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Abstract. Access to high quality and recent data is crucial both for
decision makers in cities as well as for the public. Likewise, infrastruc-
ture providers could offer more tailored solutions to cities based on such
data. However, even though there are many data sets containing relevant
indicators about cities available as open data, it is cumbersome to inte-
grate and analyze them, since the collection is still a manual process and
the sources are not connected to each other upfront. Further, disjoint
indicators and cities across the available data sources lead to a large pro-
portion of missing values when integrating these sources. In this paper
we present a platform for collecting, integrating, and enriching open data
about cities in a reusable and comparable manner: we have integrated
various open data sources and present approaches for predicting missing
values, where we use standard regression methods in combination with
principal component analysis (PCA) to improve quality and amount of
predicted values. Since indicators and cities only have partial overlaps
across data sets, we particularly focus on predicting indicator values
across data sets, where we extend, adapt, and evaluate our prediction
model for this particular purpose: as a “side product” we learn ontology
mappings (simple equations and sub-properties) for pairs of indicators
from different data sets. Finally, we republish the integrated and pre-
dicted values as linked open data.

1 Introduction

Nowadays governments have large collections of data available for decision sup-
port. Public administrations use these data collections for backing their decisions
and policies, and to compare themselves to other cities, and likewise infrastruc-
ture providers like Siemens could offer more tailored solutions to cities based on
this data. Having access to high quality and current data is crucial to advance

Compared to an informal, preliminary version of this paper presented at the
Know@LOD 2015 workshop, Section 5, 6, and 8 are entirely new, plus more data
sources have been integrated.
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on these goals. Studies like the Green City Index [6] which assess and compare
the performance of cities are helpful, in particular for public awareness. However,
these documents are outdated soon after publication and reusing or analyzing
the evolution of their underlying data is difficult. To improve this situation, we
need regularly updated data stores which provide a consolidated, up-to-date view
on relevant open data sources for such studies.

Even though there are many relevant data sources which contain quantitative
indicators, e.g., population, about cities available as open data, it is still cumber-
some to collect, clean, integrate, and analyze data from these sources: obstacles
include different indicator specifications, different languages, formats, and units.
Example sources of city data include DBpedia or the Urban Audit data set
included in Eurostat; Urban Audit (http://ec.europa.eu/eurostat/web/cities/)
for example, provides over 250 indicators on several domains for 258 European
cities. Furthermore, several larger cities provide data on their own open data
portals, e.g., London, Berlin, or Vienna.1 Data is published in different formats
such as RDF, XML, CSV, XLS, or just as HTML tables. The specifications of
the individual data fields – (i) how indicators are defined and (ii) how they have
been collected – are often implicit in textual descriptions only and have to be
processed manually for understanding.

Moreover, data sources like Urban Audit cover many cities and indicators,
but show a large ratio of missing values in their data sets. The impact of missing
values is even aggravated when combining different data sets, since there is a fair
amount of disjoint cities and indicators across those data sets, which makes them
hard to integrate. Our assumption though – inspired also by works that suspect
the existence of quantitative models behind the working, growth, and scaling
of cities [1] – is that most indicators in such a scoped domain have their own
structure and dependencies, from which we can build prediction models:2 we
evaluate different standard regression methods to choose the best fitting model
to predict missing indicator values. We follow two approaches for computing such
predictions. The first approach is based on a selection of “relevant” indicators as
predictors for a target indicator. The second approach constructs the principal
components (PCs) of the “completed” data sets (missing values are replaced with
“neutral” values [21]), which are then used as predictors. We also compare both
approaches according to their performance, prediction accuracy, and coverage
(the number of possible predictions). We then extend the second approach for
cross data set prediction, in case of a large disjointness of indicators and cities.
Contributions and Structure. Our concrete contributions are:

– We analyze and integrate several data sets (DS) including DBpedia, Urban
Audit, USCCDB, and the UNSD Demographic and Social Statistics;

1 http://data.london.gov.uk/, http://daten.berlin.de/, and http://data.wien.gv.at/
2 We refer to “predicting” instead of “imputing” values when we mean finding suitable

approximation models to predict indicators values for cities and temporal contexts
where they are not (yet) available. These predictions may (not) be confirmed, if
additional data becomes available.

http://ec.europa.eu/eurostat/web/cities/
http://data.london.gov.uk/
http://daten.berlin.de/
http://data.wien.gv.at/


Collecting, Integrating, Enriching and Republishing Open City Data 59

– We provide a system architecture for an “City Data Pipeline” including a
crawler, wrappers, ontology-based integration, and data access components;

– We evaluate two prediction approaches for filling-in missing values, combin-
ing different standard regression methods and PCs to maximize prediction
accuracy;

– We develop an approach for cross DS prediction and discuss its performance;
– We present an approach for learning mappings of indicators between DS;
– We republish the integrated and predicated values as linked open data

(LOD).
Section 2 describes the imported data sources and the challenges arising
when processing/integrating their data. Section 3 presents an overview of the
Open City Data Pipeline and a lightweight extensible ontology used therein.
In Section 4 and 5 we explain the approaches developed for predicting missing
values as well as the corresponding evaluation of their performance. Section 6
presents our ontology mapping learning approach. Our LOD interface to repub-
lish the integrated and predicted data is documented in Section 7. In Section 8
we discuss the use of Semantic Technologies and the lessons learnt from our
application. Section 9 concludes with several possible future extensions.

