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Bats in the Anthropogenic Matrix:
Challenges and Opportunities

for the Conservation of Chiroptera
and Their Ecosystem Services

in Agricultural Landscapes
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Abstract Intensification in land-use and farming practices has had largely nega-
tive effects on bats, leading to population declines and concomitant losses of eco-
system services. Current trends in land-use change suggest that agricultural areas
will further expand, while production systems may either experience further inten-
sification (particularly in developing nations) or become more environmentally
friendly (especially in Europe). In this chapter, we review the existing literature
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on how agricultural management affects the bat assemblages and the behavior of
individual bat species, as well as the literature on provision of ecosystem services
by bats (pest insect suppression and pollination) in agricultural systems. Bats show
highly variable responses to habitat conversion, with no significant change in spe-
cies richness or measures of activity or abundance. In contrast, intensification within
agricultural systems (i.e., increased agrochemical inputs, reduction of natural struc-
turing elements such as hedges, woods, and marshes) had more consistently nega-
tive effects on abundance and species richness. Agroforestry systems appear to
mitigate negative consequences of habitat conversion and intensification, often hav-
ing higher abundances and activity levels than natural areas. Across biomes, bats
play key roles in limiting populations of arthropods by consuming various agricul-
tural pests. In tropical areas, bats are key pollinators of several commercial fruit
species. However, these substantial benefits may go unrecognized by farmers, who
sometimes associate bats with ecosystem disservices such as crop raiding. Given
the importance of bats for global food production, future agricultural management
should focus on “wildlife-friendly” farming practices that allow more bats to exploit
and persist in the anthropogenic matrix so as to enhance provision of ecosystem ser-
vices. Pressing research topics include (1) a better understanding of how local-level
versus landscape-level management practices interact to structure bat assemblages,
(2) the effects of new pesticide classes and GM crops on bat populations, and
(3) how increased documentation and valuation of the ecosystem services provided
by bats could improve attitudes of producers toward their conservation.

6.1 Introduction

Agricultural areas cover approximately 40 % of our planet’s terrestrial ecosystems
(FAOSTAT 2011), with the 5 billion ha of land under farming and grazing now
surpassing the extent of the world’s forested areas (Robertson and Swinton 2005;
Power 2010). Agricultural areas are expected to continue to expand with increas-
ing human population growth and resultant resource use: Low- and middle-income
countries will experience a 100 % increase in demand for agricultural products by
2050 (Defries et al. 2010; FAO 2011). In the face of increasing pressure on natural
resources, the conservation of remaining natural areas is critical for the survival of
multitudes of species. However, the ubiquity of agriculture means that farmland
cannot be ignored in the context of landscape-level approaches to biodiversity con-
servation (Vandermeer and Perfecto 2007; Loos et al. 2014).

A growing body of research demonstrates that not only do some agricultural
systems harbor high levels of biodiversity and provide a variety of ecosystem ser-
vices (Tilman 1999; Foley et al. 2005; Tscharntke et al. 2005), but also that char-
acteristics of these agricultural systems may have profound effects upon remaining
natural areas (Perfecto and Vandermeer 2010). Agricultural matrices can vary
drastically in their quality and permeability, impacting dispersal rates, and hence,
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long-term population stability of organisms found in less disturbed areas (Ricketts
2001; Laurance 2008; Perfecto and Vandermeer 2010; Tscharntke et al. 2012). On
a local scale, different agricultural management approaches often coexist. Some
rely on varying chemical inputs (pesticides, fertilizer), or novel plant types (e.g.,
genetically modified crops incorporating genes for characteristics such as insecti-
cide functions), resulting in environmental contamination, pollution, and dissemi-
nation of toxins that could negatively impact biodiversity across multiple spatial
scales (Nelson et al. 2009; Power 2010). As a consequence, agricultural manage-
ment has effects not only on biodiversity, but also on human health and economies.

In the tropics, the expansion of export-oriented agriculture results from popula-
tion growth and shifts in consumption patterns of developing nations, and is car-
ried out mostly to the detriment of old growth forests and extensively managed
grasslands such as pastures (Defries et al. 2010; Lambin and Meyfroidt 2011). As
a consequence, croplands are still expanding dramatically, and agricultural prac-
tices are likely to further intensify in the near future (more chemical and mechani-
cal inputs, reliance on genetically modified plants with novel manufactured traits).
Short-term increases in yield will come at the cost of reduced structural and tax-
onomic diversity within agricultural systems (Loos et al. 2014) and concomitant
loss of crucial ecosystem services.

An additional factor affecting agriculture in the Anthropocene is climate change
and the need to adapt cultures to novel environmental conditions: Many areas may
become unsuitable for cultivation of their current dominant crops, while extreme
weather events may result in reduced yields. Resulting declines in calorie avail-
ability, particularly in the developing world (Nelson et al. 2009), will increase the
need for agricultural practices that meet both productivity and sustainability goals
(Tilman et al. 2002; McShane et al. 2011; Tscharntke et al. 2012). These trends
portend major shifts in land-use patterns (Lambin and Meyfroidt 2011) and hence
biodiversity, with agricultural intensification, forest and tree roost loss anticipated to
have particularly negative effects on bat species richness, abundance, and functional
diversity (Fischer et al. 2009, 2010; Jones et al. 2009).

