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Abstract. We propose a Fast Marching based implementation for com-
puting sub-Riemanninan (SR) geodesics in the roto-translation group
SE(2), with a metric depending on a cost induced by the image data. The
key ingredient is a Riemannian approximation of the SR-metric. Then,
a state of the art Fast Marching solver that is able to deal with extreme
anisotropies is used to compute a SR-distance map as the solution of a
corresponding eikonal equation. Subsequent backtracking on the distance
map gives the geodesics. To validate the method, we consider the uni-
form cost case in which exact formulas for SR-geodesics are known and
we show remarkable accuracy of the numerically computed SR-spheres.
We also show a dramatic decrease in computational time with respect
to a previous PDE-based iterative approach. Regarding image analysis
applications, we show the potential of considering these data adaptive
geodesics for a fully automated retinal vessel tree segmentation.
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1 Introduction

In this article we study a curve optimization problem in the space of coupled
positions and orientations R

2×S1, which we identify with roto-translation group
SE(2). We aim to compute the shortest curve γ(t) = (x(t), y(t), θ(t)) ∈ SE(2)
that connects 2 points γ(0) = (x0, y0, θ0) and γ(L) = (x1, y1, θ1) with the restric-
tion that the curve is ”lifted” from a planar curve in the sense that the third
variable θ is given by θ(t) = arg(ẋ(t)+i ẏ(t)), see Fig. 1. This restriction imposes
a so-called sub-Riemannian (through the text we denote sub-Riemannian as SR)
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metric that constrains the tangent vectors to the curve to be contained in a sub-
space of the tangent space at every point. This subspace is a plane, which differs
from point to point, and is the set of all possible tangents to curves in SE(2) that
are lifted from smooth planar curves. A SR-metric is a degenerated Riemannian
metric in which one direction, the one perpendicular to the path in this case, is
prohibited (i.e. it has infinite cost). On top of the SR-metric, we also consider
a smooth external cost, which weights the metric tensor in every location and
allows for data-adaptivity.

Fig. 1. Left: the sub-Riemannian problem in SE(2) can be identified with that of
a car with two controls (giving gas and steering the wheel). Center: the paths are
“lifted” into curves in SE(2) = R

2×S1 with tangent vectors constrained to the plane
spanned by the vector fields X1 and X2 (eq. (1)) associated with the controls. Right:
the SR-spheres (for t = 2, 4 and 6) obtained via the FM-LBR method.

Essentially, the SR-problem in SE(2) is that of a car that can go forward,
backward and rotate (a so-called Reeds-Shepp car) so the possible states of the
car form a 3D manifold given by the position (x, y) and the orientation θ of the
car. Then, admissible trajectories of the car are parametrized by only 2 control
variables associated to the car moving along a straight line (giving gas) and to a
change of direction (turning the steering wheel). The fact that the car cannot step
aside infinitesimally imposes the SR-geometry. Finally, the curve optimization
problem is to find among all possible trajectories between two given states, the
one with minimal SR-length.

In image analysis the SR-geodesics in SE(2) have been proposed in [4] as
candidates for completion of occluded contours. Here, the geometrical structure
is used as a model for the functional architecture of the primary visual cortex.
This model has proven to be valuable in numerous applications [3–6], and it
becomes powerful when combined with the orientation score theory [6] that
allows for an invertible stable transformation between 2D images and functions
on the SE(2) group. The main advantage of considering this space of positions
and orientations is that intersecting curves are automatically disentangled, and
therefore the processing in the extended domain naturally deals with complex
structures such as crossing.

Sub-Riemannian geodesics in the uniform cost case (the same cost for all
the SE(2) elements) were studied by several authors (e.g. [5,12]). Recently, a
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wavefront propagation method for computing SR-geodesics that also deals with
the non-uniform cost case has been proposed in [1]. This method is an exten-
sion to the SR-case of a classical PDE-approach for computing cost-adaptive
geodesics used in computer vision, where the metric tensor is induced by the
image itself. The main idea is to consider propagation of equidistant surfaces
described by level sets of the viscosity solution of an eikonal equation, while
subsequent backtracking gives the geodesics. In order to solve the eikonal equa-
tion, the authors rely on a computationally expensive iterative approach based
on a left-invariant finite-difference discretization of the PDE combined with a
suitable upwind scheme.