2 Data Sources

The Open City Data Pipelines database contains data ranging from the years
1990 to 2014, but most of the data concerns years after 2000. Not every indicator
is covered over all years, where the highest overlap of indicators is between 2004
and 2011 (see Tables 1 and 2). Most European cities are contained in the Urban
Audit data set, but we also include the capital cities and cities with a population
over 100 000 from the U.N. Demographic Yearbook (UNYB).

Before integration, locations have varying names in different data sets (e.g.,
Wien vs. Vienna), a Uniform Resource Identifier (URI) for every city is essential
for the integration and enables to link the cities and indicators back to DBpedia
and other LOD data sets. We choose to have a one-to-one (functional) mapping
of every city from our namespace to the English DBpedia resource, which in
our republished data is encoded by sameAs relations. We identify the matching
DBpedia URIs for multilingual city names and apply basic entity recognition,
similar to Paulheim et al. [17], with three steps using the city’s names from
Urban Audit and UNYB:

– Accessing the DBpedia resource directly and following possible redirects;
– Using the Geonames API (http://api.geonames.org/) to identify the

resource;
– For the remaining cities, we manually looked up the URL on DBpedia.

http://api.geonames.org/
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Table 1. Urban Audit Data Set

Year(s) Cities Indicators Available Values Missing Values Missing Ratio (%)

1990 177 121 2 480 18 937 88.4
2000 477 156 10 347 64 065 85.0
2005 651 167 23 494 85 223 78.4
2010 905 202 90 490 92 320 50.5

2004 - 2012 943 215 531 146 1 293 559 70.9
All (1990 - 2012) 943 215 638 934 4 024 201 86.3

DBpedia. DBpedia, initially released in 2007, is an effort to extract structured
data from Wikipedia and publish the data as Linked Data [4]. For cities, DBpedia
provides various basic indicators such as demographic and geographic infor-
mation (e.g., population, latitude/longitude, elevation). The Open City Data
Pipeline extracts the URLs, weather data, and the population of a city. While
we only integrated a limited subset of indicators from DBpedia for now, we
plan to add other indicators like economic and spatial indicators in the future.
Since temporal validity of indicators is rarely documented, we assume them to
be current as accessed.
Urban Audit (UA). The Urban Audit collection started as an initiative to
assess the quality of life in European cities. It is conducted by the national sta-
tistical institutes and Eurostat. Currently, data collection takes place every three
years (last survey in November 2012) and is published via Eurostat (http://ec.
europa.eu/eurostat). All data is provided on a voluntary basis which leads to vary-
ing data availability and missing values in the collected data sets. Urban Audit
aims to provide an extensive look at the cities under investigation, since it
is a policy tool to the European Commission: “The projects’ ultimate goal
is to contribute towards the improvement of the quality of urban life” [15].
At the city level, Urban Audit contains over 250 indicators divided into the cat-
egories Demography, Social Aspects, Economic Aspects, and Civic Involvement.
Currently, we extract the data sets including the topics population structure, fer-
tility and mortality, living conditions and education, culture and tourism, labour
market, transport, and environment.
United Nations Statistics Division (UNSD). The UNSD offers data on
a wide range of topics such as education, environment, health, technology, and
tourism. Our main source is the UNSD Demographic and Social Statistics, which
is based on the data collected annually (since 1948) by questionnaires to national
statistical offices (http://unstats.un.org/unsd/demographic/). The UNSD data
marts consist of the following topics: population by age distribution, sex, and
housing; occupants of housing units/dwellings by broad types (e.g., size, lighting);
occupied housing units by different criteria (e.g., walls, waste). The collected
data has over 650 indicators, wherein we kept a set of course-grained indicators
and drop the most fine-grained indicator level, e.g., keeping housing units total
but dropping housing units 1 room. We prefer more coarse-grained indicators to
avoid large groups of similar indicators which are highly correlated. Fine-grained
indicators would only be interesting for LOD publication.

http://ec.europa.eu/eurostat
http://ec.europa.eu/eurostat
http://unstats.un.org/unsd/demographic/
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Table 2. United Nations Data Set

Year(s) Cities Indicators Available Values Missing Values Missing Ratio (%)

1990 7 3 10 11 52.4
2000 1 391 147 7 492 196 985 96.3
2005 1 048 142 3 654 145 162 97.5
2010 2 008 151 10 681 292 527 96.5

