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Abstract. We propose a solution for training random forests on incom-
plete multimodal datasets where many of the samples are non-randomly
missing a large portion of the most discriminative features. For this goal,
we present the novel concept of scandent trees. These are trees trained on
the features common to all samples that mimic the feature space division
structure of a support decision tree trained on all features.Weuse the forest
resulting from ensembling these trees as a classification model. We evalu-
ate the performance of our method for different multimodal sample sizes
and single modal feature set sizes using a publicly available clinical dataset
of heart disease patients and a prostate cancer dataset with MRI and gene
expression modalities. The results show that the area under ROC curve
of the proposed method is less sensitive to the multimodal dataset sample
size, and that it outperforms the imputation methods especially when the
ratio of multimodal data to all available data is small.

1 Introduction

In recent years there has been an interest in multimodality data analysis for
disease detection. Ideally, multimodality methods should leverage the strengths
of each modality and compensate for weaknesses. Another advantage of multi-
modality data analysis is discovering novel relations between different modalities.
One example is finding the connection between genes related to Alzheimer’s dis-
ease and related areas in functional MRI [1]. Acquiring multimodal data is, in
general, more costly and time consuming than a single modality. As a result,
multimodal datasets usually have valuable features, but small sample sizes. This
makes it difficult to build classifiers, with large training data, for highly mul-
timodal protocols. Multomodal data is also often high dimensional and pose
difficulties in feature selection and classifier building. Ensemble classifiers such
as random forest provide a solution for the large feature space in small datasets
using feature bagging.

To tackle the issue of incomplete datasets, a variety of data imputation tech-
niques exist. Some of these are non-parametric methods like hot deck imputation,
KNN imputation or mean substitution. These methods ignore the possible cor-
relations in data and could add bias. Model-based methods, on the other hand,
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assume a certain structure to the missing samples, like missing completely at ran-
dom (MCAR) or missing not at random (MNAR). Examples of these methods
include multiple imputation [2], maximum likelihood, stochastic regression [3],
expectation maximization [3] and Bayesian methods [4]. While these methods
could result in reduced bias, the assumption of specific pattern in the miss-
ing components may not be justified, especially in the case of small datasets
with complex features. Therefore, a third approach to treating missing data has
emerged that maximizes the performance of a classifier. An example is the im-
putation method proposed by Breiman in [5,6]. This method uses the proximity
matrix of the random forest to iteratively predict the missing values in a way
that maximizes the overall performance of the random forest and is designed to
perform well even in MNAR conditions.

Our motivation in this area stems from the work on combining genomic
biomarkers of prostate cancer with imaging biomarkers from multiparametric
MRI (mpMRI) to enhance risk stratification. While imaging data is routinely
acquired and archived from prostate cancer patients, there are very few patients
with imaging data and spatially registered tissue specimens for genomic analysis.
As a result, we have a relatively large number of data samples with only mpMRI
data (which we call the single modality dataset in this work), and a small set of
samples with both mpMRI and gene expression analysis from the same regions
of interest (which we call multimodality data). While most of the imputation
methods assume a small number of missing values (typically 10%-30% of the
whole data), we are dealing with a situation where the multimodal samples only
constitute around 10% of the data. While the patients recently recruited into
the study provide multimodal data, we intend to find a solution to include the
archival data with imaging only samples. In this work, we develop a solution to
leverage a large single modality dataset to enhance the training of a classifier
based on multimodal data. The proposed method is based on decision trees.
However, we describe an entirely novel technique to link different feature sets
and predict the class label using information from all of the datasets, multimodal
and single modal. We use a large clinical benchmark dataset to show that our
method outperforms the current state of the art in random forest imputation
methods, particularly in the case of dataset with large missing ratio. We also
report very promising preliminary results on our prostate cancer dataset.

