
Prospective Identification of CRT Super

Responders Using a Motion Atlas and Random
Projection Ensemble Learning

Devis Peressutti1, Wenjia Bai2, Thomas Jackson1, Manav Sohal1,
Aldo Rinaldi1, Daniel Rueckert2, and Andrew King1

1 Division of Imaging Sciences & Biomedical Engineering, King’s College London, UK
2 Biomedical Image Analysis Group, Imperial College London, UK

Abstract. Cardiac Resynchronisation Therapy (CRT) treats patients
with heart failure and electrical dyssynchrony. However, many patients
do not respond to therapy. We propose a novel framework for the prospec-
tive characterisation of CRT ‘super-responders’ based on motion analysis
of the Left Ventricle (LV). A spatio-temporal motion atlas for the com-
parison of the LV motions of different subjects is built using cardiac MR
imaging. Patients likely to present a super-response to the therapy are
identified using a novel ensemble learning classification method based on
random projections of the motion data. Preliminary results on a cohort
of 23 patients show a sensitivity and specificity of 70% and 85%.

1 Introduction

Cardiac resynchronisation therapy (CRT) has the potential to improve both
morbidity and mortality in selected heart failure patients with electrical dyssyn-
chrony. Standard selection criteria for CRT are a New York Heart Association
functional class of II to IV, a QRS duration > 120ms, and a Left Ventricular
(LV) ejection fraction (EF) ≤ 35%. However, when applying such criteria, a large
variability in the response rate has been reported [1]. Improved characterisation
of patients likely to respond to the treatment is therefore of clinical interest.

In recent years, there has been a growing interest in the characterisation of
CRT super-response. Super-responders exhibit an enhanced level of LV Reverse
Remodelling (RR) after CRT, which leads to an almost complete recovery of car-
diac function [2]. Recent studies have shown strong evidence for super-response
in patients with strict left bundle branch block (LBBB) [11] and a type II elec-
trical activation pattern (also known as U-shaped activation) [8]. A strict LBBB
is characterised by a longer QRS duration (≥ 140ms in men and ≥ 130ms in
women) and a mid-QRS notching, while a U-shaped activation pattern is typi-
cally characterised by a line of functional block located between the septum and
the lateral wall and by a delayed trans-septal conduction time [8].

However, characterisation of the complex LV electrical activation based only
on strict LBBB and a U-shaped activation pattern, although promising, is rather
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simplistic. As noted in [8], assessment of contraction patterns is a subjective pro-
cess and it is possible that such a classification might fail to capture the complex
variation in electrical and mechanical activation patterns. Assuming a coupled
electrical and mechanical LV activation, we propose a more sophisticated char-
acterisation of LV contraction for the prediction of CRT super-response. Using
Cardiac Magnetic Resonance (CMR) imaging, the LV mechanical contraction of
a population of CRT patients is estimated and a spatio-temporal LV motion at-
las is built, allowing direct comparison of LV contractions of different patients.
Random projection ensemble learning is used to prospectively identify super-
responders based on the LV contraction information only. Previous related work
includes [5,4], where a LV motion atlas was used to identify specific abnormal
activation patterns, such as Septal Flash. However, to the authors’ knowledge,
this is the first work seeking to characterise CRT super-responders using machine
learning on 3D motion descriptors.

2 Materials

A cohort of 23 patients1 fulfilling the conventional criteria for CRT (see Sect. 1)
was considered. The study was approved by the institutional ethics committee
and all patients gave written informed consent. All patients underwent CMR
imaging using a 1.5T scanner (Achieva, Philips Healthcare, Best, Netherlands)
with a 32-element cardiac coil. The acquired CMR sequences are as follows:

cine MR: A multi-slice SA and three single-slice LA (2, 3 and 4-chamber view)
2D cine Steady State Free Precession (SSFP) sequences were acquired (TR/
TE = 3.0/1.5ms, flip angle = 60◦). Typical slice thickness is of 8mm for SA
and 10mm for LA with an in-plane resolution ≈ 1.4× 1.4mm2;

T-MR: Tagged MR sequences in three orthogonal directions with reduced field-
of-view enclosing the left ventricle were acquired (TR/TE = 7.0/3.2ms, flip
angle = 19−25◦, tag distance = 7mm). The typical spatial resolution in the
plane orthogonal to the tagging direction is ≈ 1.0× 1.0mm2;

All images were ECG-gated and acquired during sequential breath-holds. Given
their high in-plane spatial resolution, the cine MR images at end-diastole (ED)
were employed to estimate LV geometry (see Sect. 3.1), while the cine MR images
at the other cardiac phases were not used in this work. An average high resolution
3D + t T-MR sequence was derived from the three T-MR acquisitions with
orthogonal tagging directions and was used to estimate the LV contraction (see
Sect. 3.1). Prior to the estimation of LV geometry and motion, the SA and LA
cine MR sequences were spatially aligned to the T-MR coordinate system. Such
spatial alignment compensates for motion occurring between sequential breath-
holds. The T-MR sequence is free from respiratory artefacts and therefore was
chosen as the reference coordinate system.