2004 - 2012 2 733 154 44 944 3 322 112 98.7
All (1990 - 2012) 4 319 154 69 772 14 563 000 99.5

U.S. Census. The County and City Data Book 2007 (USCCDB) of U.S. Census
Bureau [26] offers two data sets concerning U.S. statistics; Table C-1 to C-6
of [26] cover the topics Area and Population, Crime, Civilian Labor Force for
cities larger than 20 000 inhabitants; Table D-1 to D-6 of [26] cover Population,
Education, Income and Poverty for locations with 100 000 inhabitants and more.
Initially, we have integrated the data sets from Table C-1 to C-3 , which are
the only sources including data points for several years, namely 1990, 2000, and
2005. Contrary to the UN and UA data sets, the USCCDB has a low ratio of
missing values ranging from 0% to 5% for a total of 1267 cities. The data set
contains 21 indicators, e.g., population, crime, and unemployment rate.
Future Data Sources. At the point of writing, the data sources are strongly
focused on European cities and demographic data. Hence, we aim to integrate
further national and international data sources. The Carbon Disclosure Project
(CDP) is an organization based in the UK aiming at “[...] using the power of mea-
surement and information disclosure to improve the management of environmen-
tal risk” (https://www.cdp.net/en-US/Pages/About-Us.aspx). The CDP cities
project has data collected on more than 200 cities worldwide. CDP cities offers
a reporting platform for city governments using an online questionnaire covering
climate-related areas like Emissions, Governance, and Climate risks. Single city
open data portals (e.g., New York, Vienna) could be added and integrated. This
is surely a large effort by its own, since our crawling and mapping components
would have to be extended to deal with heterogeneity of every cities’ portal.

3 System Architecture

The Open City Data Pipeline collects data, organizes it into indicators, and
shows these indicators to the user. This section introduces the system which is
organized in several layers (see Figure 1): crawler, wrapper components, seman-
tic integration, data storage, analytics, and external interfaces (user interface,
SPARQL endpoint, and LOD).
Crawler. The Open City Data Pipeline semi-automatically collects data from
various registered open data sources periodically dependent on the specific source.
The crawler currently collects data from 32 different sources. Due to a high
heterogeneity in the source data, adding new data sources is still a manual
process, where the source-specific mapping of the data to RDF has to be provided

https://www.cdp.net/en-US/Pages/About-Us.aspx
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Fig. 1. City Data Pipeline architecture showing components for crawling wrapping,
cleaning, integrating, and presenting information

by scripts. However, a more automated mapping process of new sources is an
appealing extension for future work.
Wrapper Components. As a first step of data integration, a set of custom
wrapper components parses the downloaded data and converts it to source-
specific RDF. The set of wrapper components include a CSV wrapper for parsing
and cleaning, a wrapper for extracting HTML tables, a wrapper for extracting
tables of RTF documents, a wrapper for Excel sheets, and a wrapper for cleaning
RDF data as well. All of these wrappers are customizable to cater for diverse
source-specific issues. These wrappers convert the data to RDF and preprocess
the data before integrating the data with the existing triple store. Preprocessing
contains data cleansing tasks, i.e., unit conversions, number and data formatting,
string encoding, and filtering invalid data (see [20]).
Semantic Integration (Ontology). To access a single indicator such as the
population number, which is provided by several data sources, the semantic inte-
gration component unifies the vocabulary of the different data sources through
an ontology (see Figure 2). The semantic integration component is partly imple-
mented in the individual wrappers and partly by an RDFS [5] ontology (extended
with capabilities for reasoning over numbers by using equations [2]) called City
Data Model (see http://citydata.wu.ac.at/ns#). The ontology covers several
aspects: spatial context (country, region, city, district), temporal context (valid-

http://citydata.wu.ac.at/ns#
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Fig. 2. Excerpt of the City Data Model ontology

ity, date retrieved), provenance (data source), terms of usage (license), and an
extensible list of indicators.

Indicator is the super-property of all the indicator properties mapping City-
DataContexts to actual values. Each Indicator of the ontology contains, a name,
description, a unit of measurement, a data type, and is grouped into one of the
following categories: (a) Demography, (b) Social Aspects, (c) Economic Aspects,
(d) Training and Education, (e) Environment, (f) Travel and Transport, (g) Cul-
ture and Recreation, and (h) Geography. To integrate the source-specific indica-
tors the ontology maps data-source-specific RDF properties to City Data Model
properties, e.g., it maps dbpedia:population to citydata:population by an RDFS
subPropertyOf property. A CityDataContext is an anchor connecting a set of data
points to a spatial context, a temporal context, and a data source. When import-
ing an input CSV file containing the indicators as columns and the cities as rows,
each row corresponds to (at least) one CityDataContext. The SpatialContext class
collects all resources with spatial dimension: country, province, region, city, and
district. Furthermore entities of different granularity can be connected by the
property locatedIn. The dateValidity property maps a CityDataContext to a point in
time where the values are valid. Additionally the property periodValidity can indi-
cate what the validity period is (possible values are biannual, annual, quarterly,
monthly, weekly, daily, hourly or irregular). Whereas the dateRetrieved property
records the date and time of the data set download. The source property links
a CityDataContext to its data source.
Data Storage, Analytics, UI and LOD. To store the processed data we use
Jena TDB as a triple store for RDF data. Subsequent subsystems can access the
RDF data via a SPARQL interface (http://citydata.wu.ac.at/). The SPARQL
engine provides RDFS reasoning support by query rewriting (including reasoning
over numbers [2]).