2 Method

Let us assume that the training data consists of at least one single modality
dataset defined as S = (s1, s2, . . . , sNs) and at least one multimodality dataset
defined as M = (m1,m2, . . . ,mNm) which is described by the multimodality
feature set Fm = (f1, f2, . . . , fkm). The aim is to train a classifier using both S
and M that can predict the outcome class C, for any test data described by Fm.
While we do not set conditions on feature or sample sizes, in practical scenarios,
the multimodality dataset has fewer samples (Nm < Ns). In practice Fs is often
a subset of Fm and is missing some of the more discriminative features.
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As an advantage of having all the important features, trees formed by the mul-
timodal dataset are expected to partition the feature space very effectively. But
because of the low multimodal sample size, the estimation of outcome probability
at each leaf may not be accurate. The idea of our method is to reduce predic-
tion error at each leaf of the multimodal tree by using single modality samples
that are likely to belong to the same leaf. In order to find these single modal-
ity samples, a feature space partitioning algorithm is needed that can simulate
the feature space division of the target multimodal tree on the single modality
dataset. The proposed method is to grow single modality trees that mimic the
feature space division structure of the multimodal decision tree. Growing a tree
that follows the structure of another tree from the root to the top brings analogy
to the behaviour of “scandent”trees in nature that climb a stronger “support”
tree. Considering this analogy, the proposed method can be divided into three
basic steps: First, division of the sample space by a multimodal decision tree,
called “the support tree”. Second, forming the single modality trees that mimic
the structure of the support tree, called “scandent trees”. And third, leaf level
inference of outcome label C, using the multimodal samples in each leaf and the
single modal samples that are most likely to belong to the selected leaf.

Support Tree: The first step in the proposed method is growing a decision tree
to predict the outcome class based on the multimodal dataset.

Scandent Trees: The second step is to form the scandent trees which enable
the assignment of single modality samples to the leaves of the support tree.
The process of feature space division in the support tree can be considered as
grouping the multimodal data set (M) to different multimodal subsets at each
node. Let us define the subset of the samples of the multimodal dataset (M) in
the ith node as Mi. The algorithm to form a scandent tree is as follows:

for each node i in the support tree starting from the root node,
{

for each sample n in Mi and each child node j of node i
{

if n ∈ Mj, C
′
i,n = j

}
Grow Ti, as optimum tree that for each sample n in Mi,

predicts C
′
i,n using only Fs.

}

The above algorithm forms sub-trees Ti for each node i that divide Mi to the
child datasets Mj using only the single modality features Fs. Let us assume that
the sample space division at node i of the support tree is based on feature f .
If f ∈ Fs, then Ti is expected to divide Mi to the child subsets (Mj) using only
a single division node and with perfect accuracy. But if f /∈ Fs, then Ti will be
optimized to form the smallest tree that can divide the sample space in a similar
manner to the support tree. Using Ti’s for feature space division at each node,
we can form a new tree that consists of the same division nodes as the support
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tree but only uses features of a single modality (Fs) for feature space division,
we name this single modality tree, a scandent tree. Since the scandent tree is a
single modality tree, it can be used to predict the probability that each single
modality sample s belongs to each node j calculated by:

p(s ∈ Nodej) = p(s ∈ Nodej |s ∈ Nodei)p(s ∈ Nodei)

In which Nodei is the parent node of Nodej . The term p(s ∈ Nodej |s ∈ Nodei)
in the above equation can be estimated by the corresponding sub-tree Ti and
p(s ∈ Nodei) is calculated by recursion. This method is expected to be generally
more accurate than direct estimation of the leaves by any other single modality
classifier. Because the scandent tree only has to predict the feature division for
features that do not belong in Fs and other divisions will be perfectly accurate.
Moreover, if two features are dependent over the whole sample space (uncondi-
tional dependence), they will also be predictable by each other over a sub-space
of the sample space. But if the dependence is conditional, they cannot be univer-
sally predicted by each other. The scandent tree locally estimates each division
and does not require a global dependence. As a result, it can predict the set of
single modality samples that belong to each leaf of the support tree which may
not be possible by any other single modality classifier.