These emerging trends pose major threats to farmland bat assemblages and
populations (Jones et al. 2009; Kunz et al. 2011) and could negatively impact
human populations by altering the ecosystem services that bats provide. Thus,
there is a critical need to assess how agricultural management affects bat popula-
tions, and how affected bat populations will in turn affect agricultural production.
In this chapter, we review the effects of agricultural land use and management on
bat assemblages and the behavior and ecology of individual bat species at field,
farm, and landscape scales (Vickery and Arlettaz 2012). We also review the
developing literature on ecosystem services—and disservices—provided by bats
in agricultural areas. Finally, we synthesize this information to suggest key man-
agement recommendations necessary to maintain bat populations in agricultural
landscapes and highlight critical knowledge gaps that must be resolved in order to
conserve bat diversity and ecosystem functions in a planet increasingly dominated
by food production.
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6.2 Methods

We used the Web of Knowledge, Google Scholar, and PubMed search engines to
locate publications with the keywords “bats” AND “agriculture,” “agroforestry,’
“farm,” and “farmland.” Given the potential importance of bats in provisioning
ecosystem services in agricultural areas, we also searched for “bats” AND “eco-
system services,” “pollination,” “pest consumption,” “pest control,” and “pest
limitation.” The majority of sources stemmed from peer-reviewed publications,
although we also included Master’s and Ph.D. theses and published reports if
results from the study in question were not available as journal articles. We also
inspected the bibliographies of relevant publications. Each co-author focused on
a specific geographic area (RA, assisted by Olivier Roth: Europe; BM: Australia
and tropical Asia; EO: temperate North America; PT: sub-Saharan Africa; KWG:
tropical Americas). Our searches were limited to publications with English lan-
guage text or summaries. We focused on agriculture and animal husbandry for the
production of calories for human or animal consumption, excluding forestry sys-
tems dedicated to timber or fiber production (see Law et al., Chap. 4), studies in
which fallows or abandoned fields were the only agricultural systems investigated,
as well as investigations that focused on fragmentation without explicit considera-
tion of the effect of agricultural matrix (see Meyer et al., Chap. 3).

We divided results from the literature search into two broad categories of inves-
tigations: (1) How agricultural practices affect bat assemblages, ecology, behav-
ior, and/or physiology; and (2) how bats affect agriculture through the provision
of ecosystem services such as pollination and pest suppression. Within the first
category, most studies addressed effects of land conversion and agricultural man-
agement on bat assemblage structure, abundance, activity levels, and behavior. We
further subdivided results to consider habitat conversion to agriculture and agricul-
tural intensification. We define agricultural intensification as consisting of at least
one of the following: decreased structural complexity of native vegetation (natural
and seminatural elements structuring the landscapes such as woodland patches and
hedges), increased application of agrochemicals (pesticides, fertilizer), increased
crop plant density, increased mechanization, or increased reliance on GM plants.
We reviewed results from searches to locate studies which contrasted aspects of
bat assemblage structure, abundance, activity, ranging behavior, or diet in either
natural and agricultural habitat, or different agricultural systems of contrasting
management.

To better quantify the responses of bats to habitat conversion and agricultural
intensification across multiple disparate studies, we conducted a meta-analysis.
We emphasize that this meta-analysis is based on correlational studies, rather than
from controlled experiments; because assignment of treatment locations is not ran-
domized in the majority of these studies, confounding factors could result in spuri-
ous effect sizes (Egger et al. 1998). We thus view our meta-analysis as a tool for
exploring trends across a diverse suite of studies, with limited conclusive power.

ELINNTS
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We reviewed studies for the inclusion of mean values for at least one response
variable in both natural and agricultural areas, or two or more agricultural areas
of differing intensification; 32 studies using mist netting, harp trapping, acoustic
monitoring, or a combination of these methods included appropriate data. We clas-
sify the response variable metrics into two separate categories for analyses, meas-
ures of species richness and measures of relative activity or abundance (i.e., pass
rates from acoustic monitoring or capture rates from mist netting). We also con-
sider habitat conversion and intensification responses separately.

For each pairwise comparison (natural-agricultural, or agricultural-agricul-
tural), we calculated the effect size as the log odds ratio of the mean value from
the lower intensity system divided by the mean from the higher intensity system.
Thus, a positive effect size indicates higher species richness or activity/abun-
dance in natural versus agricultural areas or lower intensity versus higher inten-
sity agriculture. We followed Garcia-Morales et al. (2013) and considered mean
effect sizes with 95 % confidence intervals that did not include O as indicative of a
significant effect. In the case of studies comparing multiple natural or agricultural
habitats or presenting means for multiple species or species groups (i.e., producing
multiple pairwise comparisons for any given combination of metric and response
type), we averaged the odds ratio to avoid pseudo replication. Due to the diverse
nature of the studies and a lack of clarity about numbers of replicates in some
studies, we did not weight studies by sample size or replicates. For our analysis,
we thus considered each study as an equally weighted case for the final model. We
conducted analyses in R Version 3.0.2 (R Development Core Team 2013) using the
packages Ime4 and ImerTest. This diverse set of studies includes different methods
(e.g., acoustic monitoring versus mist netting) from different regions with ecologi-
cally and taxonomically characteristic bat assemblages. To account for some of
this variation, we included study method and continent as random effects. Fixed
factors included latitudinal zone (temperate, subtropical, and tropical) and whether
or not the high-intensity system comprised an agroforestry system (including mon-
ocultural orchards).

We also located several studies on ecotoxicology and demography, focusing on
the effects of pesticide and GMOs use on bats. A complete review of the effects
of pesticides on bats is beyond the scope of this chapter, particularly since bats
and contaminants have received recent reviews (O’Shea and Johnston 2009; Bayat
et al. 2014). We therefore focus on studies that explicitly link bat agrochemical
exposure to changes in bat populations. Similarly, although fertilizers comprise
a large portion of the chemical inputs to agriculture, their impacts on bats are
indirect.