The analytics layer includes tools to fill-in missing values by using statistical
regression methods. Section 4 describes the missing value prediction in detail.
The results are also stored in the RDF triple store and the SPARQL engine
provides access to them. Section 7 explains the frontend, user interface, SPARQL
endpoint, and publishing data as LOD. Bischof et al. [3] describe the system
components in more detail.

http://citydata.wu.ac.at/
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4 Prediction of Missing Values

After integrating the different sources, we discovered a large number of missing
values in our data sets. We identified two reasons for that:

– As shown in Table 1 and 2, we can observe a large ratio of missing values
due to incomplete data published by the data providers;

– More severely, when we combine the different data sets even more missing
values are introduced, since there is a fair amount of disjoint cities and
indicators.

Base Methods. Our assumption is that every indicator has its own distribu-
tion (e.g., normal, Poisson) and relationship to other indicators. Hence, we aim
to evaluate different regression methods and choose the best fitting model to
predict the missing values. We measure the prediction accuracy by comparing
the normalized root mean squared error in % (RMSE%) [29] of every regression
method. In the field of Data Mining [29,10] (DM) various regression methods for
prediction were developed. We chose the following three “standard” methods for
our evaluation due to their robustness and general performance.

K-Nearest-Neighbour Regression (KNN), models denoted as MKNN , is a
wide-spread DM technique based on using a distance function to partition the
instance space. As stated in [10], the algorithm is simple, easily understandable
and reasonably scalable. KNN can be used in variants for clustering as well as
regression.

Multiple Linear Regression (MLR), models denoted as MMLR, has the goal
to find a linear relationship between a target and several predictor variables. The
linear relationship can be expressed as a regression line through the data points.
The most common approach is ordinary least squares to measure and minimize
the cumulated distances [10].

Random Forest Decision Trees (RFD), models denoted as MRFD, involve
the top-down segmentation of the data into multiple smaller regions represented
by a tree with decision and leaf nodes. A random forest is generated by a large
number of trees, which are built according to a random selection of attributes
at each node. We use the algorithm introduced by Breiman [24].
Preprocessing. The preprocessing starts with the extraction of the base data
set from our RDF triple store. We use SPARQL queries with the fixed period
of 2004–2011 and produce an initial data set as a matrix with tuples of the
form 〈City, Indicator, Year, Value〉. Based on the initial matrix, we perform
the preprocessing as follows:

– Removing boolean and nominal columns, as well as all weather related data
and sub-indicators in the U.N. data set, e.g., housing units with 2 rooms;

– Merging the dimensions year/city, resulting in 〈City Year, Indicator,
Value〉;
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– Transposing the initial matrix by moving the indicators into the
columns, resulting in tuples of the form 〈City Year, Indicator1Value, . . . ,
IndicatornValue〉;

– Deleting columns/rows which have a missing values ratio larger than 90%.

Our initial data set from UA, UN, and DBpedia contains 3 399 cities with 370
indicators. By merging city and year and transposing the matrix we create 13 482
city/year rows. And after deleting the cities/indicators with a missing values
ratio larger than 90%, we have the final matrix of 4 438 rows (city/year) with
207 columns (indicators).
Approach 1 - Building Complete Subsets. In the first approach, we try to
build models for a target indicator by directly using the available indicators as
predictors. For this, we are using the correlation matrix of the data to find indi-
cators which are suitable predictors. Subsequently, we build a complete subset
from our data, i.e., we first perform a projection on our data table, keeping only
the predictors and the specific target as columns. More detailed, our approach
has the following steps on the initial data set, the matrix A1 and a fixed number
of predictors n (we test this approach on different n′s):

1. Select the target indicator IT ;
2. Calculate the correlation matrix AC of A1 between IT and the remaining

indicators;
3. Create the submatrix A2 of A1 with IT and the n “best” indicators (called

the predictors). The predictors are selected according to the highest absolute
correlation coefficients in AC ;

4. Create the complete matrix A3 by deleting all rows in A2 with missing values;
5. Apply stratified tenfold cross-validation (see [29]) on A3 to get ten training-

and test sets. Then, train the models MKNN , MMLR, and MRFD using the
training sets. Finally, calculate the mean of the ten RMSE% based on the
test set for each model and choose the best performing model MBest

