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Abstract. This work introduces a multiple kernel learning (MKL)
approach for selecting and combining different spectral methods of dimen-
sionality reduction (DR).Fromapredefined set of kernels representing con-
ventional spectral DR methods, a generalized kernel is calculated by means
of a linear combination of kernel matrices. Coefficients are estimated via a
variable ranking aimed at quantifying how much each variable contributes
to optimize a variance preservation criterion. All considered kernels are
testedwithinakernelPCAframework.Theexperimentsarecarriedoutover
well-known real and artificial data sets. The performance of compared DR
approaches is quantified by a scaled version of the average agreement rate
between K-ary neighborhoods. Proposed MKL approach exploits the rep-
resentation ability of every single method to reach a better embedded data
for both getting more intelligible visualization andpreserving the structure
of data.

Keywords: Dimensionality reduction · Generalized kernel · Kernel
PCA · Multiple kernel learning

1 Introduction

The aim of dimensionality reduction (DR) is to extract a lower dimensional,
relevant information from high-dimensional data, being then a key stage within
the design of pattern recognition and data mining systems. Indeed, when using
adequate DR stages, the system performance can be enhanced as well as the data
visualization can become more intelligible. The range of DR methods is diverse,
including those classical approaches such as principal component analysis (PCA)
and classical multidimensional scaling (CMDS), which are respectively based on
variance and distance preservation criteria [1]. Recent methods of DR are focused
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on the data topology preservation. Mostly such a topology is driven by graph-
based approaches where data are represented by a non-directed and weighted
graph. In this connection, the weights of edge graphs are certain pairwise sim-
ilarities between data points, the nodes are data points, and a non-negative
similarity (also affinity) matrix holds the pairwise edge weights. Spectral meth-
ods such as Laplacian eigenmaps (LE) [2] and locally linear embedding (LLE) [3]
were the pioneer ones to incorporate similarity-based formulations. Also, given
the fact that the rows of the normalized similarity matrix can be seen as prob-
ability distributions, divergence-based methods have emerged (i.e., stochastic
neighbor embedding (SNE) [4]). Spectral approaches for DR have been widely
used in several applications such as relevance analysis [5,6], dynamic data anal-
ysis [7,8] and feature extraction [9,10]. Because of being graph-driven methods
and involving then similarities, spectral approaches can be easily represented
by kernels [11], which means that a wide range of methods can be set within a
Kernel PCA framework [12]. At the moment to choose a method, aspects such as
nature of data, complexity, aim to be reached and problem to be solved should
be taken into consideration. In this regard, as mentioned above, there exists a
variety of DR spectral methods making the selection of a method a nontrivial
task. Also, some problems may require the combination of methods so that the
properties of different methods are simultaneously taken into account to perform
the DR process and the quality of resultant embedded space is improved.

The purpose of this work is to provide a multiple kernel learning (MKL)
approach allowing for both selecting a DR method, and combining different
methods to exploit the representation ability of every single method to reach a
better embedded space than the one obtained when using only one method. This
approach starts with kernel representations of conventional spectral methods as
explained in [11]. Then, a generalized kernel is calculated by means of a linear
combination of kernel matrices whose coefficients are estimated by an adapted
variable relevance approach proposed in a previous work [6]. Similar approaches
have been applied on dynamic data clustering [13] and image segmentation [14].
The experiments are carried out over well-known data sets, namely an artificial
Spherical shell, a Swiss roll toy set, and MNIST image bank [15]. The DR
performance is quantified by a scaled version of the average agreement rate
between K-ary neighborhoods as described in [16].

The rest of this paper is organized as follows: Section 2 outlines the proposed
MKL approach for dimensionality reduction. Section 3 describes the experimen-
tal setup as well as section 4 presents the results and discussion. Finally, some
final remarks are drawn in section 5.