Leaf Level Inference: The standard method for leaf-level inference is majority
voting. However, if there are single modality samples misplaced by the scandent
tree, they may flood the true observations. The proposed method for weighted
majority voting is to re-sample from each leaf i and calculate the probability
of outcome C by non-uniform bootstrapping. The bootstrap probability of each
sample x in leaf i is defined by:

p(x)bootstrap,leafi =

⎧
⎨

⎩

1/N, x ∈ Mi

p(x ∈ Leaf i)/N, x /∈ Mi & p(x ∈ Leaf i) > q
0, x /∈ Mi & p(x ∈ Leaf i) < q

In which q is the selected minimum threshold for the probability that a sin-
gle modality sample belongs to the selected leaf i, and N is the total number
of samples in leaf i (single modal and multimodal). As q value increases, the
probability that a misplaced sample is used in the leaf-level inference is reduced.
This may increase the accuracy of the majority voting but increasing q will also
reduce the number of single modality samples at each leaf which decreases the
accuracy of the probability estimation. This tradeoff is more evident at the two
ends of the spectrum, for q = 1 the tree will be the same as the support tree
which suffers from low sample size at the leaves. For q = 0 all the single modality
samples will be used for inference at each leaf and the feature space division of
the support tree will have no direct effect on the inference. The optimization of
the q parameter for each leaf is essential for optimal performance of the resulting
tree. This can be done by cross validation over the multimodal dataset. Because
Mi is smaller at deeper nodes, as the support tree gets deeper and develops more
division points, it gets harder for the scandent tree to accurately follow the tree
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structure. Moreover, a higher number of consequent divisions by Ti’s leads to
accumulative errors. So forming smaller trees and ensembling those in form of a
random forest may lead to a more accurate classifier.

Implementation: In building the support trees, we bagged 2/3 of bootstrapped
samples and the square root of the dimension of the multimodal feature set. The
out of bag samples are used for optimization of the q parameter at each leaf.
After growing and optimizing each of the trees, the probability of outcome class
C is calculated by averaging the corresponding probabilities of all trees in the
forest. We use the R package “rpart” [7] to grow the support tree. This package
uses internal cross validation to form the optimal tree. But for the purpose of
controlling the bias-variance of the resulting forest, the depth of support tree
is limited by controlling the minimum of samples needed for each division. The
depth of Ti’s in each scandent tree is optimized by cross validation.

Evaluation: We evaluate the performance of the proposed method using a
dataset available from University of California at Irvine (UCI) Machine Learning
Repository [8]. We also report preliminary results on a prostate cancer multi-
modal dataset. The datasets are summarized in Table 1.

Heart disease data: This set consists of data from two different studies reported
in [9]. One set (data from the Hungarian Institute of Cardiology) is missing two
out of 14 features. We use this as the single modal dataset in our experiments. In
real world problems, such as our prostate cancer study, the single modal dataset
is missing some of the most discriminative features. To simulate this condition we
used a classical random forest feature ranking approach. We study the effect of
decreasing the number of features in the single modality dataset on the overall
performance by sweeping from 12 to two features, always removing the most
top-ranking ones. The multimodal dataset in this experiment was the Cleveland
dataset consisting of 303 samples. 100 samples were randomly separated and
used as test data. The remaining samples were used as the multimodal data for
training the support trees. We experimented with scenarios that included 10%
to 90% of this data in training of the support trees.

Table 1. Evaluation Datasets

Datasets
Heart Disease Prostate Cancer

Cleveland Hungarian MRI and Genetic MRI only

Sample Size 303 294 27 400

Feature size 14 12 43 4

Prostate cancer data: We also test our method on a dataset that is a per-
fect example of the target scenario, a small multimodal prostate cancer dataset
(Nm = 27) accompanied by a relatively large single modal dataset (Ns = 400).
The single modality dataset consists of four multiparametric MRI features from
dynamic contrast enhanced (DCE) MRI and diffusion MRI on a 3 Tesla scanner.
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We used the apparent diffusion coefficient (ADC) from diffusion MRI, and three
pharmacokinetic parameters from DCE MRI: volume transfer constant, ktrans,
fractional volume of extravascular extracellular space, ve, and fractional plasma
volume vp [10,11].