In considering the benefits of bats for agricultural production (i.e., crop yield),
we focus on the provision of two ecosystem services: agricultural pest limitation
by insectivorous bats and pollination by tropical bats. We did not consider their
role as seed dispersers since human management of farmland vegetation limits the
effect and value of bat seed dispersal. Similarly, although bat pollination is key
for the unmanaged reproduction of several economically important crops, such as
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Fig. 6.1 Locations of studies on effects of habitat conversion or agricultural intensification (red
diamonds) on bats, pesticide contamination (pink triangles) on bats, and ecosystem services
(green squares) provided by bats in agriculture

bananas and agaves (Kunz et al. 2011), we did not consider these particular crops
because they are mostly propagated vegetatively in such plantations. We instead
focus on crops that are almost exclusively reliant on bat pollination under standard
cultivation practices. Multiple investigations have characterized the diets of insec-
tivorous bats at the order level, claiming potential consumption of pest insects.
To more confidently assess consumption of insects damaging crops, we focused
on studies in which known (species level identity) or probable (family level iden-
tity) agricultural pests were identified from feces of bats foraging in farms or areas
dominated by agriculture. We exclude dietary studies that have sampled exclu-
sively from natural habitats or do not describe the agricultural systems within
which bats may have been foraging. We also briefly contrast these with ecosys-
tem disservices of bats in agricultural areas. Bats are associated with costs to agri-
culturalists, particularly in the subtropics and tropics where frugivorous bats raid
crops and sanguivorous bats attack domestic livestock. As with other sections, we
focus on direct impacts on productive systems and do not consider the impacts of
bat transmission of disease except where it directly impacts agriculture.

The majority of the nearly 140 investigations reviewed in this chapter have
been conducted in temperate North America and Europe (Fig. 6.1). The bulk of
studies documenting how habitat conversion or agricultural intensification affects
bats has been conducted in Europe and the Neotropics (Fig. 6.1, Table 6.1). Within
temperate zones, studies have focused mainly on annual cultivars and pasture,
while research in tropical areas is dominated by studies on agroforestry systems,
particularly coffee and cacao. Results on ecotoxicology of farmland bats come
primarily from North America. Studies demonstrating the consumption of agri-
cultural pests also derive primarily from North America, whereas studies of other
ecosystem services provided by bats are limited to the tropics.
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6.3 Effects of Agricultural Intensity on Bat Assemblage
Structure, Behavior, and Ecology

We found 70 studies addressing the effects of habitat conversion or manage-
ment on the assemblage structure, behavior, or ecology of bats. Fifty-two studies
assessed bats in both natural and agricultural areas. Twenty-two studies (42 %)
demonstrated negative effects of habitat conversion, twelve (23 %) showed varia-
ble responses (e.g., only some species or ensembles declined, different agricultural
systems were associated with different effects), twelve (23 %) showed increased
richness, activity, or abundance in agricultural areas, and six (12 %) showed lit-
tle or no difference between agricultural and natural areas. Forty-five studies
addressed some aspect of agricultural intensification, with 38 of these (84 %)
documenting a negative effect of intensification on bats, four showing variable or
neutral (9 %) responses, while three studies (7 %) documented increases in bat
richness, abundance, or activity in more intensive systems.

Response variables differ in response to habitat conversion and agricultural
intensification (Fig. 6.2, Table 6.2), with measures of species richness showing no
significant change between treatments. In contrast, measures of relative activity
and abundance show stronger responses (Fig. 6.2). Agroforestry systems are more
structurally similar to the original non-anthropogenic land uses, making them less
intensive than annual crops dominated by one plant species or pasture systems
lacking structural complexity. This relationship presumably explains why agricul-
tural systems that incorporate trees and other large woody perennials on farms and
throughout the agricultural landscape have little effect on bat activity and abun-
dance (Fig. 6.2). Agroforestry systems appear to mitigate negative effects on bat
assemblages in cases of both habitat conversion and agricultural intensification
(Table 6.2).

Several studies have considered the effects of agricultural management at
landscape scales versus focusing exclusively on farm-level management prac-
tices (Estrada et al. 1993; Ekman and de Jong 1996; Verboom and Huitema 1997;
Numa et al. 2005; Faria et al. 2006, 2007; Faria and Baumgarten 2007; Fuentes-
Montemayor et al. 2011; Boughey et al. 2011; Maas et al. 2013). Within agricul-
tural areas, bat activity increases with proximity to natural areas (Estrada et al.
1993; Verboom and Huitema 1997; Boughey et al. 2011) and in less fragmented
landscapes (Fuentes-Montemayor et al. 2011; Frey-Ehrenbold et al. 2013) or in
landscapes with more natural elements such as hedgerows and woodlots (Verboom
and Huitema 1997).

Agricultural areas also serve as matrix habitat connecting fragmented non-
anthropogenic habitats. Although one study has suggested that landscapes dom-
inated by crops and open fields have a stronger negative influence on bats than
water (Ekman and de Jong 1996), a recent analysis of bat responses to isolation on
islands versus in forest fragments embedded in agricultural matrix suggests that
the anthropogenic matrix is more permeable than water matrix (Mendenhall et al.
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Fig. 6.2 Mean effect size (log odds ratio, circles) £95 % CI of relative abundance and activ-
ity (left) and species richness (right) of habitat conversion versus agricultural intensification (top
row), and of contrasts (both habitat conversion and agricultural intensification) with and without
agroforestry systems (bottom row). Positive effect sizes indicate reductions in relative abundance
and activity or species richness in response to habitat conversion and intensification

2014). Thus, agricultural intensification at the landscape level should make the
matrix less permeable due to the reduction of natural resources and structural ele-
ments such as trees, affecting not only the persistence of bats in fragmented land-
scapes, but also the degree to which bat assemblages show a negative response
to agriculture. A few investigations have confirmed such interactions between
farm- and landscape-level intensification: Intensification in cacao matrices in
Brazil (Faria et al. 2006, 2007; Faria and Baumgarten 2007) and coffee matri-
ces in Colombia (Numa et al. 2005) resulted in reductions in the species richness
and abundance of bats in diverse shade agroforests relative to forest fragments. In
Europe, effects of landscape management on bat assemblage structure and ecol-
ogy in temperate landscapes dedicated to the production of annual crops remain
largely unexplored compared to the extensive information available at the field and
farm scales.
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Table 6.2 Effects of latitudinal zone and agroforestry systems on effect size (log odds ratio) for
two response variable types under habitat conversion and agricultural intensification

