Skip to main content

Regulation of Na,K-ATPase in Epithelial–Mesenchymal Transition and Cancer

  • Chapter
  • First Online:
  • 1109 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 15))

Abstract

Na,K-ATPase is an ion pump that creates an electrochemical gradient across the plasma membrane. In addition, Na,K-ATPase functions as a receptor and a signaling scaffold and its β-subunit has cell adhesion function. Many of the signaling pathways modulated by Na,K-ATPase have been linked to cell growth, apoptosis, cell adhesion, and motility. Changes in Na,K-ATPase function and expression have been reported in various cancers, even early during tumor development. Epithelial–mesenchymal transition (EMT) in which epithelial cells undergo a shift from a well-differentiated polarized epithelial phenotype to a fibroblastic, mesenchymal phenotype is one of the earliest steps in tumor progression. EMT can be induced by growth factors that activate signaling pathways to trigger an intricate network of transcriptional regulators. Interestingly, some of the transcription factors induced during EMT are known regulators of Na,K-ATPase expression. Here we summarize some of the best characterized EMT-inducing pathways, the transcription factors modulated by these signaling pathways and discuss how they may affect Na,K-ATPase subunit expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lingrel JB, Kuntzweiler T (1994) Na+, K(+)-ATPase. J Biol Chem 269:19659–19662

    CAS  PubMed  Google Scholar 

  2. Geering K (2006) FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol 290:F241–F250

    Article  CAS  PubMed  Google Scholar 

  3. Blanco G (2005) Na, K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol 25:292–303

    Article  CAS  PubMed  Google Scholar 

  4. Yeaman C, Grindstaff KK, Nelson WJ (1999) New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 79:73–98

    CAS  PubMed  Google Scholar 

  5. Martin-Belmonte F, Perez-Moreno M (2012) Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 12:23–38

    CAS  Google Scholar 

  6. Royer C, Lu X (2011) Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ 18:1470–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mallini P, Lennard T, Kirby J, Meeson A (2014) Epithelial-to-mesenchymal transition: what is the impact on breast cancer stem cells and drug resistance. Cancer Treat Rev 40:341–348

    Article  CAS  PubMed  Google Scholar 

  9. Garcia de Herreros A, Moustakas A (2014) Invasive cells follow Snail’s slow and persistent pace. Cell Cycle 13:2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  11. Lindsey S, Langhans SA (2014) Crosstalk of oncogenic signaling pathways during epithelial-mesenchymal transition. Front Oncol 4:358

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  13. van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65:3756–3788

    Article  CAS  PubMed  Google Scholar 

  14. Desai RA, Gao L, Raghavan S, Liu WF, Chen CS (2009) Cell polarity triggered by cell-cell adhesion via E-cadherin. J Cell Sci 122:905–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rajasekaran AK, Rajasekaran SA (2003) Role of Na-K-ATPase in the assembly of tight junctions. Am J Physiol Renal Physiol 285:F388–F396

    Article  PubMed  Google Scholar 

  16. Rajasekaran SA, Palmer LG, Moon SY et al (2001) Na, K-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells. Mol Biol Cell 12:3717–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rajasekaran SA, Palmer LG, Quan K et al (2001) Na, K-ATPase beta-subunit is required for epithelial polarization, suppression of invasion, and cell motility. Mol Biol Cell 12:279–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13:97–110

    Article  PubMed  Google Scholar 

  19. Moreno-Bueno G, Portillo F, Cano A (2008) Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27:6958–6969

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez-Tillo E, Liu Y, de Barrios O et al (2012) EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 69:3429–3456

    Article  CAS  PubMed  Google Scholar 

  21. Whiteman EL, Liu CJ, Fearon ER, Margolis B (2008) The transcription factor snail represses Crumbs3 expression and disrupts apico-basal polarity complexes. Oncogene 27:3875–3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3:155–166

    Article  CAS  PubMed  Google Scholar 

  23. Espineda CE, Chang JH, Twiss J et al (2004) Repression of Na, K-ATPase beta1-subunit by the transcription factor snail in carcinoma. Mol Biol Cell 15:1364–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vandewalle C, Van Roy F, Berx G (2009) The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66:773–787

    Article  CAS  PubMed  Google Scholar 

  25. Watanabe Y, Kawakami K, Hirayama Y, Nagano K (1993) Transcription factors positively and negatively regulating the Na, K-ATPase alpha 1 subunit gene. J Biochem 114:849–855