6. Use the method for MBest to build a new model on A2 for predicting the
missing values of IT .

The performance of the regression methods were evaluated for 2 to 10 predictors.
Two regression methods have their best RMSE% with 10 indicators: 0.27% for
KNN and 2.57% for MLR. Whereas RFD has the best RMSE% of 4.12% with
8 indicators. Figure 3a gives an overview of the results. By picking the best
performing regression for every indicator (red line) the median RMSE% can be
reduced only slightly. For 10 predictors the median RMSE% improves to 0.25%
over KNN with 0.27%. Depending on n, we fill-in between 122 056 for 10 and
296 069 values for 2 predictors. For a single city and 10 predictors, the number
of predicted values range from 7 to 1 770. The limited number of filled-in values
is due to the restriction of using the complete matrix for the regression methods.



66 S. Bischof et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2  4  6  8  10

R
M
S

E
 %

Predictors

Knn

Rforest

Linreg

Best

(a) Approach 1 (Building Complete Subsets)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10  20  30  40  50  60  70  80

Predictors

Knn

Rforest

Linreg

Best

(b) Approach 2 (PC Regression)

Fig. 3. Prediction results

Approach 2 - Principal Component Regression. In the second approach,
we omit the direct use of indicators as predictors. Instead, we first perform a
Principal Component Analysis (PCA) to reduce the number of dimensions of
the data set and use the new compressed dimensions, called principal compo-
nents (PCs) as predictors. As stated in [10], the PCA is a common technique
for finding patterns in data of high dimensions. Parts of the evaluation is similar
to Approach 1, but we have an additional step where we impute all the missing
values with neutral values for the PCA. The neutral values are created according
to the regularized iterative PCA algorithm described in [21]. This step is needed
to perform the PCA on the entire data set. The following steps are evaluated
having an initial data set A1 as a matrix and a predefined number of predictors
n (we test this approach also on different n′s):

1. Select the target indicator IT ;
2. Impute the missing values in A1 using the regularized iterative PCA algo-

rithm resulting in matrix A2 and remove the column with IT ;
3. Perform the PCA on A2 resulting in matrix A3 of a maximum of 80 PCs;
4. Append the column of IT to A3 creating A4 and calculate the correlation

matrix AC of A4 between IT and the PCs;
5. Create the submatrix A5 of A4 on the selection of the PCs with the highest

absolute correlation coefficients and limit them by n;
6. Create submatrix A6 of A5 for validation by deleting rows with missing

values for IT ;
7. Apply stratified tenfold cross-validation on A6 with the Step 5 from App-

roach 1, which results in the best performing model MBest;
8. Use the method for MBest to build a new model on A5 (not A6) for predicting

the missing values of IT .

Figure 3b shows the median RMSE% for KNN, RFD, MLR, and the best method
with an increasing number of predictors. For 80 predictors MLR performs best
with a median RMSE% of 1.36%, where KNN (resp. RFD) has a median RMSE%
of 4.50% (resp. 5.62%). MLR improves steady up to 80 predictors. KNN provides
good results for a lower number of predictors, but starts flattening with 20
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predictors. An increasing number of k could improve the result though. The red
line in Figure 3b shows the median RMSE% with the best regression method
chosen. Up to 60 predictors, the overall results improves by selecting the best
performing method (for each indicator). The best median RMSE% of 1.36% is
reached with 80 predictors. For this, MLR is predominant but still 14 out of 207
indicators are predicted by KNN.

As mentioned, we have two quality measurements to evaluate our approaches.
First, it is important to build models which are able to predict many (preferably
all) missing values. Second, the prediction accuracy of the models is essential,
so that the Open City Data Pipeline can fulfill its purpose of publishing high-
quality, accurate data and predictions. Prediction accuracy is higher in Approach
1 than 2 (for 4 to 10 predictors), which we relate to the reduced size of the data
set. However in Approach 1, we fill-in at the maximum 296 069 values with 2
predictors (median RMSE% of 2.09%), which is about 66% of Approach 2. Due
to the reduced number of predictions, we will apply Approach 2 for publishing
the filled-in missing values.

5 Cross Data Set Prediction

UA

UA -

UN

UN -

Indicators

Cites

Cites

I T1

IT2

V
1 V

2

Fig. 4. Predicting IT1 (resp. IT2) from the
UN (resp. UA) data set

Our initial overall matrix has 13 482
city/year rows and 369 columns,
which are reduced after deleting all
with a missing values ratio of 90%
to the matrix of 4 438 rows and 207
columns. Cross Data Set Predictions
(CDP) aims to fill the gap of the
162 columns mainly caused by the
disjointness of indicators/cities in the
data sets (e.g., UN and UA). As seen
in Figure 4, there are two areas which
are not covered, the first is the UA
cities for the UN indicators and the
second is the UN cities for the UA
indicators. The success of the CDP
approach depends on one data set,
which has a reasonable amount of
overlapping cities with the other data sets. At the time of writing the UN data
set seems the most promising covering cities of the whole world.