For the 27 multimodal samples, besides the four described imaging features,
biopsy tissue samples with known pathologic state (cancer or normal determined
by a histopathologist) were also available. RNA was extracted and purified [12].
The expression level of 39 genes that form the most recent consensus on the
genetic signature of prostate cancer for patients with European ancestry were
used as features. This signature is reported and maintained by National Institute
of Health [13]. We have 27 samples with genomic analysis and registered imaging
data (14 normal, 13 cancer) from 19 patients. The evaluation of the proposed
method on this small dataset was carried out in a leave-one-out scheme. Each
time, the support trees were trained using 26 multimodal samples, with all the
400 single modality data samples used for forming the scandent trees.

3 Results and Discussion

Heart Disease Dataset: Figure 1 shows the AUC of the proposed method
and the rfImpute method for different multimodal sample sizes. Each box in
this figure shows AUC values for different single modal feature set sizes and
a fixed multimodal dataset sample size. The expected upward trend in AUC
vs. multimodal sample size is evident and it can be seen that the proposed
method outperforms the rfImpute method especially in smaller samples sizes. For
example, when only 14 multimodal samples are available, the rfImpute method
results in a mean AUC of 0.90 whereas the proposed method delivers an AUC of
0.94. As the number of multimodal samples increases to 112, the performances
increase for rfImpute and scandent tree to 0.96 and 0.97, respectively. In other
words, the scandent tree approach has a clear advantage when the dataset with
multimodal data is significantly smaller.

Figure 2 shows the AUC of the proposed method and the rfImpute method for
different single modality feature set sizes. Each box shows changes of AUC for
different sample sizes at a fixed feature set in the single modality data. Smaller
variances of the boxes for the proposed method, especially in smaller feature
set sizes, show that the proposed method is on average less sensitive to the
multimodal sample size especially when the single modality dataset has a large
number of missing features. For example, at feature vector size of 2 for the single
modality dataset, the performance of rfImpute varies from 0.88-0.98, whereas
scandent tree shows a performance range of 0.93-0.98. This stable behavior is
due to the unique ability of the scandent trees to predict division points for
missing features that only conditionally depend on the available features.

Prostate Cancer Dataset: In leave one out validation, the proposed method
resulted in an AUC of 0.95 for the prostate cancer data. The rfImpute approach
resulted in an AUC of 0.8. The difference was statistically significant (p <0.02).
This dataset is an example of the worst case scenario of missing data: a large
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Fig. 1. AUC vs multimodal sample size for heart disease dataset (each box shows AUC
values for different single modal feature sets)
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Fig. 2. AUC vs single modal feature set size for heart disease dataset (each box shows
AUC values for different multimodal sample sizes)

non-random portion of the data is missing the potentially more powerful genomic
features resulting in a very small multimodal dataset. At the same time, the
number of features on the single modality (imaging) side is small. As a result,
the power of the proposed method in comparison with rfImpute is on full display.
It is also important to understand that the scandent tree is providing a platform
to incorporate the genomic data, despite the very limited number of samples.
In the absence of such methodology, if one uses only the imaging features with
an optimized random forest, the AUC is 0.74.

4 Conclusion

In this paper we addressed the problem of incomplete multimodal datasets in ran-
dom forest learning algorithms in a scenario where many of the samples are non-
randomlymissing a large portion of themost discriminative features.We introduce
the novel concept of scandent trees. The results show that the proposed method
outperforms the embedded missing value imputation method of random forests
introduced in [5], particularly in smaller samples sizes. The method is in general
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less sensitive to the number of missing features and the multimodal sample size.
We showed that the proposed method enables the integration of a small genomic
plus imaging dataset, with a relatively large imaging dataset.

In this paper we used a single modal dataset to improve the accuracy of leaf-
level inference in multimodal trees. Future work will address the possibility of
using single modality data at the test stage.
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