Response Land change Model AIC | ¥? P

variable type

Abundance/ | Habitat Effect 60.7

activity conversion size ~ (Method) + (Continent)
Effect size ~ Agroforestry + (Met | 49.7 |13.00 | <0.001
hod) + (Continent)
Effect size ~ Latitude + (Method) 62.0 |0.00 1.000
+ (Continent)
Effect size ~ Agroforestry + Latitu | 51.9 | 12.15 |<0.001
de + (Method) + (Continent)

Intensification | Effect 52.4

size ~ (Method) + (Continent)
Effect size ~ Agroforestry + (Met | 49.2 |5.22 |0.022
hod) + (Continent)
Effect size ~ Latitude + (Method) 53.6 | 0.00 1.000
+ (Continent)
Effect size ~ Agroforestry + Latitu | 50.6 |4.923 |0.026
de 4+ (Method) + (Continent)

Species Habitat Effect 20.7

richness conversion size ~ (Method) + (Continent)
Effect size ~ Agroforestry + (Meth | 21.7 [0.99 0.319
od) + (Continent)
Effect size ~ Latitude + (Method) 24.0 /0.00 | 1.000
+ (Continent)
Effect size ~ Agroforestry + Latitu | 24.1 | 1.82  |0.178
de + (Method) + (Continent)

Intensification | Effect 229

size ~ (Method) + (Continent)
Effect size ~ Agroforestry + (Meth | 24.4 | 0.54 | 0.460
od) + (Continent)
Effect size ~ Latitude + (Method) 263 |0.06 | 0.806
+ (Continent)
Effect size ~ Agroforestry + Latitu | 27.0 | 1.34  ]0.248
de + (Method) + (Continent)

Parentheses indicate random effects, and bold text indicates best fitting model based on AIC

value

6.4 Pesticide Impacts on Bat Populations

Agricultural intensification may remove potential habitat for bats and their
prey; the effects of increased agrochemical inputs, such as increased exposure
and changes in prey availability, may put resident bats under further pressure.
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Bats may directly consume pesticides by feeding on fruits, flowers, and arthro-
pods exposed to chemical application. Even bats foraging outside of agricul-
tural areas can be exposed to pesticides via biomagnification as residues are
incorporated into the tissues of organisms at higher trophic levels (Bayat et al.
2014).

Investigations of exposure of bats to pesticides and its effects on physiol-
ogy and mortality first appeared in the 1970s, amid a wave of growing concern
regarding the effects of organochlorine pesticides (e.g., DDT, DDE, dieldrin,
lindane, endosulfan, aldrin) on ecosystems and observations of declining bat
populations at high-profile sites such as the Carlsbad Caverns in New Mexico,
USA (Clark 1988, 2001). In some cases, DDT and other organochlorines were
even applied directly to bat roosts in efforts to exterminate “vermin” (Kunz
et al. 1977), and declines in high-profile bat colonies were linked to organochlo-
rine use (Clark et al. 1978; Clark 2001). Even sublethal exposure to pesticides
can have negative consequences for bats, resulting in increased metabolic rates
(Swanepoel et al. 1998), and ingestion of pesticide residues on arthropods may
poses a potential reproductive risk to certain bat species (Stahlschmidt and Briihl
2012).

Organochlorine residues have been documented in bats in a wide variety
of both agricultural and non-agricultural landscapes, although several stud-
ies have found increased contaminant loads in bats sampled near agricultural
areas (Clark and Prouty 1976; White and Krynitsky 1986) or near sites of pes-
ticide manufacture (O’Shea et al. 2001). In some cases, temporal changes in
levels of different contaminants reflect shifts in local agricultural practice as
farmers adopt new pesticide regimes (Miura et al. 1978; Clark et al. 1980).
Organochlorines are notorious for their persistence in ecosystems, and a vari-
ety of studies demonstrate that bats continue to harbor these contaminants
in their tissues 20-30 years after the use of these pesticides was banned in
sampling areas (Clawson and Clark 1989; Guillén et al. 1994; Schmidt et al.
2000; Sasse 2005). In some cases, persistence may reflect the continued use
of these pesticides in lower income nations, as may be the case for the migra-
tory Tadarida brasiliensis (Thies and Thies 1997; Bennett and Thies 2007).
Investigations in India (Senthilkumar et al. 2001) and Benin (Stechert et al.
2014) have detected levels or metabolites of organochlorines in bat samples
indicative of continued recent use in these regions, especially to fight against
malaria. Furthermore, pesticide standards vary between different countries,
application often appears to occur non-selectively, and farmers with limited
training (especially in developing countries, where agricultural expansion
is greatest) are likely to be unaware of the multitude of negative nontargeted
environmental impacts affecting human health and biodiversity (Tilman et al.
2001; Yadav 2010).

Despite the clear negative impacts of organochlorines on bats, the effects
of agrochemical classes such as pyrethroids and neonicotinoids remain largely
unknown (O’Shea and Johnston 2009; Quarles 2013; Bayat et al. 2014), although
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recent research demonstrates a negative impact on birds (Hallmann et al. 2014).
In North America, pesticide contamination has been implicated in bat mortality
associated with the fungal pathogen causing white-nose syndrome (WNS), since
pesticide load can lead to immunosuppression and endocrine disruption that could
make bats more vulnerable to infection (Kannan et al. 2010). “Back of the enve-
lope” calculations suggest declines in bat populations attributed to WNS could
translate into an additional 1320 metric tons of insects escaping predation each
year (Quarles 2013). The trickle-down impacts on agricultural production could
be substantial, although quantitative evidence is lacking. The effects of GM crops
incorporating insecticidal traits have been investigated largely in the context of
the provisioning of predation services (Federico et al. 2008; Lopez-Hoffman et al.
2014; see next section); however, declines in pest numbers associated with the use
of these crops could result in population declines of insectivorous bats (Lopez-
Hoffman et al. 2014).

