. However, none of these approaches supports sharing devices by
multiple kernels, which is an essential performance booster for FiNS.

7 Conclusion and Future Work

Nested simulation applications become increasingly important for insurance
companies. Due to the compute-intensive nature of such simulations, CPU-only
implementations lack the ability to provide sufficient performance, while GPU-
only solutions are unable to efficiently utilize the hardware and lead to dis-
appointing results. In this work we proposed FiNS, a flexible heterogeneous
framework which, based on modern technologies such as CUDA Streams,
Hyper-Q and NVIDIAs MPS, is able to utilize both the CPU and the GPU
to accelerate nested simulations. We demonstrated the use of FiNS for an ALM
application, which required multiple CPU processes to offload calculations to the
same GPU. To tackle this challenge, we customized the MPS functionality to
handle local Python processes and achieved concurrency between streams owned
by different local processes. Our results demonstrate that ALM as implemented
using FiNS achieves very good parallel efficiency.

We have four main objectives for the future. First, we will focus on running
our applications in a multi-GPU environment, to fully overlap the CPU and
GPU execution. Second, we expect that the concept of FINS could be imple-
mented on any many-core architecture, like Intel MIC, but we need to test this.
Third, we plan to investigate more applications [5] and the effort needed to
implement them in FiNS. Last but not least, we will investigate the possibility
of providing an intuitive front-end for this framework together with a computa-
tional infrastructure (e.g., in the cloud), enabling financial specialists to use it
as a computational service.
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