    Article  CAS  PubMed  Google Scholar 

  26. Galuska D, Kotova O, Barres R et al (2009) Altered expression and insulin-induced trafficking of Na + -K + -ATPase in rat skeletal muscle: effects of high-fat diet and exercise. Am J Physiol Endocrinol Metab 297:E38–E49

    Article  CAS  PubMed  Google Scholar 

  27. Galuska D, Pirkmajer S, Barres R et al (2011) C-peptide increases Na, K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells. PLoS One 6:e28294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu Y, Zhou BP (2010) Snail: more than EMT. Cell Adh Migr 4:199–203

    Article  PubMed  PubMed Central  Google Scholar 

  30. McDonald OG, Wu H, Timp W, Doi A, Feinberg AP (2011) Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 18:867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. von Burstin J, Eser S, Paul MC, Seidler B, Brandl M et al (2009) E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology 137:361–371, 371 e361-365

    Article  Google Scholar 

  32. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  33. Selvakumar P, Owens TA, David JM et al (2014) Epigenetic silencing of Na, K-ATPase beta 1 subunit gene ATP1B1 by methylation in clear cell renal cell carcinoma. Epigenetics 9:579–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alvarez de la Rosa D, Avila J, Martin-Vasallo P (2002) Chromatin structure analysis of the rat Na, K-ATPase beta2 gene 5′-flanking region. Int J Biochem Cell Biol 34:632–644

    Article  CAS  PubMed  Google Scholar 

  35. Wang L, Shiraki A, Itahashi M et al (2013) Aberration in epigenetic gene regulation in hippocampal neurogenesis by developmental exposure to manganese chloride in mice. Toxicol Sci 136:154–165

    Article  CAS  PubMed  Google Scholar 

  36. Deng V, Matagne V, Banine F et al (2007) FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Hum Mol Genet 16:640–650

    Article  CAS  PubMed  Google Scholar 

  37. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  38. Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7:3112–3118

    Article  CAS  PubMed  Google Scholar 

  39. Liu X, Wang C, Chen Z et al (2011) MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines. Biochem J 440:23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang J, Zhang H, Liu J et al (2012) miR-30 inhibits TGF-beta1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem Biophys Res Commun 417:1100–1105

    Article  CAS  PubMed  Google Scholar 

  42. Cochrane DR, Jacobsen BM, Connaghan KD et al (2012) Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol Cell Endocrinol 355:15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mladinov D, Liu Y, Mattson DL, Liang M (2013) MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K + -ATPase beta1. Nucleic Acids Res 41:1273–1283

    Article  CAS  PubMed  Google Scholar 

  44. Barwe SP, Skay A, McSpadden R et al (2012) Na, K-ATPase beta-subunit cis homo-oligomerization is necessary for epithelial lumen formation in mammalian cells. J Cell Sci 125:5711–5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rajasekaran SA, Barwe SP, Gopal J et al (2007) Na-K-ATPase regulates tight junction permeability through occludin phosphorylation in pancreatic epithelial cells. Am J Physiol Gastrointest Liver Physiol 292:G124–G133

    Article  CAS  PubMed  Google Scholar 

  46. Rajasekaran SA, Barwe SP, Rajasekaran AK (2005) Multiple functions of Na, K-ATPase in epithelial cells. Semin Nephrol 25:328–334

    Article  CAS  PubMed  Google Scholar 

  47. Rajasekaran SA, Huynh TP, Wolle DG et al (2010) Na, K-ATPase subunits as markers for epithelial-mesenchymal transition in cancer and fibrosis. Mol Cancer Ther 9:1515–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kitamura N, Ikekita M, Sato T et al (2005) Mouse Na+/K + -ATPase beta1-subunit has a K + -dependent cell adhesion activity for beta-GlcNAc-terminating glycans. Proc Natl Acad Sci U S A 102:2796–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shoshani L, Contreras RG, Roldan ML et al (2005) The polarized expression of Na+, K + -ATPase in epithelia depends on the association between beta-subunits located in neighboring cells. Mol Biol Cell 16:1071–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vagin O, Dada LA, Tokhtaeva E, Sachs G (2012) The Na-K-ATPase alpha(1)beta(1) heterodimer as a cell adhesion molecule in epithelia. Am J Physiol Cell Physiol 302:C1271–C1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vagin O, Sachs G, Tokhtaeva E (2007) The roles of the Na, K-ATPase beta 1 subunit in pump sorting and epithelial integrity. J Bioenerg Biomembr 39:367–372