6.5 Ecosystem Services Provided by Bats in Agricultural
Systems

6.5.1 Insectivorous Bats and Pest Limitation

Of the potential ecosystem services provided by bats, their role in consum-
ing insect pests has received the most attention within agricultural systems.
Insectivorous bats have a global distribution and have long been identified as
key suppressors of arthropod pests in agricultural systems (Kunz et al. 2011).
However, surprisingly little evidence exists quantifying the impact of their preda-
tion on arthropod populations, plant damage, or its economic value (Boyles et al.
2013; Maas et al. 2013). Several studies have characterized diets of insectivorous
bats (reviewed by Kunz et al. 2011), and the recent development of DNA-based
methods for dietary analysis provides an unprecedented amount of detail on the
composition of bat diets and allows for the identification of individual pest spe-
cies. Although few studies have documented direct impacts of bat predation on
agricultural pests, an increasing body of evidence documents pest consumption,
impacts on arthropods, and estimates of direct economic impacts.

We review 15 studies documenting the consumption of known or probable crop
pests by insectivorous bats (Table 6.3). The diets of temperate North American
insectivores have received particular attention. Many bat species consume lepi-
dopterans, and studies in North America demonstrate bat predation on devastating
pests such as corn earworm (Helicoverpa zea) and fall armyworm (Spodoptera fru-
giperda) moths (Lee and McCracken 2005; McCracken et al. 2012). Bat species
across the world feed on folivorous beetles from a variety of damaging families



6 Bats in the Anthropogenic Matrix: Challenges and Opportunities ...

169

Table 6.3 Dietary investigations of insectivorous bat in agricultural areas documenting con-
sumption of pest insect families or species

Study region

Source

Bat species

Crop

Pest insects
consumed

Africa (South
Africa)

Taylor et al.
(2012, 2013a)

Various species

Macadamia nuts

* Hemiptera:
Nezara viridula

Africa
(Swaziland)

Bohmann et al.
(2011)

Chaerephon
pumilus, Mops
condylurus

Sugarcane

* Hemiptera:
Aphidadae,
Lygaeidae,
Pentatomidae

* Lepidoptera:
Eldana saccha-
rina, Mythimna
phaea

Asia (Thailand)

Leelapaibul
et al. (2005)

Chaerephon
plicatus

Rice

* Hemiptera:
Sogatella sp.

Europe
(Switzerland)

Arlettaz and
Perrin (1995,
1997, 2001)

Myotis myotis,
M. blythii

Agricultural
landscape with
orchards, pasture

 Coleoptera:
Melolontha sp.

Latin America
(Mexico)

Williams-
Guillén (unpub-
lished data)

Various species

Shade coffee

* Coleoptera:
Hypothenemus
hampeii,
Rhabdopterus
Jjansoni

¢ Orthoptera:
Idiarthron
subquadratum

North America
(Canada)

Clare et al.
(2011)

Mpyotis lucifugus

Agricultural
landscape

* Coleoptera:
Phyllophaga spp.,
Amphimallon
majale,
Phyllobius
oblongus;
Curculionidae,
Chrysomelidae
* Diptera: Delia
antiqua

* Hemiptera:
Aphididae

* Lepidoptera:
Korscheltellus
lupulina

North America
(Canada)

Rambaldini and
Brigham (2011)

Antrozous
pallidus

Grapes

 Coleoptera:
Curculionidae,
Tenebrionidae
e Orthoptera:
Acrididae

North America
(USA)

Braun de Torrez
(2014)

Various species

Pecan

* Lepidoptera:
Acrobasis
nuxvorella

(continued)
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Study region

Source

Bat species

Crop

Pest insects
consumed

North America
(USA)

Lee and
McCracken
(2005)

Tadarida
brasiliensis

Landscape with
corn and cotton

* Coleoptera:
Scarabaeidae
* Hemiptera:
Cercopidae,
Delphacidae,
Pentatomidae
* Lepidoptera:
Spodoptera

frugiperda,

Helicoverpa zea

North America
(USA)

McCracken
etal. (2012)

Tadarida
brasiliensis

Corn, cotton

* [epidoptera:
Helicoverpa zea

North America
(USA)

Storm and
Whitaker (2008)

Eptesicus fuscus

Agricultural
landscape

* Coleoptera:
Curculionidae
* Hemiptera:
Cicadelidae

North America
(USA)

Whitaker (1995)

Eptesicus fuscus

Agricultural
landscape

* Coleoptera:
Curculionidae,

Scarabaeidae
* Hemiptera:

Cicadellidae,
Pentatomidae

and species, particularly weevils, leaf beetles, and scarab beetles. Bats may also be
underappreciated predators of hemipteran pests, with many studies demonstrating
consumption of leathoppers, froghoppers, spittle bugs, and stink bugs. We empha-
size that direct consumption alone is not sufficient to prove that bats are limiting
insect pests: Damaging insects may comprise a small proportion of the diet, and
nearly every study summarized in Table 6.3 also demonstrated consumption of the
predatory arthropods that comprise part of the assemblage of natural enemies. Such
intraguild predation could counteract the pest-limiting effects of bat insectivory
(Brashares et al. 2010), although herbivores generally comprise the majority of diet
by volume in investigations using fecal pellet dissections (Kunz et al. 2011). That the
relative abundance, diets, and movements of bats may track populations of agricul-
tural pests (Lee and McCracken 2005; McCracken et al. 2012; Taylor et al. 2013b)
suggests that many species are indeed preying heavily on herbivorous insects. This
has been assessed in mouse-eared bats, Myotis spp., that track cyclic, massive local
aggregations of cockchafers known since centuries for the damages they cause to
fruit trees in Central Europe (Arlettaz 1996; Arlettaz et al. 2001).

