
A Mixed Learning Strategy for Finding Typical
Testors in Large Datasets

Vı́ctor Iván González-Guevara1, Salvador Godoy-Calderon1,
Eduardo Alba-Cabrera2(B), and Julio Ibarra-Fiallo2

1 Instituto Politécnico Nacional, Centro de Investigación en Computación (CIC),
Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco,

Delegación Gustavo A. Madero, 07738 Ciudad de Mexico, Mexico
{vgonzalez,sgodoyc}@cic.ipn.mx

2 Colegio de Ciencias e Ingenieŕıas, Departamento de Matemáticas, Universidad San
Francisco de Quito (USFQ), Diego de Robles y Vı́a Interoceanica, Quito, Ecuador

{ealba,jibarra}@usfq.edu.ec
http://www.springer.com/lncs

Abstract. This paper presents a mixed, global and local, learning strat-
egy for finding typical testors in large datasets. The goal of the proposed
strategy is to allow any search algorithm to achieve the most significant
reduction possible in the search space of a typical testor-finding prob-
lem. The strategy is based on a trivial classifier which partitions the
search space into four distinct classes and allows the assessment of each
feature subset within it. Each class is handled by slightly different learn-
ing actions, and induces a different reduction in the search-space of a
problem. Any typical testor-finding algorithm, whether deterministic or
metaheuristc, can be adapted to incorporate the proposed strategy and
can take advantage of the learned information in diverse manners.

Keywords: Feature selection · Testor theory · Algorithms

1 Introduction

Feature Selection is a well known branch of Pattern Recognition responsible for
identifying those features, describing objects under study, that provide relevant
information for classification purposes. Testor Theory is one of the common tools
used for such task. During the last decade several algorithms have been designed
for finding the set of all typical testors in a dataset [5,7,9]. Unfortunately, the
time complexity of computing all typical testors has an exponential growth with
respect to the number of features describing objects. Also, recent research has
unveiled different elements that also have effect over the complexity of that
problem, such as the number of rows in the initial basic matrix, the density

Mexican authors wish to thank CONACyT and SIP-IPN for their support of this
research, particularly through grant SIP-20151393. Also, Ecuatorian authors wish
to thank the financial support received from USFQ-Small Grants.

c© Springer International Publishing Switzerland 2015
A. Pardo and J. Kittler (Eds.): CIARP 2015, LNCS 9423, pp. 716–723, 2015.
DOI: 10.1007/978-3-319-25751-8 86



Mixed Learning Strategy for Typical Testors 717

of that matrix, and the number of typical testors within it or the underlying
structure of the basic matrix Agregarcitaaartculo4delrevisorMemo. All those
factors severely complicate finding typical testors in large datasets. Moreover,
some of the empirical results found in carefully designed benchmarks like the one
on [2], add up to the intuition that no single typical testor-finding algorithm can
be found to have the best possible behavior for any given problem. This kind of
No-Free-Lunch intuition, taken from the field of evolutionary and bio-inspired
algorithms, encourages researching techniques that allow increased algorithm
performance and solving the problem of finding typical testors in large datasets
with the least possible computational cost.

With that goal in mind, this paper proposes a mixed learning strategy
designed to allow typical testor-finding algorithms to reduce the search space
of any problem. The proposed strategy will be responsible for identifying and
storing the pertinent local and global information for the stated purpose, while
the underlying typical testor-finding algorithm (a search algorithm) decides when
and how it makes use of the learned information.

2 Theoretical Framework

Several research papers have more than exhaustively presented the fundamental
definitions of Testor Theory. Here we quickly outline the context for our par-
ticular research, and advise the reader who requires a thorough review of those
concepts to refer to [4] and [6].