    Article  CAS  PubMed  Google Scholar 

  52. Vagin O, Tokhtaeva E, Sachs G (2006) The role of the beta1 subunit of the Na, K-ATPase and its glycosylation in cell-cell adhesion. J Biol Chem 281:39573–39587

    Article  CAS  PubMed  Google Scholar 

  53. Barwe SP, Kim S, Rajasekaran SA et al (2007) Janus model of the Na, K-ATPase beta-subunit transmembrane domain: distinct faces mediate alpha/beta assembly and beta-beta homo-oligomerization. J Mol Biol 365:706–714

    Article  CAS  PubMed  Google Scholar 

  54. Inge LJ, Rajasekaran SA, Yoshimoto K et al (2008) Evidence for a potential tumor suppressor role for the Na, K-ATPase beta1-subunit. Histol Histopathol 23:459–467

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Barwe SP, Anilkumar G, Moon SY et al (2005) Novel role for Na, K-ATPase in phosphatidylinositol 3-kinase signaling and suppression of cell motility. Mol Biol Cell 16:1082–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rajasekaran SA, Ball WJ Jr, Bander NH et al (1999) Reduced expression of beta-subunit of Na, K-ATPase in human clear-cell renal cell carcinoma. J Urol 162:574–580

    Article  CAS  PubMed  Google Scholar 

  57. Akopyanz NS, Broude NE, Bekman EP et al (1991) Tissue-specific expression of Na, K-ATPase beta-subunit. Does beta 2 expression correlate with tumorigenesis? FEBS Lett 289:8–10

    Article  CAS  PubMed  Google Scholar 

  58. Blok LJ, Chang GT, Steenbeek-Slotboom M et al (1999) Regulation of expression of Na+, K + -ATPase in androgen-dependent and androgen-independent prostate cancer. Br J Cancer 81:28–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mobasheri A, Fox R, Evans I et al (2003) Epithelial Na, K-ATPase expression is down-regulated in canine prostate cancer; a possible consequence of metabolic transformation in the process of prostate malignancy. Cancer Cell Int 3:8

    Article  PubMed  PubMed Central  Google Scholar 

  60. Espineda C, Seligson DB, James Ball W et al (2003) Analysis of the Na, K-ATPase alpha- and beta-subunit expression profiles of bladder cancer using tissue microarrays. Cancer 97:1859–1868

    Article  CAS  PubMed  Google Scholar 

  61. Senner V, Schmidtpeter S, Braune S et al (2003) AMOG/beta2 and glioma invasion: does loss of AMOG make tumour cells run amok? Neuropathol Appl Neurobiol 29:370–377

    Article  CAS  PubMed  Google Scholar 

  62. Mijatovic T, Roland I, Van Quaquebeke E et al (2007) The alpha1 subunit of the sodium pump could represent a novel target to combat non-small cell lung cancers. J Pathol 212:170–179

    Article  CAS  PubMed  Google Scholar 

  63. Huynh TP, Mah V, Sampson VB et al (2012) Na, K-ATPase is a target of cigarette smoke and reduced expression predicts poor patient outcome of smokers with lung cancer. Am J Physiol Lung Cell Mol Physiol 302:L1150–L1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sakai H, Suzuki T, Maeda M et al (2004) Up-regulation of Na(+), K(+)-ATPase alpha 3-isoform and down-regulation of the alpha1-isoform in human colorectal cancer. FEBS Lett 563:151–154

    Article  CAS  PubMed  Google Scholar 

  65. Seligson DB, Rajasekaran SA, Yu H et al (2008) Na, K-adenosine triphosphatase alpha1-subunit predicts survival of renal clear cell carcinoma. J Urol 179:338–345

    Article  CAS  PubMed  Google Scholar 

  66. Tummala R, Wolle D, Barwe SP et al (2009) Expression of Na, K-ATPase-beta(1) subunit increases uptake and sensitizes carcinoma cells to oxaliplatin. Cancer Chemother Pharmacol 64:1187–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Antonicek H, Persohn E, Schachner M (1987) Biochemical and functional characterization of a novel neuron-glia adhesion molecule that is involved in neuronal migration. J Cell Biol 104:1587–1595