Here, again in the spirit of computer vision methods, we aim to compute the
SR-distance map using a Fast Marching method [13]. This technique, closely
related to Dijkstra’s method for computing the shortest paths on networks,
allows for a significant speed up in the computation of the eikonal equation’s vis-
cosity solution. The main difficulty in our case is that classical solvers are unable
to deal with the extreme (degenerated) anisotropy of the SR-metric. Recently,
a modification of the Fast Marching method using lattice basis reduction (FM-
LBR) that solves this problem was introduced in [9] (code available at https://
github.com/Mirebeau/ITKFM). Then, the purpose of this paper is to show how
the SR-curve optimization problem can be numerically solved using the FM-
LBR method. The key aspects to consider are a Riemannian relaxation of the
SR-problem and expressing the resulting metric tensor as a matrix-induced Rie-
mannian metric in a fixed Cartesian frame. We develop these ideas in the Theory
section. Then, two experiments are presented. The first one considers the uni-
form cost case (C = 1) and shows that the FM-LBR based method presented
here outperforms the iterative implementation in [1] in terms of CPU time,
while keeping a similar accuracy. The advantages of considering data-adaptive
SR-geodesics for extracting blood vessels in retinal images are illustrated in the
second experiment.

2 Theory

Problem Formulation. Let g = (x, y, θ) be an element of SE(2) = R
2
�S1.

A natural moving frame of reference in SE(2) is described by the left-invariant
vector fields {X1,X2,X3} spanning the tangent space at each element g:

X1 = cos θ∂x + sin θ∂y, X2 = ∂θ, X3 = − sin θ∂x + cos θ∂y. (1)

The tangents γ̇(t) along curves γ(t) = (x(t), y(t), θ(t)) ∈ SE(2) can be written
as γ̇(t) =

∑3
i=1 ui(t) Xi|γ(t). Only the curves with u3 = 0 are liftings of planar

curves (see fig. 1). Then, the tangents to curves that are liftings of planar curves
are expressed as γ̇(t) = u1(t) X1|γ(t) + u2(t) X2|γ(t) and they span the so-called
distribution Δ = span {X1,X2}. Now, the triplet (SE(2),Δ,G0) defines a sub-
Riemannian manifold with inner product G0 given by:

G0(γ̇, γ̇) = C(γ)2
(
β2|ẋ cos θ+ẏ sin θ|2 + |θ̇|2

)
. (2)

https://github.com/Mirebeau/ITKFM
https://github.com/Mirebeau/ITKFM
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In view of the car example (see Fig. 1), the parameter β > 0 balances between
the cost of giving gas (the X1 direction) and the turning of the wheel (the X2

direction). A smooth function C : SE(2) → [δ, 1], δ > 0 is the given external cost.
In order to keep the notation sober during this paper, we do not indicate the
dependence of G0 on the cost C nor that it also depends on the curve γ. Note that
the subindex 0 in the metric tensor recalls the SR-structure imposed by allowing
null displacement in the X3 direction (i.e. infinite cost for the car to move aside).
This choice of notation will become clear later in the text. Now, optimal paths γ
of the car in our extended position orientation space are solutions of the problem:

W (g) = d0(g, e) = min

⎧
⎨

⎩

T∫

0

‖γ̇(t)‖0 dt

∣
∣
∣
∣
∣
∣

γ̇ ∈ Δ, γ(0) = e, γ(T ) = g, T ≥ 0

⎫
⎬

⎭
(3)

where e = (0, 0, 0) is the origin, where ‖γ̇(t)‖0 =
√

G0(γ̇(t), γ̇(t)) is the SR-norm
and d0 is the SR-distance on SE(2).

Riemannian Approximation. It is possible to obtain a Riemannian approxi-
mation of the SR-problem by expanding the metric tensor in eq. (2) to:

Gε(γ̇, γ̇) = G0(γ̇, γ̇) + ε−2C(γ)2β2|ẋ sin θ−ẏ cos θ|2, (4)

where ε determines the amount of anisotropy between X3 and Δ. This definition
bridges the SR-case, obtained at the limit ε ↓ 0, with the full Riemannian metric
tensor when ε = 1 (isotropic in the spatial directions X1 and X3). Actually, it
is easy to verify that if C = 1 and β = ε = 1, then G1(γ̇, γ̇) = |ẋ|2 + |ẏ|2 + |θ̇|2.
Also, by replacing G0 with Gε in eq. (3) we can construct a Riemannian norm
‖ · ‖ε and a distance dε satisfying lim

ε↓0
‖ · ‖ε = ‖ · ‖0 and lim

ε↓0
dε = d0.

Fig. 2. Each ellipsoid represents the Tissot’s indicatrix of the metric Gε at different
elements g ∈ SE(2) (for the case C(g)=1 and β=1). The parameter ε in eq. (4) bridges
the Riemannian case with the SR-one. When ε = 1 each direction has the same cost.
At the limit ε ↓ 0, the direction X3 has infinite cost and the distribution Δ appears.