All known typical testor-finding algorithms have a comparison matrix as
input. That matrix, called Basic Matrix, contains the summary information
about the comparison of all objects belonging to different classes within a given
supervision sample. When the original supervision sample is a partition, and all
comparisons have been evaluated with a boolean difference function, then the
basic matrix (BM) is binary and its rows conform a Sperner family. Within
such matrix, a Testor is defined as a subset τ of columns (or features) such
that no zero-row can be found in BM |τ (called the τ -restricted matrix). Also, a
Typical Testor is defined as an irreducible testor (i.e. a testor such that none of
its subsets is a testor). As a consequence of its irreducibility, typical testors are
identified by the property that each feature in BM |τ has at least one Typical
Row, where the corresponding column contains a 1, and all other columns in
that row contain a 0.

In practical terms, typical testors are characterized by being the only feature
subsets that fulfill the two following conditions:

1. BM |τ has no zero-rows (so τ is a testor)
2. Each column in BM |τ has at least one typical row (so τ is typical)

Largely, the complexity of finding typical testors in big matrices lies in the
analysis of restricted matrices in search for the fulfillment of both conditions. In
order to minimize that effort, and as the basis for our proposed learning strategy
we briefly introduce the following concepts:



718 V.I. González-Guevara et al.

2.1 Masks and Assessment Indices

The following definitions are introduced in [5]:
Let B be a basic matrix, and let τ be any feature subset in B, then

Definition 1. The Acceptance Mask of τ (am(τ)) is a binary tuple in which
the ith element is 1 if the ith row in B|τ has at least a 1 in the columns of
features in τ , and 0 otherwise.

Definition 2. The Compatibility Mask of τ (cm(τ)) is a binary tuple in which
the ith element is 1 if the ith row in B|τ has only a 1 in the column of a feature
in τ and 0 otherwise.

To the previous definitions, we add the following,

Definition 3. The Typicity Mask of τ (tm(τ)) is an integer tuple in which the
ith element is the number of typical rows that feature xi has in B|τ .

The defined masks allow the characterization of all feature subsets, either as
a Testor or as a Typical. For that task we define the following indexes:

Definition 4. The Testor Error index of subset τ in B (eT (τ)), is the number
of zero rows in B|τ (i.e. the number of zero entries in am(τ)).

Definition 5. The Typical Error index of subset τ in B (eTy(τ)), is the num-
ber of features in τ that do not have at least one typical row in B|τ (i.e. the
number of zero entries in tm(τ)).

For algorithmic purposes, both error indexes are interpreted as the number
of changes a particular feature subset has to undergo in order to become a testor
or a typical testor.

2.2 The Classifier

By using the error indexes defined in previous subsection we define a trivial clas-
sifier that effectively partitions the search space (i.e. the power set of all feature
subsets) in four classes: Testors, Typicals, TypicalTestors, and Incompatibles
(See Fig.1).

The first three classes have already been presented: Testors, Typicals and
Typical Testors are characterized by the conditions discussed in section 2.
Incompatibles, on the other hand, are those feature subsets whose restricted
matrix contains one or more zero-rows, and where not all features have a typical
row.

Often, the reason why a particular feature fails to have a typical row, is
because another feature, in the same subset, damages its potential typical rows
by having a 1 in the same row. We call that condition an incompatibility between
those two features, and have identified it as one of the most important phenom-
ena to be learned. When, during the search for typical testors, an incompatibility
is found within a feature subset, the search algorithm can safely ignore the anal-
ysis of any other feature subset containing the identified pair of incompatible
features.