During lactation, small bat species consume 75 % to over 100 % of their
body weight each night (Kurta et al. 1989; Kunz et al. 1995, 2011), and a
single maternity colony of 1 million Brazilian free-tailed bats is capable of
consuming over 8 tons of insects per night (Kunz et al. 2011). These num-
bers suggest the staggering potential for bat predation to limit pest insect
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populations and provide a valuable ecosystem service for agricultural pro-
duction. Until recently, surprisingly little work had quantified the impact of
bat predation on insect biomass (Maas et al. 2015). Exclosure studies have
long been a mainstay for studying the impacts of bird predation; however,
it was widely assumed that such methods would not be suitable to measure
the impact of bat insectivory, due to the misconception that all insect eating
bats take highly mobile, flying prey. However, bats capable of gleaning insect
prey from substrates exist throughout the world, and their impacts could be
monitored via exclosure studies and disentangled from those of birds. This
approach has been used fruitfully in the past five years, demonstrating signifi-
cant increases in arthropod density when bats are absent, in agroecosystems
(Williams-Guillén et al. 2008; Maas et al. 2013), reforestation (Morrison and
Lindell 2012), and natural forests (Kalka et al. 2008). In Mexican polycul-
tural shade coffee, arthropod densities on coffee plants during the rainy sea-
son nearly doubled in the absence of bats, with marked increases in densities
of hoppers, katydids, cockroaches, and beetles (Williams-Guillén et al. 2008).
However, no effects on plant damage were observed in that study, perhaps as a
result of the short duration of the study or release of spiders and other arthro-
pod predators. In Indonesian shade cacao, excluding bats resulted in a 29 %
increase in arthropod numbers (Maas et al. 2013). Although herbivory did not
differ significantly between cacao plantations with different levels of shade or
proximities to primary habitats within the landscape, exclosure of bats resulted
in a significant decrease in yields, with the effects of bird and bat predation
together valued at an astonishing US $730 per ha and year (bat predation was
valued at US $520 per ha and year). However, the effects of bat predation on
crop pests are not universal: An exclosure study in Costa Rican coffee found
that excluding bats alone had virtually no effect on the density or damage
caused to beans by the devastating coffee berry borer (Karp et al. 2013).

Exclosure studies are not suitable to measure the impact of high-flying insecti-
vores, such as molossids. However, careful extrapolations taking into account bat
feeding rates, population sizes, pest reproduction, and survivorship, and the costs
of inputs allow for estimation of the economic impact of predation for other bats,
particularly molossids forming large colonies. Cleveland et al. (2006) estimate that
Mexican free-tailed bats (7. brasiliensis) feeding on the cotton bollworm moth
in Texas provide pest limitation services worth roughly US $183 per ha and year
to cotton growers. Extending these estimates to agricultural areas throughout the
USA suggests that bat predation could have a value of nearly US $23 billion annu-
ally (Boyles et al. 2011). These benefits hold for both conventional and transgenic
cotton (Federico et al. 2008), although the introduction of Bf cotton (a genetically
modified organism whose tissues produce an insecticide derived from the bacte-
rium Bacillus thuringiensis), coupled with reduced area in cotton cultivation, has
led to a decline in the overall value of this pest limitation service (Lopez-Hoffman
et al. 2014).



172 K. Williams-Guillén et al.

Valuation of bat-mediated pest suppression is limited for staple crops and for
sites outside the southern USA. In northern Mexico, the impact of 7. brasiliensis
predation on avoided agricultural costs across a variety of staple and commodity
crops was estimated at a far more modest $19 per ha and year (Gdndara Fierro
et al. 2006). In Thailand, the value of wrinkle-lipped bat (Tadarida plicata) preda-
tion on a major rice pest, the white-back planthopper (Sogatella furcifera), was
estimated to have a monetary value of $1.2 million annually (Wanger et al. 2014).
This estimate results in a seemingly paltry $0.13 per ha and year value considered
against Thailand’s 8.7 million ha (Redfern et al. 2012) of rice paddies, but in this
case an economic approach obscures the true value of the service: This single bat
species prevents the loss of nearly 2900 metric tons of rice per year, enough to
feed Thailand’s entire population of 66.8 million people for a week. Such inves-
tigations underscore the potentially grave consequences for human food security
should global bat populations continue declining (Kunz et al. 2011).

6.5.2 Nectarivorous Bats and Pollination Services

Pollination services to crops by bats are poorly documented. Bats are key pollina-
tors of wild Agave and Musa spp. (Kunz et al. 2011). Although these plants are
propagated vegetatively under cultivation, bat pollination plays a critical role in
sustaining genetic diversity in the wild relatives of these domestic species, a key
aspect of maintaining future food security (Hopkins and Maxted 2011). Within
the Americas, several bat pollinated cacti are commercially important fruit spe-
cies (Kunz et al. 2011). Several species of the hemiepiphytic cactus Hylocereus
(pitahaya, dragonfruit) endemic to the Neotropics are now cultivated worldwide.
In Mexico, visitation of Hylocereus undatus fruits by bats resulted in significantly
higher fruit set than did visitation by diurnal pollinators (Valiente-Banuet et al.
2007). Although H. undatus is self-compatible, other species such as H. costari-
censis (an important fruit crop in southern Mesoamerica) apparently rely on pol-
lination by bats and sphingid moths (Weiss et al. 1994; Le Bellec et al. 2006).
Nectarivorous bats, particularly the cave nectar bat (Eonycteris spelaea) feed on
the flowers of tree beans or petai (Parkia spp.) (Bumrungsri et al. 2008a, b, 2013)
and durian (Durio zibethinus) (Bumrungsri et al. 2008b), pollinating these plants
in the process. The economic value of this pollination has been estimated at over
US $13 million annually in three provinces of Thailand (Petchmunee 2008).
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6.6 The Issue of Ecosystem Disservices
of Bats to Agricultural Production

Unfortunately, while the ecosystem services provided by bats are largely invis-
ible, their disservices are obvious. In the Paleotropics, crop raiding by frugivo-
rous pteropodids can cause substantial losses of commercial fruits (see Aziz
et al., Chap. 12). For example, in Indian vineyards, Cynopterus sphinx damages
up to 90 % of the crop along peripheries of plantations and may cause revenue
losses of up to US $590 per ha and year (Srinivasulu and Srinivasulu 2002). In the
Neotropics, sanguivorous vampire bats can cause substantial economic damage:
Estimates for 1968 placed losses at $47.5 million USD for over 512,000 rabies-
related cattle deaths in Latin America (Arellano-Sota 1988). Harassment by vam-
pire bats can put cattle off their feed, resulting in annual weight losses estimated at
roughly 40 kg/head and milk production loss of 261 L/head (Schmidt and Badger
1979). These estimates fail to take into account the effects of vampire bats on the
medium and small domestic animals (e.g., chickens, pigs, goats) that provide criti-
cal sources of animal protein for millions of smallholder farmers across the region.