Solution Via the Eikonal Equation. Now we can present the eikonal system
that solves the problem (3) by computing the distance map W (g) as proved in [1].
Following [4], let us introduce some differential operators that will simplify the
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notation of the remaining equations. Let U be a smooth function U : SE(2) → R.
The Riemannian gradient ∇ε, computed as the inverse of the metric tensor Gε

acting on the derivative, is given by:

∇εU := G−1
ε dU = C−2β−2(X1U)X1 + C−2(X2U)X2 + ε2C−2β−2(X3U)X3. (5)

Then, the norm of the gradient ∇ε is given by:

‖∇εU‖ε =
√

C−2β−2|X1U |2 + C−2|X2U |2 + ε2C−2β−2|X3U |2. (6)

Thus, the eikonal system that characterizes the propagation of equidistant sur-
faces reads as: {‖∇εW (g)‖ε = 1, if g �= e,

W (e) = 0. (7)

When ε ↓ 0 this system becomes the SR-eikonal system in [1, eq.3] where it was
proved that the unique viscosity solution is indeed the geodesic distance map
from the origin W (g) = dε(g, e). Then, SR-geodesics are the solutions γb(t) of
the following ODE system for backtracking:

{
γ̇b(t) = −∇ε(W (γb(t))), t ∈ [0, T ]
γb(0) = g.

(8)

The Metric Matrix-Representation in the Cartesian Frame. A symmet-
ric matrix Mε representing the anisotropic metric in the frame {∂x, ∂y, ∂θ} can
be obtained by a basis transformation from the varying frame {X1,X2,X3} (see
[4, Sec.2.6]):

Mε =

⎛

⎝
cos θ 0 − sin θ
sin θ 0 cos θ

0 1 0

⎞

⎠

⎛

⎝
C2β2 0 0

0 C2 0
0 0 ε−2C2β2

⎞

⎠

⎛

⎝
cos θ 0 − sin θ
sin θ 0 cos θ

0 1 0

⎞

⎠

T

. (9)

Here the diagonal matrix in the middle encodes the anisotropy between the Xi

directions while the other 2 rotation matrices are the basis transformation. Note
that the columns are the coordinates of the varying frame in the fixed frame,
e.g. X1 = cos θ∂x + sin θ∂y + 0∂θ. Then, the metric tensor can be written as
Gε(γ̇, γ̇) = γ̇(t)Mεγ̇(t) , with γ̇(t) = (ẋ(t), ẏ(t), θ̇(t)). Using this convention, the
eikonal system (7) in the fixed frame can be expressed as:

{∇T W (g)M−1
ε ∇W (g) = 1, if g �= e,

W (e) = 0, (10)

where ∇ = (∂x, ∂y, ∂θ)T is the usual Euclidean gradient. The same holds for the
backtracking equation (8) which writes:

{
γ̇b(t) = −M−1

ε ∇W (γb(t)), t ∈ [0, T ]
γb(0) = g.

(11)
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Note that when approaching the SR-case, the lim
ε↓0

Mε does not exist but the

lim
ε↓0

M−1
ε is well defined in Eq. (11).

Anisotropic Fast Marching. We can now immediately identify Eq. (10) with
[9, eq. 0.1] and then solve the eikonal system via the FM-LBR method. Our
empirical tests show that ε = 0.1, which gives an anisotropy ratio κ = 0.01 (see
[9, eq. 0.5]), is already a good approximation of the SR-case and is the value
used in the following experiments.

3 Experiments and Applications
Validation Via Comparison in Uniform Cost Case. The exact solutions
of the SR-geodesic problem for the case C = 1 are known (see [12] for optimal
synthesis of the problem). Therefore, and similar to what is done in [1], we
consider this case as our golden standard. Here, we want to compare both the
computational time and the accuracy achieved in the calculation of the discrete
SR-distance map W (g), which is the solution of the eikonal system (7) when
ε ↓ 0.

Let us set β = 1 and consider a grid Gs = {(xi, yj , θk) ∈ SE(2)} with uniform
step size s, where xi = is, yj = js, θk = ks, the indices i, j, k ∈ Z such that
|xi| ≤ 2π, |yj | ≤ 2π and −π+s ≤ θk ≤ π. Then we compute the discrete geodesic
distance map W (g) on Gs using the iterative method in [1] and the FM-LBR. In
order to measure the accuracy of the achieved solutions we follow the method
explained in detail in [1]. There, by solving the initial value problem from the
origin e, a set of arc length parametrized SR-geodesics is computed such that
SR-spheres of radius t are densely sampled. Then, the endpoints g = (x, y, θ) of
each geodesic is stored in a list together with its length t. Finally, we define the
max relative error as E∞(t) = max(|W (g) − t|/t) where the max is taken over
all the endpoints g and where the value of W (g) is obtained by bi-linearly inter-
polating the numerical solutions of eq. (7) computed on the grid Gs. The results
and comparisons are presented in Fig. 3. Here we solved the eikonal equation in
increasingly finer grids Gs obtained by setting the step size s = π/n, n ∈ N