Different super-response measures that quantify the degree of RR have been
proposed [2,11]. In this work, we employ a combined measure of super-response,

1 Data were acquired from different projects and cannot be made publicly available
due to lack of ethical approval or patient consent on data sharing.
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characterised by a LV end-diastolic volume reduction ≤ 20%, a LV end-systolic
volume reduction ≤ 15% and a two-fold increase in LV ejection fraction or an
absolute value ≥ 40%. According to this classification, 10 out of 23 patients
in our cohort were classified as super-responders. This binary classification was
used to train the proposed ensemble learning classifier (see Sect. 3.2).

3 Methods

The main novelty of the proposed method lies in the application of a novel di-
mensionality reduction technique for the characterisation of CRT super-response.
The proposed framework is summarised in Fig. 1.

Spatio-temporal motion atlas

LV geometries estimation LV motion estimation
Sect. 3.1 Sect. 3.1

Sect. 3.1

Motion descriptor X
Sect. 3.2

Random Projections
and Linear 

Discriminative Analysis
Sect. 3.2

CRT super-response classification of test patient motion
Sect. 3.2

Training data

Fig. 1. Overview of the proposed framework.

Similarly to [4], a spatio-temporal motion atlas of the LV was built to allow
motion comparison from different patients. The atlas removes differences in LV
anatomy and cardiac cycle duration from the comparison of LV motion. Details
of the atlas formation are reported in Sect. 3.1, while Sect. 3.2 describes the
random projection ensemble classifier used to characterise super-responders.

3.1 Spatio-Temporal Motion Atlas

The LV spatio-temporal motion atlas formation comprises the following steps:

Estimation of LV Geometry. For each patient, the LV myocardium, excluding
papillary muscles, was manually segmented from the ED frames of the multi-slice
SA and three LA cine MR images and the four binary masks were fused together
into an isotropic 2mm3 binary image. Following a further manual refinement of
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the binary mask to obtain a smooth LV segmentation, an open-source statistical
shape model (SSM) of the LV [7] was employed to enforce point correspondence
amongst all LV geometries. After an initial landmark-based rigid alignment, the
SSM was optimised to fit the LV segmentation. Non-rigid registration followed
the mode optimisation to refine local alignment. An example of a LV surface is
shown in Fig. 2(a)-(e).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Example of estimated LV geometry at end-diastole overlaid onto (a) mid SA
slice, (b) 2-, (c) 3-, and (d) 4-chamber cine LA slices. Fig. (e) shows the resulting SSM
epi- and endo-cardial meshes, while (f) shows the resampled medial mesh. Fig. (g)
shows the AHA bull’s eye plot, while (h) shows the unbiased medial shape.

In order to spatially regularise the number of vertices, a medial surface mesh
with regularly sampled vertices (≈ 1500) was generated from the personalised
SSM epi- and endo-cardial surfaces (Fig. 2(f)). The same resampling strategy
was employed for all patients to maintain point correspondence.

Estimation of LV Motion. An average high resolution 3D+ t T-MR sequence
was derived from the 3D + t T-MR sequences with orthogonal tagging planes.
For each T-MR volume, the trigger time tT specified in the DICOM meta-tag
was normalised with respect to the patient’s average cardiac cycle, such that
tT ∈ [0, 1), with 0 being ED. LV motion with respect to the ED cardiac phase
was estimated using a 3D+t free-form-deformation algorithm with sparse spatial
and temporal constraints [10]. This algorithm estimates a smooth and continuous
3D + t transformation for any t ∈ [0, 1). This way, temporal normalisation was
achieved for each patient, regardless of the number of acquired T-MR volumes
and cycle length.

Spatial Normalisation. The aim of spatial normalisation is to remove bias
towards patient-specific LV geometries from the motion analysis. From the pre-
vious steps, LV shapes at ED (see Fig. 2(f)) were derived from N patients.
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An initial Procrustes alignment based on the point correspondences was per-
formed on the N medial LV shapes, obtaining a set of affine transformations
{φn

aff}, n = 1, . . . , N with respect to a randomly chosen reference shape. An
unbiased LV medial shape was computed by transforming the average shape of
the aligned surfaces by the inverse of the average affine transformation φ̃aff =
1
n

∑
n φ

n
aff . An example of an unbiased LV shape is shown in Fig. 2(h). In or-

der to enforce an identity average transformation, the original transformations
{φn

aff} were similarly normalised φ̂n
aff = φn

aff ◦(φ̃aff )
−1. All shapes were conse-

quently aligned to the unbiased medial LV shape using Thin Plate Spline (TPS)
transformations {φn

TPS}. The transformation from the patient-specific coordi-

nate system to the unbiased LV mesh is thus given by φn = φn
TPS ◦ φ̂n

aff [4].