Mixed Learning Strategy for Typical Testors 719

Fig. 1. The feature subset classifier

3 Learning Strategy

By learning we mean the process by which any piece of information (knowl-
edge), relevant for the solution of a problem, is identified and stored to be used
later. So, as stated before, the goal of the proposed strategy is to provide some
additional knowledge to enable any typical testor-finding algorithm for a more
efficient search process.
All typical testor-finding algorithms proceed iteratively by analyzing one or more
feature subsets from the search space on each iteration, and then deciding which
other elements in the search space are to be, or not to be analyzed next. This
decision is made by a set of rules that follow a pre-defined order in which the
search space is to be traversed (even a random order). Deterministic algorithms
such as those in [5,7,9] generally analyze one subset at a time, while metaheuris-
tic algorithms like those in [1,3,8] tend to analyze more than one subset on each
iteration.
When a typical testor-finiding algorithm is adapted to use this strategy, the
learning module learns all that can be learned from each feature subset the
search algorithm analyzes. The resulting knowledge can then be used as a form
of taboo list that allows the algorithm to skip the analysis of some subsets with
the guarantee that no typical testor is going to be missed by the overall process.
The specific way in which the proposed learning strategy can be adapted to any
algorithm is briefly described in the next subsection.

3.1 Adapting the Strategy

Regardless of the specific order that a typical testor-finding algorithm follows,
there are only two specific modifications that it needs to undergo in order to
adapt the proposed learning strategy:



720 V.I. González-Guevara et al.

1. Allow the learning module to analyze each feature subset the algorithm
selects,

2. Avoid the analysis of any feature subset whose structure has already been
learned,

The analysis of each feature subset starts by classifying it as Testor, Typical,
TypicalTestor or Incompatible. The resulting label triggers different learning
actions. If the analyzed subset turns out to be TypicalTestor the whole subset
is learned globally to ensure that the algorithm never tests any of its subsets
or supersets. Similarly, if the subset is Incompatible (i.e. it has zero-rows and
includes feature incompatibilities) all pairs of incompatible features are glob-
ally learned so that the search algorithm never tests a subset that includes any
of those incompatibilities. In both cases the learned information is considered
global in the sense that it remains constant during the whole run of the search
algorithm. Locally learned information, on the other hand, only stores informa-
tion that serve as a reference point for deciding which subsets not to analyze.
This kind of knowledge is updated as the algorithm runs. Such is the case for
subsets labeled as Testor or as Typical which have one important property in
common: either their Testor Error index, or their Typical Error index eval-
uates to zero. By following that line of reason, it quickly becomes clear that
finding a Testor immediately rules out the analysis of any of its supersets, while
finding a Typical rules out the analysis of any of its subsets.
Any known typical testor-finding algorithm can be adapted to incorporate the
proposed strategy. Figure 3 presents a tiny example where the proposed learning
strategy is used to analyze several feature subsets and generate their descendants.

4 Pseudo-Code and Sample Experiments

In this section we present the algorithmic form of the proposed strategy as well
as some experiments performed with it.

4.1 Pseudo-Code

Let B be a basic matrix with columns labeled with the elements of set R (a com-
plete feature set). We call descendants of τ any feature subset within the search
space whose analysis is not ruled out after analyzing τ . Also, let Incomp(τ) be a
procedure that finds and returns all pairwise incompatibilities in subset τ . Figure
2 outlines the proposed learning strategy in the form of a function that receives
a τ ⊂ R as input, and returns its filtered descendants. Two auxiliary functions
were used for clearly stating the pseudocode in Figure 2, those functions are:

1. Classify(): Receives a feature subset as input, and outputs the correspond-
ing class label (See Figure 1).

2. FilterWithGlobalLearning(): Receives a family of feature subsets as input,
and uses any previously stored global learning information to filter the set.



Mixed Learning Strategy for Typical Testors 721

Learning Strategy.

Input: A feature subset τ
Output: The filtered descendants of τ

label = Classify(τ)
Case label of

Testor do
Store: τ and eTy(τ)
Descendants = {σ ⊂ τ | eTy(σ) < eTy(τ)}

Typical do
Store: τ and eT (τ)
Descendants = {σ ⊃ τ | eTy(σ) = 0 ∧ eT (σ) < eT (τ)}

Typical Testor do
Store: τ
Descendants = {σ ∈ ℘(R) | σ � τ ∧ σ � τ)}

Incompatible do
Store: τ , eT (τ), eTy(τ), and Incomp(τ)
Descendants = {σ ∈ ℘(R) | eT (σ) ≤ eT (τ) }

endCase

Descendants = FilterWithGlobalLearning(Descendants)

Fig. 2. Pseudocode for the proposed learning strategy

In order to ilustrate the mechanics of the learning strategy, Table 1 shows a
tiny basic matrix (called the Ms matrix). Some feature subsets from the Ms
matrix are analyzed following the the pseudo-code in Figure 1. The results are
summarized in Table 2.