For CDP, we always select one data set (e.g., UN), called the source data
set S, and predict into another data set (e.g., UA), called the target data set T ,
denoted as S → T . We evaluate again the different base regression methods and
choose the best fitting model for prediction. The preprocessing is altered so we
only delete columns and rows which are entirely empty. Since Approach 1 needs
a complete matrix, we only consider Approach 2 and modify it accordingly. We
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Fig. 5. Cross data set prediction results

start in the CDP approach with the initial source and target data sets AS and
AT . The following steps are evaluated for a different number of predictors n:

1. Select the target indicator IT from T ;
2. Impute the missing values in AS using the regularized iterative PCA algo-

rithm resulting in matrix AS2 ;
3. Perform the PCA on AS2 resulting in matrix AS3 of a maximum of 40 PCs;
4. Append the column IT to AS3 creating AS4 and calculate the correlation

matrix ASC
between IT and the PCs;

5. Create the submatrix AS5 of AS4 on the selection of the PCs with the highest
absolute correlation coefficients and limit them by n;

6. Create validation submatrix AS6 of AS5 by deleting rows with missing values
for IT ;

7. Apply stratified fivefold cross-validation on AS6 similar to Step 7 from App-
roach 2, which results in the best performing model MBest;3

8. Use the method for MBest to build a model on AS5 to predict missing values
of IT .

Note that the validation of Step 7 is performed on the set V1 or V2 of cities
overlapping S and T . We ignore a target indicator if the set is empty, since
we can not determine the quality of our prediction. The amount of overlapping
cities with values ranging for T as UA (resp. T as UN) from 16 (resp. 11) to 1194
(resp. 1429) with an average of 445 (resp. 88) cities. We performed the CDP from
UN → UA and the results are shown in Figure 5a. RFD performs best for with
a median RMSE% of 13.76% for 12 predictors. The median RMSE% of MBest

is 13.08% with 12 predictors and always very close to the RFD results. With
more than 12 predictors, the result does not improve anymore. The population
related indicators are predicted best (e.g., Population male has a RMSE% of
4.86%), weather related indicators are worst (e.g., Total hours of sunshine per
day has a RMSE% of 1176.36%). The reason lies within in the UN source data

3 Cross-validation is reduced from ten- to fivefold, so the test set is large enough.
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set, where three indicators population, population female, and population male
are predominant. For the UA → UN predictions, shown in Figure 5b, the results
are best with a median RMSE% of 15.40% with 6 predictors. More predictors do
not improve the result, whereas MLR performs best overall. The most frequent
indicators, again population, are reasonable predicted, whereas most of the other
UN indicators can not be proper validated due to the low number of overlapping
cities (avg. of 88). If we apply the threshold RMSE% of 7% for publishing the
predicted values, we are able to predict for UN → UA: 34 out of 210 indicators;
and for UA → UN: 2 out of 142 indicators. The results for UN → UA are
satisfying, since we are able to predict 34 UA indicators for UN cities, the picture
is dimmer for UA → UN, where only a few indicators are below our threshold.

6 Learning Ontology Mappings from Indicator Values

So far we used regression methods to predict missing values over the whole
integrated data set as well as across different source data sets. But regression
can also be a means to learn ontology axioms to express dependencies between
pairs of indicators from different data sources. By exploiting these dependencies
a reasoner can give more complete answers without materializing a potentially
large number of new values beforehand.

The models expressing these dependencies should be intuitive, i.e., compre-
hensible by a domain expert, and should allow derivation of new values. We focus
on pairs of indicators to cover several cases: (1) the same indicator, (2) the same
indicator with different units (for example area in km2 in mile2), (3) somewhat
normalized indicators. Since we are interested in simple models and numerical
data, we model the dependencies by linear equations containing two indicators
from two different sources. Furthermore some data sources (UA) already pub-
lish the equations used to compute some of their indicators such as population
density. Because of high dependencies of indicators within a data set we only
consider pairs of indicators from different data sets.

As a special case we consider pairs of equivalent indicators, e.g., many data
sets have an indicator for population. We could model this dependency as simple
equation p1 = p2 but ontology languages already provide axioms to express the
equivalence of two properties which in turn any standard Semantic Web reasoner
can use to get more complete data. OWL 2 provides the EquivalentDataProperties
axiom, while RDFS allows modeling equivalent properties by a pair of symmetric
subPropertyOf axioms.