Motion Reorientation. In order to compare cardiac phases amongst all pa-
tients, for each patient, the reference ED medial surface was warped to T = 24
cardiac phases equally distributed in [0, 0.8] by using the estimated 3D+ t trans-
formation. Only the first 80% of the cardiac cycle was considered since it rep-
resents the typical coverage of T-MR sequences, and the estimated motion for
t ∈ (0.8, 1] is due to interpolation. The patient-specific LV motion was therefore
fully represented by the T shapes. Under a small deformation assumption [4],
vn
p,t = un

p,t − un
p,0 denotes the motion at location u of vertex p ∈ 1, .., P at the

cardiac phase t ∈ 1, .., T with respect to the ED phase for patient n ∈ 1, .., N .
The patient-specific motion vn

p,t, ∀n, t, p is transported to the coordinate system

of the unbiased average shape by computing vatlas
n,p,t = J−1(φn(up)) · vn

p,t, where
J(φn) denotes the Jacobian of the transformation φn [4].

AHA Segmentation. For a more intuitive understanding of the LV motion,
the atlas was segmented into the standard 16 AHA segments [3] (see Fig. 2(g)
and 2(h)) and the LV motion vatlas

n,p,t was decomposed into longitudinal, radial

and circumferential cylindrical coordinates (vatlas
n,p,t = [ln,p,t, rn,p,t, cn,p,t]

T ) with
respect to the long axis of the LV ED medial surface.

3.2 Random Projection Ensemble Learning

The spatio-temporal atlas permits representation of the LV motion in a common
coordinate system vatlas

n,p,t , ∀n, p, t. For each patient n, a LV motion descriptor was

derived by concatenating vatlas
p,t , ∀p, t into a single column vector vn ∈ R

F , where
F denotes the number of features of the motion descriptor. After normalisation,
ṽn = vn

‖vn‖ , the training data set was given by X = [ṽ1 · · · ṽN ] ∈ R
F×N . The aim

of the proposed technique is to find a set of low-dimensional representations of the
high dimensional motion matrix X that maximises super-response classification.

Typical limitations in the analysis of high dimensional data are the presence
of noisy features and the curse of dimensionality (i.e. data is very sparse in a high
dimensional space). These factors can hinder the identification of the underlying
structure of the data. To overcome these limitations, linear and non-linear di-
mensionality reduction techniques have been proposed to transform the original
high dimensional data onto lower dimensional subspaces, where the underlying
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data structure is described according to some criteria. For instance, Principal
Component Analysis (PCA) projects the original data onto a linear subspace
that preserves the variance of the data. However, the resulting subspace might
not be optimal for the classification task at hand.

A novel ensemble learning classifier employing Random Projections (RPs)
has been recently proposed in [6]. In our work, we extend [6] by using RPs and
Linear Discrimant Analysis (LDA) to identify an optimal set of subspaces that
best performs on the given classification. Let Y ∈ R

N , yn ∈ {0, 1} be the CRT
super-response labels (0-no super-response, 1-super-response, see Sect. 2 for the
classification criteria), L the number of classifiers in the ensemble and D the
number of dimensions of the random subspace (D � F ). In the training phase,
for each classifier Cl, l = 1, .., L, the motion matrix X was projected onto a
random subspace defined by a sparse random matrix Rl ∈ R

D×F , in which the
elements of each column vector {ri}Fi=1 are drawn from a Bernoulli {+1,−1}
distribution with ‖ri‖ = 1. As a result of the random projection, a new set of
low-dimensional descriptors Z = R · X, Z ∈ R

D×N was generated and a LDA
classifier was trained on the descriptors Z and the class labels Y.

In this work we extend [6] to improve the robustness of the random subspace
generation, as follows. The performance of each classifier was evaluated on the
same training data and the number of misclassified patients M was computed.
If the misclassification was larger than a predefined percentage M > k · N , R
was discarded and a new random projection was generated. This process was
repeated for each classifier Cl until an acceptable projection Rl was found. As
a consequence, the random subspace selection is more robust, even with a low
number of classifiers. The value of k defines the accuracy of the selected subspace.
Low values of k generate very discriminative subspaces at the cost of a higher
computational time (a maximum number of iterations can also be introduced).