Not surprisingly, farmers with first-hand experiences of economic losses engen-
dered by bats are more likely to have negative attitudes or report a willingness to
destroy bat roosts (Reid 2013). Failure to explicitly address the negative impacts
of some bat species likely reduces the efficacy of conservation messages; mean-
while, practical measures to reduce these disservices could benefit multiple bat
species by reducing indiscriminate persecution. Different functional groups pro-
vide most of the ecosystem services (insectivores, nectarivores) and disservices
(frugivores, sanguivores). However, local farmers may not distinguish between
these groups. For example, farmers and agricultural technicians in Latin America
often attempt to cull vampire bat populations by destroying bat roosts; unfortu-
nately, the widespread belief that all bats are “vampiros” frequently results in the
destruction of colonies of beneficial bat species (Mayen 2003; Aguiar et al. 2010).
If local people perceive the ecosystem services of one bat group as offsetting the
damages of another, then an ecosystem service approach could provide a frame-
work for bat conservation more broadly. Unfortunately, the extent to which knowl-
edge of ecosystem services changes attitudes toward bats in developing countries
remains unknown.

6.7 Discussion

Our review suggests that in all biogeographic regions investigated, at least some
bat species persist in and exploit agricultural areas. In many agricultural systems
(e.g., tropical agroforestry or historical landscapes of Europe), bat assemblages
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maintain richness and may even exceed abundances observed in unmanaged
areas. Nevertheless, agricultural intensification has a generally negative effect on
bats and thus presumably on the ecosystem services they provide. Our analysis
did not address differences between bat taxa in their sensitivity to habitat change
and intensification. However, evidence from speciose assemblages suggests that
forest-adapted insectivorous species are particularly sensitive to habitat conversion
(Medellin et al. 2000; Faria and Baumgarten 2007; Williams-Guillén and Perfecto
2010), implying that in some regions, this valuable ecosystem service could be
particularly vulnerable to loss in the face of habitat loss.

Although few investigations have considered the scale of intensification, limited
information suggests that less managed systems embedded in regions dominated
by intensive agriculture may show depauperate bat faunas (Numa et al. 2005; Faria
et al. 2007). Declines in bat populations in agricultural regions are concerning not
only from the point of view of biodiversity conservation but also regarding human
well-being and food security, especially in many tropical areas where smallholder
farming systems are dominant. Ongoing losses of these generalist vertebrate preda-
tors could have major impacts on insect pest limitation for a wide variety of staple
and commodity crops. However, the smallholder farmers in developing nations who
most depend on the ecosystem services provided by bats (due to limited access to
manufactured inputs or cultivation of bat pollinated crops) may have highly nega-
tive attitudes toward these mammals as a result of visible damages caused to crops
and livestock (Lépez del Toro et al. 2009; Reid 2013), whereas beneficial impacts on
crop yield productivity and the value of biodiversity (i.e., increased ecosystem resil-
ience) are often unknown or unappreciated (Williams-Guillén, unpublished data).
These results suggest a pressing need to reassess common approaches to conserva-
tion and agricultural management in the Anthropocene.

6.7.1 Sparing, Sharing, and the Devaluation of
Manufactured Capital

Given the anticipated need to nearly double global food production in the
twenty-first century, a vigorous debate has emerged with respect to the most
viable path to increase production without degrading ecosystem services or
reducing biodiversity: land sparing, which posits that increased intensifica-
tion and yields will reduce pressure to convert non-agricultural lands, versus
land sharing, in which agricultural areas are less intensively farmed in order to
increase associated biodiversity and habitat permeability (Fischer et al. 2008).
Given the vagility and critical role of bats in agricultural production, land
sharing approaches might be preferable with respect to the provision of bat-
dependent ecosystem services. Many sensitive bat ensembles and species (e.g.,
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many forest-adapted and insectivorous species, e.g., from Phyllostomidae or
Vespertilionidae) will require well-structured farmland, i.e., cultivated land-
scapes including patches of natural and seminatural features for their long-
term existence. However, not only do many bat species thrive in diverse
agricultural landscapes, but also their loss could affect the provision of pest
suppression and pollination services and result in reduced crop productivity.
Given the many disadvantages of chemical control of pests, managing agri-
cultural landscapes to maximize the abundance and diversity of bats and other
natural enemies must form a key aspect of sustainable agricultural production.
However, the design and management of such systems to maximize bat diver-
sity, activity, and ecosystem services is largely unknown, although European
conservationists are at the forefront with their strategies to promote biodiver-
sity-friendly farming.

Chemical and mechanical inputs are not the only tools of agricultural intensi-
fication. Within recent decades, genetic modification of crops (e.g., Bt corn and
cotton) has become increasingly prevalent (James 2011). In the short term, adop-
tion of such varieties does reduce the need to rely on bats and other predators for
pest limitation (Lopez-Hoffman et al. 2014), resulting in a “devaluation” of the
natural capital provided by bats, and undermines arguments for bat conservation
that are based exclusively on provision of ecosystem services. However, as is the
case with pesticides, insects are rapidly evolving resistance to Bt crops across the
world, resulting in a rapid devaluation of manufactured capital (Lopez-Hoffman
et al. 2014). While the value of bats’ natural capital may fluctuate, it likely deval-
ues far less slowly: Bats and insects are engaged in an evolutionary arms race dat-
ing back millions of years (Conner and Corcoran 2012). Without bats to buffer
the inevitable loss of efficacy of chemical inputs and GM crops, the technological
advances that make agricultural intensification possible leave production vulner-
able to potentially catastrophic failures to limit pest damage.