We use linear regression to compute the dependencies. In general linear regres-
sion estimates the intercept a and the slope b for a linear equation y = a + bx
where x is the independent variable (predictor indicator) and y the dependent
variable (response indicator). Thus it tries to fit a line to the data with as little
error as possible. A popular error measure is least-squares which is known to
suffer heavily from outliers [29] which is also the case for our data set. Thus
we perform a robust regression, which is computationally more expensive but
handles both horizontal and vertical outliers better. We use the R function rlm
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of the MASS library which implements robust regression by iterated re-weighted
least squares and Huber weights [27]. Applying robust regression to all pairs of
indicators from UN and Urban Audit results theoretically in 214 × 148 linear
models. Many pairs of indicators have no complete observations, i.e., cities with
values for both indicators, for which regression can not be applied.

For the ontology we want to keep only those linear models for which the pair
of indicators has a strong dependency. We first filter out all dependencies which
have less than 100 complete observations. Next we compute a correlation matrix
of all indicator pairs to quantify the indicator dependency. Since the standard
Pearson correlation assumes a normal distribution, which the indicators not nec-
essarily follow, we use the non-parametric Kendall rank correlation coefficient τ
implemented in the R function cor [19], instead. We filter out all models with a
correlation less than 0.7.

For finding equivalent properties we perform a second linear regression with-
out an intercept, i.e., forcing the linear model through the origin. As before we
filter out linear models with low correlation or insufficient complete observations.
If the slope of this second linear model is 1±0.01, then we consider the indicator
pair as equivalent.

When performing this approach on the UN and UA data sets we get 98 linear
equations, 4 of which indicate equivalent indicator pairs published in our ontol-
ogy. Neither OWL nor RDFS provide a means to express linear equations except
property equivalences (represented as sketched above). Thus, for the remaining
linearly dependent indicator pairs we use the notation as in previous work [2] to
express the respective mappings in our ontology. Further the ontology contains
the number of complete observations and the correlation for each new axiom as
annotations. Detecting more complex relationships between a set of indicators
from one datasource and a single indicator from a second dataset (which would
be expressible as equations using the notation of [2]) is on our agenda.

7 Publishing as Linked Data

Linked Open Data. The resources (cities) and properties in the City Data
namespace (http://citydata.wu.ac.at/) are published according to the Linked
Data principles. The ontology (as described in Section 3), contains all City
Data property and class descriptions. Each city is assigned a dereferencable
URI, e.g., http://citydata.wu.ac.at/resource/Ljubljana for the capital of Slove-
nia. Depending on the HTTP Accept header the server will return either an
HTML, RDF/XML, or Turtle representation after a HTTP 303 redirect. The
city resources are linked to the LOD cloud via owl:sameAs to the corresponding
DBpedia resources.
Predictions. The prediction workflow is based on the current data in the triple
store. The preprocessing is written in Python and prediction and evaluation is
developed in R [19] using its “standard” packages. As mentioned before, we only
publish the predicted values from Approach 2. After the best regression method

http://citydata.wu.ac.at/
http://citydata.wu.ac.at/resource/Ljubljana
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is selected for a particular indicator, we use this method to fill-in all the missing
values and publish them as a new indicator with a prefix in the CityDataContext.
We also add the the source and the year for the prediction. The threshold for
publishing is a RMSE% of 7% with 80 predictors. This leads to 6 indicators (e.g.
price of a m3 of domestic water in EUR) being dropped. We then introduce
two new properties describing for each indicator the quality of the prediction by
the median RMSE% and the regression method used. In future work, we aim to
publish the data using the PROV Data Model [8].
Interface. A simple Java powered web interface allows users to select exactly
which subset of the data should be shown. The interface provides programmatic
access via HTTP GET to allow external tools such as data visualization frame-
works, to query the database. The web application communicates with the Jena
triple store via SPARQL 1.1. Users can select one or more of the 450 indicators
sorted by categories like Demography, Geography, Social Aspects, or Environ-
ment. The list also shows how many data points are available per indicator and
for how many cities data points are available for this indicator. Next the user
can select one or several of more than 5 260 cities for which we collected data.
For a few cities we even have information on the individual districts available. In
these cases the user can select one or several of the districts. Optionally the user
can specify a temporal context, for which year the database should be queried.
This feature allows to compare several cities with each other at a certain point
of time instead of listing data of all available times.