2 Multiple kernel Learning for Dimensionality Reduction

In mathematical terms, the goal of DR is to embed a high dimensional data
matrix Y ∈ R

D×N into a low-dimensional, latent data matrix X ∈ R
d×N , being

d < D. Then, observed data and latent data matrices are formed by N data
points, denoted respectively by yi ∈ R

D and xi ∈ R
d, with i ∈ {1, . . . , N}.
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Kernel PCA, as PCA, maximizes a variance criterion, which can be seen as an
inner product criterion when data matrix is centered. Let Φ ∈ R

Dh×N be an
unknown high dimensional representation space such that Dh ≫ D, and φ(·)
be a function that maps data from the original dimension to a higher one, such
that φ(·) : RD → R

Dh ,yi �→ φ(yi).
Given this, we can write the i-th column vector of matrix Φ as Φi =

φ(yi). Consequently, the inner product on the high-dimensional vector space
is φ(yi)�φ(yj) = k(yi,yj) = kij , where k(·, ·), followed from Mercer’s condition,
is a kernel function. In matrix terms, we get that the kernel matrix is K = Φ�Φ.

Since Kernel PCA is developed under the condition that matrix Φ has zero
mean, we must ensure this condition by centering the kernel matrix as follows:

K ←K − 1
N

K1N1�
N − 1

N
1N1�

NK +
1

N2
1N1�

NK1N1�
N

= (IN − 1N1�
N )K(IN − 1N1�

N ), (1)

where 1N and IN are N -dimensional all ones vector and identity matrix, respec-
tively.

The aim of our MKL approach is to get a generalized kernel ˜K ∈ R
N×N

from a linear combination of a set of kernels {K(1), . . . ,K(M)} to input a DR
approach based on kernels. Ensuring linear independency, the generalized kernel
can be written as:

˜K =
M
∑

m=1

αmK(m). (2)

Here, we propose to estimate the coefficients by using an adapted version
of the variable ranking approach proposed in [6]. In [13], authors apply MKL
based on a ranking vector to cluster time-varying data in a sequence of frames.
A cumulative kernel is calculated to track the dynamic behavior, having each
kernel a corresponding data matrix (one per frame). Unlike, in this approach
we have a single data matrix, and then the ranking vector should be calculated
using directly the kernel matrices. Define a matrix K ∈ R

N2×M holding the
vectorization of the kernel matrices. Likewise, suppose that a lower-rank repre-
sentation ̂K ∈ R

N2×M of matrix ̂K is known. Regarding any othonormal matrix
U = [u(1) · · · u(c)] ∈ R

M×c, we can write the lower-rank matrix as

̂K = KU . (3)

So, the full-rank matrix can be then estimated as K = ̂KU�. Similarly to
the feature extraction problem stated in [5,9], here we propose to maximize the
variance of ̂K by solving the following optimization problem:

max
U

tr(U�KKU) (4a)

s. t. U�U = Ic. (4b)
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As demonstrated in [6], previous problem has a dual version that can be
expressed as

min
U

‖K − ̂K‖2F (5a)

s. t. U�U = Ic, (5b)

where ‖ · ‖F stands for Frobenius norm. Since this formulation is a quadratic
problem subject to orthonormal constraints, a feasible solutions is selecting U
as the eigenvectors related to the c largets eigenvalues of KK.

Finally, the coefficients αm of the linear combination to calculate the general-
ized kernel are the ranking values quantifying how much each column of matrix
K (each kernel) contributes to minimizing the cost function given in (5a). Again,
applying the variable relevance approach presented in [6], we can calculate the
ranking vector α = [α1, . . . , αM ] using:

α =
c

∑

m=1

λmu(m) ◦ α(m), (6)

where ◦ denotes Hadamard (element-wise) product. Given the problem formu-
lation, possitivenes of α is guaranteed and then can be directly used to perform
the linear combination.

3 Experimental Setup

Databases. Experiments are carried out over three conventional data sets. The
first data set is an artificial spherical shell (N = 1500 data points and D = 3).
The second data set is a randomly selected subset of the MNIST image bank [15],
which is formed by 6000 gray-level images of each of the 10 digits (N = 1500
data points –150 instances for all 10 digits– and D = 242). The third data set is
a toy set here called Swiss roll (N = 3000 data points and D = 3). Figure 1
depicts examples of the considered data sets.