6.8 Research Priorities

6.8.1 Filling in Biogeographical Knowledge Gaps

Although the effects of habitat conversion and management have been well inves-
tigated in Europe and the Neotropics, the extent to which these processes may
differ in other regions of the world remains unknown. We highlight a particular
lack of knowledge from Africa and Asia; we did not find any studies from East
Asia, although we suspect information exists in the Chinese language literature.
Understanding the types and magnitudes of ecosystem services provided by bats
in a variety of agricultural systems and regions is particularly important.
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6.8.2 Linking Farm Management, Ecosystem Services,
and Landscape-Level Processes

The effects of farm-level management on biodiversity and ecosystem services can-
not be adequately considered without taking account of landscape-level processes
(Tscharntke et al. 2005; Vickery and Arlettaz 2012). Nevertheless, the extent to
which local- and landscape-level management interact to shape pest suppression or
pollination services is largely uninvestigated. The effect of bats in limiting arthro-
pod pests in agricultural areas is still poorly documented. However, the limited
data that exist can demonstrate a vexing degree of divergence in results. For exam-
ple, bats in Mexican shade coffee have substantial effects on herbivorous insects
(Williams-Guillén et al. 2008), while bats in Costa Rican shade coffee had no sig-
nificant effect on herbivores (Karp et al. 2013). In Indonesian cacao agroforestry
systems, insectivorous bats strongly contribute to the suppression of many differ-
ent pest insect groups and crop yield productivity across gradients of local shade-
tree management and forest proximity within the agricultural landscape (Maas
et al. 2013). In general, the study sites differ in landscape structure and land use,
local farm history and management, habitat dynamics and conversion, intensity of
farming practices, and vertebrate insectivore assemblage structure. Elucidating the
factors of bat ecosystem service provision is key to managing agricultural areas to
sustain bat populations and enhance food production (Maas et al. 2015).

6.8.3 Pest Suppression in the Face of Climate Change,
Pesticides, and GM Crops

Not only will warming climates lead to shifts in the areas suitable for agricul-
tural production, but it will also likely lead to range expansions of tropical pests,
increases in pest numbers and damage, with a parallel risk of a drop in the effi-
cacy of pest suppression by natural enemies that might be negatively affected
by climate change (Thomson et al. 2010; Bebber et al. 2013). Such changes will
make the ecosystem services provided by generalist predators like insectivo-
rous bats more valuable than ever before. However, if agricultural adaptation to
climate change relies on landscape-level intensification as a strategy, bats are
likely to decline further, reducing their provision of pest suppression services.
Despite the myriad negative effects of pesticides (i.e., affecting livelihoods, food
security, environment, and health; reviewed by Yadav 2010), farmers across the
world might turn to agrochemicals as a first response to increases in pest damage
(Wilson and Tisdell 2001), with the Old World’s rapid development of more envi-
ronmentally friendly farming practices appearing as an exception in this general
move. As reviewed in this chapter, older pesticide classes such as organochlorines
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have particularly detrimental effects on bat populations. However, the degree to
which newer pesticide classes affect bats is largely unknown. The neonicotinoids,
once touted for their low toxicity, have now been linked to major declines in bees
(Van der Sluijs et al. 2013) and more recently in several species of passerines as
a result of insect resource depletion (Hallmann et al. 2014). The extent to which
use of next-generation pesticides and GM crops is driving and interacting with bat
declines and resultant increases in pest damage is a critical research area.

6.8.4 Quantifying Impact and Value Across Crops and
Biomes

Additional valuation of bats’ ecosystem services could provide both guidance
for bat management priorities in agricultural areas and compelling rationales
for conservation. However, valuation efforts have focused almost exclusively on
commodity crops quantified along the single dimension of monetary value. Most
of the world’s smallholder farmers focus on staple crop cultivation and may not
have the means to substitute the manufactured capital of pesticides and GM crops
for bat predation. As Wanger et al. (2014) demonstrate, valuation based on dol-
lars of damage prevented misses many of the criteria most important to subsist-
ence farmers seeking food security. There is an urgent need to better understand
the importance of bat ecosystem services across a variety of crop types, regions,
and management approaches. Research also highlights the importance of better
quantifying the fluctuations in bat service provision across years and seasons, in
relation to population fluctuations, reproductive phenology, and agricultural man-
agement (Lopez-Hoffman et al. 2014; Wanger et al. 2014; Maas et al. 2015). This
level of local, nuanced knowledge is key to managing pest suppression services in
such a way that they are actively used as alternatives to agrochemical inputs and
GM crops, and to contribute to more biodiversity-friendly and sustainable land-use
practices (Tilman et al. 2002; Maas et al. 2015).

6.8.5 Changing Attitudes and Behaviors Toward Bats
in the Developing World

Although the conservation of tropical biodiversity is highly beneficial to
global society (Rands et al. 2010), ultimately it is the attitudes and beliefs of
farmers and other rural populations that will determine its fate (Brechin et al.
2002; Tscharntke et al. 2012). Throughout the world, bats are subject to mis-
conceptions and poor public perceptions (see Kingston and Barlow, this vol-
ume Chap. 17). However, exposure to environmental education can significantly
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decrease negative attitudes toward bats (L6pez del Toro et al. 2009; Prokop et al.
2009; Reid 2013). These results suggest that reducing bat disservices, conduct-
ing environmental education, and building local valuation of beneficial bats
could work in concert to improve conservation outcomes. As much as there is a
critical need to manage agricultural landscapes to conserve bats, there is a paral-
lel need to understand the local drivers of attitudes toward bats and to develop
culturally appropriate, evidence-based interventions that encourage farmers to
sustainably manage bat populations and other biodiversity associated with eco-
system services and ecosystem resilience.
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