    Article  CAS  PubMed  Google Scholar 

  68. Sun MZ, Kim JM, Oh MC et al (2013) Na(+)/K(+)-ATPase beta2-subunit (AMOG) expression abrogates invasion of glioblastoma-derived brain tumor-initiating cells. Neuro Oncol 15:1518–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wilson PD, Devuyst O, Li X et al (2000) Apical plasma membrane mispolarization of NaK-ATPase in polycystic kidney disease epithelia is associated with aberrant expression of the beta2 isoform. Am J Pathol 156:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rajasekaran SA, Hu J, Gopal J et al (2003) Na, K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells. Am J Physiol Cell Physiol 284:C1497–C1507

    Article  CAS  PubMed  Google Scholar 

  71. Mony S, Lee SJ, Harper JF et al (2013) Regulation of Na, K-ATPase beta1-subunit in TGF-beta2-mediated epithelial-to-mesenchymal transition in human retinal pigmented epithelial cells. Exp Eye Res 115:113–122

    Article  CAS  PubMed  Google Scholar 

  72. Tang MJ, Wang YK, Lin HH (1995) Butyrate and TGF-beta downregulate Na, K-ATPase expression in cultured proximal tubule cells. Biochem Biophys Res Commun 215:57–66

    Article  CAS  PubMed  Google Scholar 

  73. Pekary AE, Levin SR, Johnson DG et al (1997) Tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta 1 (TGF-beta 1) inhibit the expression and activity of Na+/K(+)-ATPase in FRTL-5 rat thyroid cells. J Interferon Cytokine Res 17:185–195

    Article  CAS  PubMed  Google Scholar 

  74. Derynck R, Akhurst RJ, Balmain A (2001) TGF-[beta] signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    Article  CAS  PubMed  Google Scholar 

  75. O’Connor JW, Gomez EW (2014) Biomechanics of TGFbeta-induced epithelial-mesenchymal transition: implications for fibrosis and cancer. Clin Transl Med 3:23

    Article  PubMed  PubMed Central  Google Scholar 

  76. Katsuno Y, Lamouille S, Derynck R (2013) TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 25:76–84

    Article  CAS  PubMed  Google Scholar 

  77. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70:1469–1480

    Article  CAS  PubMed  Google Scholar 

  79. Dery MA, Michaud MD, Richard DE (2005) Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol 37:535–540

    Article  CAS  PubMed  Google Scholar 

  80. Husted RF, Sigmund RD, Stokes JB (2000) Mechanisms of inactivation of the action of aldosterone on collecting duct by TGF-beta. Am J Physiol Renal Physiol 278:F425–F433

    CAS  PubMed  Google Scholar 

  81. Zhu QC, Gao RY, Wu W, Qin HL (2013) Epithelial-mesenchymal transition and its role in the pathogenesis of colorectal cancer. Asian Pac J Cancer Prev 14:2689–2698

    Article  PubMed  Google Scholar 

  82. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410

    Article  CAS  PubMed  Google Scholar 

  83. Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71

    CAS  PubMed  Google Scholar 

  84. Axelson H, Fredlund E, Ovenberger M et al (2005) Hypoxia-induced dedifferentiation of tumor cells-–a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol 16:554–563

    Article  CAS  PubMed  Google Scholar 

  85. Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5):10–17

    Article  CAS  PubMed  Google Scholar 

  86. Moen I, Oyan AM, Kalland KH et al (2009) Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. PLoS One 4:e6381

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16:5928–5935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Martin A, Cano A (2010) Tumorigenesis: twist1 links EMT to self-renewal. Nat Cell Biol 12:924–925

    Article  CAS  PubMed  Google Scholar 

  90. Yang MH, Wu MZ, Chiou SH et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10:295–305

    Article  CAS  PubMed  Google Scholar 

  91. Helenius IT, Dada LA, Sznajder JI (2010) Role of ubiquitination in Na, K-ATPase regulation during lung injury. Proc Am Thorac Soc 7:65–70

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support was provided by the National Institute of General Medical Sciences of the National Institutes of Health Awards Number NIGMS-P20GM103464, the American Cancer Society Grant Number RSG-09-021-01-.CNE, the DO Believe Foundation, and The Nemours Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid A. Langhans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Z., Langhans, S.A. (2016). Regulation of Na,K-ATPase in Epithelial–Mesenchymal Transition and Cancer. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_23

Download citation

Publish with us

Policies and ethics