Kernels for DR. Three kernel approximations for spectral DR methods [11] are
considered. Namely, classical multidimensional scalling (CMDS), locally linear
embedding (LLE), and graph Laplacian eigenmaps (LE). CMDS kernel is the
double centered distance matrix D ∈ R

N×N so

K(1) = KCMDS = −1
2
(IN − 1N1�

N )D(IN − 1N1�
N ), (7)

where the ij entry of D is given by dij = ||yi − yj ||22 and || · ||2 stands for
Euclidean norm.

A kernel for LLE can be approximated from a quadratic form in terms of the
matrix W holding linear coefficients that sum to 1 and optimally reconstruct
observed data. Define a matrix M ∈ R

N×N as M = (IN −W)(IN −W�) and
λmax as the largest eigenvalue of M . Kernel matrix for LLE is in the form

K(2) = KLLE = λmaxIN − M . (8)
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Fig. 1. The three considered datasets.

Since kernel PCA is a maximization problem of the covariance of the the high-
dimensional data represented by a kernel, LE can be expressed as the pseudo-
inverse of the graph Laplacian L:

K(3) = KLE = L†, (9)

where L = D − S, S is a similarity matrix and D = Diag(S1N ) is the degree
matrix. All previously mentioned kernels are widely described in [11]. The simi-
larity matrix S is formed in such a way that the relative bandwidth parameter
is estimated keeping the entropy over neighbor distribution as roughly log K
where K is the given number of neighbors as explained in [17]. The number of
neighbors is established as K = 30.

As well, a RBF kernel is also considered: K(4) = KRBF whose ij entry are
given by exp(−0.5||yi − yj ||/σ2) with σ = 0.1. For all methods, input data is
embedded into a 2-dimensional space, then d = 2.

Accordingly, the MKL approach is performed considering M = 4 ker-
nels. The generalized kernel provided ˜K here as well as the individual kernels
K(1), . . . ,K(M) are tested on kernel PCA as explained in [12].

Performance Measure: To quantify the performance of studied methods, the
scaled version of the average agreement rate RNX(K) introduced in [16] is used,
which is ranged within the interval [0, 1]. Since RNX(K) is calculated at each
perplexity value from 2 to N−1, a numerical indicator of the overall performance
can be obtained by calculating its area under the curve (AUC). The AUC assesses
the dimension reduction quality at all scales, with the most appropriate weights.

Notwithstanding, it is important to note that kernels approximations are
suboptimal and input parameters are not properly set, which means that under
other settings, the quality measure and resultant embedding data might be sig-
nificantly different. Here, just basic settings are considered in order to show the
benefit of MKL rather than the individual methods.
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Fig. 2. 2D representations for selected methods over all data sets.
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Fig. 3. Performances for the three considered datasets.

4 Results and Discussion

Figure 2 shows the resultant embedding data using the corresponding kernels of
the studied methods, and the proposed generalized kernel for MKL. Comparing
resultant embedding representations with the RNX(K) curves shown in Figure 3,
we can appreciate that proposed MKL approach determines the best one among
the considered methods, since embedding data reached by MKL resemble to
the one of the best method. In this case, the best method is LE, which gets
more intelligible representation since either underling clusters are better formed
(see Figure 2(h)), or the manifold is better represented -resembling an object
unfolding (see Figures 2(g) and 2(i)).

Additionally, the generalized kernel used in a kernel PCA may improve the
quality of representation as can be appreciated from Figure 3. Indeed, the area
under the curve reached by our MKL is the highest for two of the tested data
sets. Particularly, for Swiss roll data set, our approach gets higher AUC than
the baseline LE but is not the highest one. Nonetheless, differently the other
considered methods, the RNX curve of proposed MKL approach has a right-
sided asymmetric plotting, which means that our approach is focused on specific
structures of data -in this case, the global structure.
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5 Conclusions and Future Work

In this work, a multiple kernel learning approach for dimensionality reduction
tasks is presented. The core of this approach is the generalized kernel that is
calculated by means of a linear combination of kernel matrices representing spec-
tral dimensionality reduction methods, where the coefficients are obtained from
a variable ranking based on a variance criterion. Proposed approach improves
both data visualization and preservation by exploiting the representation ability
of every single technique.

As future work, new multiple kernel learning approaches will be explored
by combining kernel representations arising from other dimensionality reduc-
tion methods, aimed at reaching a good trade-off between preservation of data
structure and intelligible data visualization.
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