Table 1. The Ms matrix used for illustrating the learning strategy

a b c d e f

1 0 0 0 1 0
1 1 0 0 0 1
0 0 1 0 0 1
1 0 0 1 0 1

4.2 Sample Experiments

We adapted the well-known BR-algorithm [5] to use the proposed learning strat-
egy, and compared the number of tested subsets (labeled as Hits) and the exe-
cution time between the original algorithm and the adapted one. Input matrices
for these experiments were designed by applying the φ, θ, and γ operators, over
the Ms matrix, following the specifications and method described in [2]. Table
3 summarizes the experiments performed showing the number of rows, columns
and typical testors (TTestors) of each input matrix.



722 V.I. González-Guevara et al.

Table 2. Some examples of four different cases

τ eT (τ), eTy(τ) Label Learning Descendants

τ1 = {a, c, e} eT (τ1) = 0
eTy(τ1) = 1

Testor [{a, c, e}, 1] {{a, c}}

τ2 = {b, c} eT (τ2) = 2
eTy(τ2) = 0

Typical [{b, c}, 2] {{b, c, d},{b, c, e},{b, c, d, e},{b, c, d, f}}

τ3 = {a, f} eT (τ3) = 0
eTy(τ3) = 0

Typical
Testor

[{a, f}] {{b},{c},{d},{e},{a, b},{a, c},{a, d},
{a, e},{b, c},{b, d},{b, e},{b, f},{c, d},
{c, e},{c, f},{d, e},{d, f},{e, f},{a, b, c},
{a, b, d},{a, b, e},{a, c, d},{a, c, e},
{a, d, e},{b, c, d},{b, c, e},{b, c, f},
{b, d, e},{b, d, f},{b, e, f},{c, d, e},
{c, d, f},{c, e, f},{d, e, f},{a, b, c, d},
{a, b, c, e},{a, b, d, e},{a, c, d, e},
{b, c, d, e},{b, c, d, f},{b, c, e, f},
{b, d, e, f},{c, d, e, f},{a, b, c, d, e},
{b, c, d, e, f}}

τ4 = {b, c, d, f} eT (τ4) = 1
eTy(τ4) = 4

Incompatible [{b, c, d, f}, 1, 4
(b, f),(c, f),(d, f)]

{{a, c},{a, f},{e, f},{a, b, c},{a, c, d},
{a, c, e},{a, e, f},{a, b, c, d},{a, b, c, e},
{a, c, d, e},{b, c, d, e},{a, b, c, d, e}}

Table 3. Performance of the adapted BR-algorithm

Matrix Rows Cols TTestors Original BR Adapted BR
Hits Time Hits Time

Id5 5 5 1 16 0.001 16 0.001
Id15 15 15 1 16384 1.582 16384 1.580

φ2(Ms) 4 12 28 180 0.002 68 0.001
φ3(Ms) 4 18 108 2361 0.03 222 0.006
θ2(Ms) 16 12 8 617 0.011 216 0.013
θ3(Ms) 64 18 12 30979 3.986 4196 1.157
γ2(Ms) 8 12 16 352 0.007 252 0.037
γ3(Ms) 16 24 256 166252 152.617 111132 22.305

As it can be seen, the proposed strategy cannot improve the search process in
the case of identity matrices. However, the number of hits is notoriously reduced
in all other cases, effectively reducing the problem’s search space. Also note
that the execution time is not always reduced proportionally, since the internal
structure of the input matrix can sometimes severely complicate the calculation
of masks and error indices.