The result was a set of linear classifiers trained on RPs of the motion matrix
X which are highly discriminative with respect to CRT super-response. In the
testing phase, the motion vector of a test patient xtest ∈ RF was projected onto
the selected random subspaces {Rl}Ll=1 and the CRT super-response class was
predicted by the L trained LDA classifiers. The final super-response class ytest
was derived by a weighted average of the L predicted classes {ytestl}Ll=1, where
the weight for each classifier Cl is given by the residual misclassification error
M (the higher the residual misclassification error M , the lower the weight) [9].
The super-response class with highest cumulative weights was assigned to ytest.

4 Experiments and Results

To evaluate the proposed technique, a leave-one-out cross-validation was em-
ployed. Each patient was left-out in turn and the motion descriptor X was built
using the remaining N = 22 patients. The LV motion of the left-out patient
constituted the test motion descriptor xtest.

Since both strict LBBB and U-shaped activation are related to localised acti-
vation patterns [8], we investigated the influence of different LV regions on the
super-response classification. Three different motion descriptors X16, X6 and
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X3 were built considering a different number of AHA segments as follows. X16

was built considering all the vertices in the atlas (F ≈ 110, 000), X6 was built
considering the six AHA segments 7 − 12 in the mid LV (F ≈ 38, 000) and X3

was built considering only the three AHA segments 7, 8, 12 (F ≈ 17, 000) located
in proximity to the conduction block line [8] (see Fig. 2(g)).

The proposed technique (RLDAwr) was compared to: a LDA classification
applied to the high dimensional motion matrices (LDA), a LDA classification
applied to a low-dimensional subspace given by PCA (PLDA), and to the RPs
ensemble classifier with no subspace rejection (RLDA) [6]. For the PLDA tech-
nique, a dual formulation was employed since N � F , and the modes retaining
95% of the original variance were considered. A super-response classification
based on the presence of strict LBBB only is also reported for comparison. The
set of parameters used for RLDAwr was determined from an initial pilot study
using the same training data (see Table 1). The same parameters L,D were
employed for RLDA, while the value of k was fixed k = 0.1.

Results of the leave-one-out cross-validation are reported in Table 1.

Table 1. Cross-validation results for sensitivity, specificity, positive (PPV) and nega-
tive predictive value (NPV). The subspace dimensionality D and, where applicable, the
number of classifiers L is also reported. Best classification results are shown in bold.

X16 X6 X3
LBBB

LDA PLDA RLDA RLDAwr LDA PLDA RLDA RLDAwr LDA PLDA RLDA RLDAwr

Sens .40 .70 .50 .60 .40 .50 .40 .50 .50 .60 .60 .70 .80
Spec .62 .62 .62 .69 .62 .69 .77 .85 .77 .61 .77 .85 .62
PPV .44 .58 .50 .60 .44 .55 .57 .71 .63 .55 .66 .78 .62
NPV .57 .72 .62 .69 .57 .64 .63 .69 .67 .67 .71 .79 .80

D F 17 20 20 F 15 30 30 F 13 200 200 NA
L NA NA 61 61 NA NA 61 61 NA NA 61 61 NA

5 Discussion

We have presented a method for the automatic prospective identification of
CRT super-responders based purely on motion information estimated from CMR
imaging. The novelty of this paper lies in the application and extension of a
recently proposed dimensionality reduction algorithm to a clinically important,
but previously untackled problem in medical image processing. Our extension to
the random projections ensemble learning technique [6] consists of a more robust
selection of the random subspace with respect to the classification accuracy.

Results on a cohort of 23 CRT patients show the proposed technique RLDAwr

to outperform PLDA and RLDA in the selection of an optimal subspace for clas-
sification of CRT super-responders. The best classification results were achieved
considering only three AHA segments localised around the conduction block line,
which supports the findings in [8] on the correlation between the presence of a
U-shaped contraction and super-response. Compared to a LBBB-based classifi-
cation [11] (last column in Table 1), better specificity and PPV were achieved.
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In the future, we plan to expand our patient cohort to enable our algorithm
to learn a wider range of motion-based biomarkers that are correlated with CRT
super-response. Much work remains to be done to better understand CRT re-
sponse and super-response. At the moment, relatively simple indicators are used
to select patients for CRT and many that undergo the invasive therapy do not
respond. Furthermore, there is currently no consensus on the definition of a
super-responder. It may be that a better characterisation of LV mechanical ac-
tivation patterns could lead to a more functional definition of super-response.
Our method offers the possibility of providing insights into these motion pat-
terns, which could lead to a more refined characterisation of LV function than
is currently possible. We have demonstrated our technique on the problem of
identifying super-responders, but we believe that it could one day complement
or even replace conventional indicators for predicting CRT response in general.
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