8 Lessons Learnt and Related Work

We emphasize that our work is not a “Semantics in-use” paper in the classical sense
of applying Semantic Web technologies to solve a use case, but rather a demonstra-
tion that a portfolio of statistical methods in combination with semantic technolo-
gies for data integration helps to collect, enrich and serve domain-specific data in
a reusable way for further applications of the LOD cloud to be developed on top.
While there are practical use cases within Siemens, such as studies like the Green
City Index [6]which canbenefit fromanup-to-date data repository for city data,we
are looking forward to diverse other applications on top of our collection by others.
Also, we have demonstrated that building a domain-specific Open Data pipeline is
feasible and enabled by Semantic Web technologies. We envision that such an app-
roach may be worthwhile for other domains as well as a multiplicator to leverage
usage of Open Data: for instance similar data pipelines could be built for business
intelligence, investment use cases for company data, or finance data. For publishing
the prediction as LOD, we set a threshold RMSE% of 7%, which could be adjusted
according to the domain of use.
Lessons Learnt. In the wrapper component, integrating cities and indicators
for a new data set (often CSV tables) is still a slow manual process and needs
custom scripting. The entity recognition for cities and the ontology learning
techniques from Section 6 provide a first automation step, where indicators of
new data sets can be mapped to existing indicators. This approach is similar
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to instance based mapping learning techniques also used in ontology matching
(cf. [7]). In the analytics and query component, we have had to deal with sparse
data sets with many missing values, which is a drawback for analyzing and
reusing the data. By applying the PCA-based Approach 2, using a basket of
standard DM techniques without customization, we reach a good quality for pre-
dictions (overall RMSE% of 1.36%) and are able to fill large gaps of the missing
values. However, Approach 2 does not tackle the gap of disjoint cities/indicators,
which is addressed by extending it to the CDP approach, where we predict from
one single data set into another. We applied CDP for predicting UA → UN and
UN → UA and discovered reasonable results for the first but unsatisfying for the
second direction. The cause for the unsatisfying results can be found in the UN
data set with sufficient values for only three population-related indicators. For
the CDP approach to succeed, we need one base data set which covers a wider
range of cities/indicators; this is not the case yet.
Related Work. QuerioCity [13] is a platform to integrate static and continu-
ous data with Semantic Web tools. While it uses partly similar technologies, it
works as a single city platform and not as a data collection of many cities and
concentrates on data integration. We focus on predicting missing values, and pub-
lishing the outcomes as Linked Data. The EU project CitySDK (http://www.
citysdk.eu/) provides unifying APIs, including a Linked Data API for mobility
and geo data usable across cities. These reusable APIs enable developers to cre-
ate portable applications and ease service provisioning for city administrators.
If enough cities adopt CitySDK, its APIs can become a valuable data source
for the Open City Data Pipeline as well. Regarding the methods, works of Paul-
heim et al. [16,17,18] are closely related, however they focus on unsupervised DM
approaches of unspecified features from Linked Data instead of filling-in missing
values for specific attributes. The work by Nickel et al. [14] focuses on relational
learning, i.e., rather learning object relations than predicting numeric attribute
values. The work in [11] also integrates statistical Linked Data, however it is
mainly concerned with query rewriting and less with missing values. The Open
City Data Pipeline uses techniques from ETL frameworks (cf. [25]) and DM tools
(e.g., [9]) which are general technologies and build our base techniques. The main
difference to a plain ETL and DM approach concerns (a) the ontology-based
integration with query capabilities and continuous integration in the LOD cloud,
(b) the ontology-learning capabilities, and (c) using the axioms of the ontology
to validate the prediction results by the data type and ranges.

9 Conclusions and Future Work

In this paper we have presented the Open City Data Pipeline, an extensible
platform for collecting, integrating, and predicting open city data from several
data providers including DBpedia and Urban Audit. We have developed several
components including a data crawler, wrappers, an ontology-based integration
platform, and a missing value prediction module. Having sparse data sets, the
prediction of missing values is a crucial component. For this, we have developed

http://www.citysdk.eu/
http://www.citysdk.eu/
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two approaches, one based on predicting a target indicator directly from other
indicators, and one based on predictors from components calculated by Princi-
pal Components Analysis (PCA). We applied for both approaches three basic
regression methods and selected the best performing one. They were compared
regarding the number of filled-in values and prediction accuracy, concluding
that the PCA-based approach will be used for future work. Filled-in missing
values are then published as LOD for further use. In case of a large disjointness
regarding indicators/cities, we extended the second approach to Cross Data Set
Predictions (CDP).

Our future work includes extensions of the presented data sets, methods, and
the system itself. Regarding the data sets, we already mention several sources,
e.g., the Carbon Disclosure Project, which are needed to cover a wider range
of cities worldwide. As to the methods, CDP has to be evaluated with more
data sets to further evaluate the performance of CDP and find the threshold of
indicators/cities with sufficient overlapping values. We also aim to extend our
basket of base methods with other well established regression methods. Promis-
ing candidates are Support Vector Machines [22], Neural Networks, and Bayesian
Generalized Linear Model [28]. Moreover, we plan to publish more details on the
best regression method per indicator as part of our ontology: so far, we only indi-
cate the method and estimated RMSE%, whereas further details such as used
parameters and regression models would be needed to reproduce and optimize
our predictions. Ontologies such as [12] could serve as a starting point here. We
also plan to connect our plattform to the Linked Geo Data Knowledge Base [23]
including OpenStreetMap (OSM) data: based on such data, new indicators could
be directly calculated, e.g., the size of public green space by aggregating all the
parks. Furthermore, we are in the process of improving the user interface to
make the application easier to use. For this we investigate several libraries for
more advanced information visualization.
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