+.
Note that the size of Gs is then (2n+1)(2n+1)(n−1). The graph in Fig. 3(left)
shows the comparison of the accuracy achieved in the computation of the SR-
sphere of radius t = 4 when n increases. The behaviour for SR-spheres of dif-
ferent radius is similar. The CPU time is compared in Fig. 3(center). The 3rd
plot illustrates the method for computing the accuracy. The orange surface is
the SR-sphere of radius t = 4 computed with the FM-LBR method on a grid
corresponding to n = 101. The points are the geodesic endpoints, their color
is proportional to the error of the FM-LBR (blue-low, green-medium, red-high
error). The first observation is that even though the iterative method is more
accurate, both methods seem to have the same order of convergence (the slope
in the log-log graphs) when the grid resolution increases. This seems reason-
able as both methods use first order approximations of the derivatives. Also, we
hypothesise that the offset in favour of the iterative method is due to the Rie-
mannian approximation of the SR-metric (i.e. selecting ε = 0.1), but this needs
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further investigation. The second key observation is that the CPU time increases
dramatically with n for the iterative method. Therefore, it is clear that we can
achieve the same accuracy using the FM-LBR but with much less computational
effort, which is of vital importance in the subsequent application.

Fig. 3. Validation via comparison in the uniform cost case. The experiment (illustrated
on the left, see the text) shows that even though the iterative method in [1] is more
accurate we can still achieve with the FM-LBR method better results and with less
CPU effort, just by increasing the grid sampling.

Fig. 4. Tracking of blood vessels in retinal images via cost adaptive SR-geodesics (see
experiment details in [1]). Left: the cost obtained from the image (orange indicates
locations with low cost). Center: Tracking in the full (ε = 1) Riemannian case. Right:
Tracking with the approximated (ε = 0.1) SR-geodesics.

Application to Retinal Vessel Tree Extraction. The analysis of the blood
vessels in images of the retina provides with early biomarkers of diseases such
as diabetes, glaucoma or hypertensive retinopathy [7]. For these studies, it is
important to track the structural vessel tree, a difficult task especially because
of the crossovers and bifurcations of the vessels. Some existing techniques [1,10]
rely on considering an extended (orientation and/or scale) domain to deal with
this issue. Moreover, in [1] promising results were obtained by formulating the
vessel extraction as a SR-curve optimization problem with external cost obtained
through some wavelet-like transformation of the 2D images. In the previous
experiment, we have shown that our proposed FM-LBR based implementation
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computes in practice the same geodesics as the iterative method in [1]. Therefore,
by simply replacing the eikonal equation solver in [1] we can obtain the same
results but with a dramatic decrease of the computational demands (both CPU
time and memory). The example in Fig. 4 shows the advantages of considering
the SR-metric in performing the vessel tree extraction. In this case (a patch of
size 200x200 with 64 orientations considered) the iterative method computed
the distance map in approximately 1 hour while the FM-LBR did the same in
20 seconds. For the experiments details we refer to [1], for more examples see
www.bmia.bmt.tue.nl/people/RDuits/Bekkersexp.zip.

4 Conclusions

Over the last decade, some authors [4–6] have shown the advantages of consider-
ing the roto-translation group embedded with a SR-geometry as a powerful, rich
tool in some image analysis related problems or for the geometrical modelling
of the visual perception. In our opinion, 2 obstacles have prevented this frame-
work to become more popular amongst engineers: the expensive computational
demands involved (resulting of considering the extended orientation space) and
the lack of efficient numerical methods able to deal with the extreme (degener-
ated) anisotropy imposed by the SR-metric. These obstacles are addressed by the
main contribution of this work, which is solving (up to our knowledge for the first
time) the SR-geodesic problem using a Fast Marching based implementation. To
be able to achieve this, we rely on the FM-LBR solver recently introduced in [9]
and show that even when relaxing the SR-restriction by a Riemannian approx-
imation of the metric we achieve excellent numerical convergence, but much
faster than with the approach in [1]. Regarding the retinal imaging application
our promising preliminary studies suggest that it is at least feasible to aim for
a full vessel tree segmentation as the solution of a single optimization prob-
lem, but this requires further investigation. Future work will pursue extension
of this method to the 3D-rototranslation group SE(3) and the applications in
neuroimaging and 3D-vessel segmentation.
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