5 Conclusions

A general mixed learning strategy for finding typical testors in large datasets was
presented. The proposed strategy uses both globally and locally learned infor-
mation to calculate the descendants of the currently analyzed feature subset,
effectively reducing the search space for any problem. The host search algorithm



Mixed Learning Strategy for Typical Testors 723

however, must decide the order in which the search space is analyzed, as well
as the size of its population. The interaction and dependence between the host
algorithm and the learning module determines, for the most part, the perfor-
mance yield by any experiment. Since there are no current means for predicting
the optimum order for traversing a search space or for maximizing the use of
learned information, the intuition that no single algorithm can be found to opti-
mally solve any problem instance is strengthened.

Evidently the problem of finding typical testors still stands as not solvable in
polynomial time; however, the proposed strategy is enough to cut out from the
analysis all feature subsets that neither have real possibilities of being typical
testors, nor contribute to the rest of the search process.

References

1. Alba-Cabrera, E., Santana, R., Ochoa-Rodriguez, A., Lazo-Corts, M.: Finding typ-
ical testors by using an evolutionary strategy. In: Proceedings of the 5th Ibero
American Symposium on Pattern Recognition, p. 267 (2000)

2. Alba-Cabrera, E., Ibarra-Fiallo, J., Godoy-Calderon, S.: A theoretical and prac-
tical framework for assessing the computational behavior of typical testor-finding
algorithms. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part I.
LNCS, vol. 8258, pp. 351–358. Springer, Heidelberg (2013)

3. Diaz-Sanchez, G., Piza-Davila, I., Sanchez-Diaz, G., Mora-Gonzalez, M.,
Reyes-Cardenas, O., Cardenas-Tristan, A., Aguirre-Salado, C.: Typical testors gen-
eration based on an evolutionary algorithm. In: Yin, H., Wang, W., Rayward-Smith,
V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 58–65. Springer, Heidelberg (2011)

4. Lazo-Cortés, M., Ruiz-Shulcloper, J., Alba-Cabrera, E.: An overview of the evolution
of the concept of testor. Pattern Recognition 34(4), 753–762 (2001)

5. Lias-Rodŕıguez, A., Pons-Porrata, A.: BR: a new method for computing all typi-
cal testors. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS,
vol. 5856, pp. 433–440. Springer, Heidelberg (2009)

6. Martnez-Trinidad, J.F., Guzmán-Arenas, A.: The logical combinatorial approach
to pattern recognition, an overview through selected works. Pattern Recognition
34(4), 741–751 (2001)

7. Sanchez-Diaz, G., Lazo-Cortes, M., Piza-Davila, I.: A fast implementation for the
typical testor property identification based on an accumulative binary tuple. Inter-
national Journal of Computational Intelligence Systems 5(6), 1025–1039 (2012)

8. Sanchez-Diaz, G., Diaz-Sanchez, G., Mora-Gonzalez, M., Piza-Davila, I.,
Aguirre-Salado, C., Huerta-Cuellar, G., Reyes-Cardenas, O., Cardenas-Tristan, A.:
An evolutionary algorithm with acceleration operator to generate a subset of typical
testors. Pattern Recognition Letters 41, 34–42 (2014)

9. Santiesteban-Alganza, Y., Pons-Porrata, A.: LEX: A new algorithm for calculating
typical testors. Revista Ciencias Matematicas 21(1), 85–95 (2003)


	A Mixed Learning Strategy for Finding Typical Testors in Large Datasets
	1 Introduction
	2 Theoretical Framework
	2.1 Masks and Assessment Indices
	2.2 The Classifier

	3 Learning Strategy
	3.1 Adapting the Strategy

	4 Pseudo-Code and Sample Experiments
	4.1 Pseudo-Code
	4.2 Sample Experiments

	5 Conclusions
	References


