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Abstract. Automatic organ segmentation is an important yet challeng-
ing problem for medical image analysis. The pancreas is an abdominal
organ with very high anatomical variability. This inhibits previous seg-
mentation methods from achieving high accuracies, especially compared
to other organs such as the liver, heart or kidneys. In this paper, we
present a probabilistic bottom-up approach for pancreas segmentation
in abdominal computed tomography (CT) scans, using multi-level deep
convolutional networks (ConvNets). We propose and evaluate several
variations of deep ConvNets in the context of hierarchical, coarse-to-
fine classification on image patches and regions, i.e. superpixels. We first
present a dense labeling of local image patches via P-ConvNet and near-
est neighbor fusion. Then we describe a regional ConvNet (R;—ConvNet)
that samples a set of bounding boxes around each image superpixel at
different scales of contexts in a “zoom-out” fashion. Our ConvNets learn
to assign class probabilities for each superpixel region of being pancreas.
Last, we study a stacked Rz—ConvNet leveraging the joint space of CT
intensities and the P—ConvNet dense probability maps. Both 3D Gaus-
sian smoothing and 2D conditional random fields are exploited as struc-
tured predictions for post-processing. We evaluate on CT images of 82
patients in 4-fold cross-validation. We achieve a Dice Similarity Coeffi-
cient of 83.6+6.3% in training and 71.8+10.7% in testing.

1 Introduction

Segmentation of the pancreas can be a prerequisite for computer aided diagnosis
(CADx) systems that provide quantitative organ volume analysis, e.g. for dia-
betic patients. Accurate segmentation could also necessary for computer aided
detection (CADe) methods to detect pancreatic cancer. Automatic segmenta-
tion of numerous organs in computed tomography (CT) scans is well studied
with good performance for organs such as liver, heart or kidneys, where Dice
Similarity Coefficients (DSC) of >90% are typically achieved [1,2,3,4]. However,
achieving high accuracies in automatic pancreas segmentation is still a chal-
lenging task. The pancreas’ shape, size and location in the abdomen can vary
drastically between patients. Visceral fat around the pancreas can cause large
variations in contrast along its boundaries in CT (see Fig. 3). Previous methods
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report only 46.6% to 69.1% DSCs [1,2,3,5]. Recently, the availability of large an-
notated datasets and the accessibility of affordable parallel computing resources
via GPUs have made it feasible to train deep convolutional networks (ConvNets)
for image classification. Great advances in natural image classification have been
achieved [6]. However, deep ConvNets for semantic image segmentation have not
been well studied [7]. Studies that applied ConvNets to medical imaging appli-
cations also show good promise on detection tasks [8,9]. In this paper, we extend
and exploit ConvNets for a challenging organ segmentation problem.

2 Methods

We present a coarse-to-fine classification scheme with progressive pruning for
pancreas segmentation. Compared with previous top-down multi-atlas registra-
tion and label fusion methods, our models approach the problem in a bottom-up
fashion: from dense labeling of image patches, to regions, and the entire organ.
Given an input abdomen CT, an initial set of superpixel regions is generated by
a coarse cascade process of random forests based pancreas segmentation as pro-
posed by [5]. These pre-segmented superpixels serve as regional candidates with
high sensitivity (>97%) but low precision. The resulting initial DSC is ~27%
on average. Next, we propose and evaluate several variations of ConvNets for
segmentation refinement (or pruning). A dense local image patch labeling using
an axial-coronal-sagittal viewed patch (P—ConvNet) is employed in a sliding
window manner. This generates a per-location probability response map P. A
regional ConvNet (R; —ConvNet) samples a set of bounding boxes covering each
image superpixel at multiple spatial scales in a “zoom-out” fashion [7,10] and as-
signs probabilities of being pancreatic tissue. This means that we not only look
at the close-up view of superpixels, but gradually add more contexts to each
candidate region. R;-ConvNet operates directly on the CT intensity. Finally,
a stacked regional Ro—ConvNet is learned to leverage the joint convolutional
features of CT intensities and probability maps P. Both 3D Gaussian smooth-
ing and 2D conditional random fields for structured prediction are exploited as
post-processing. Our methods are evaluated on CT scans of 82 patients in 4-fold
cross-validation (rather than “leave-one-out” evaluation [1,2,3]). We propose sev-
eral new ConvNet models and advance the current state-of-the-art performance
to a DSC of 71.8 in testing. To the best of our knowledge, this is the highest
DSC reported in the literature to date.

2.1 Candidate Region Generation

We describe a coarse-to-fine pancreas segmentation method employing multi-
level deep ConvNet models. Our hierarchical segmentation method decomposes
any input CT into a set of local image superpixels S = {S1,..., Sy }. After eval-
uation of several image region generation methods [11], we chose entropy rate
[12] to extract N superpixels on axial slices. This process is based on the crite-
rion of DSCs given optimal superpixel labels, in part inspired by the PASCAL
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semantic segmentation challenge [13]. The optimal superpixel labels achieve a
DSC upper-bound and are used for supervised learning below. Next, we use a
two-level cascade of random forest (RF) classifiers as in [5]. We only operate the
RF labeling at a low class-probability cut >0.5 which is sufficient to reject the
vast amount of non-pancreas superpixels. This retains a set of superpixels {Sgr}
with high recall (>97%) but low precision. After initial candidate generation,
over-segmentation is expected and observed with low DSCs of ~27%. The opti-
mal superpixel labeling is limited by the ability of superpixels to capture the true
pancreas boundaries at the per-pixel level with DSC\.x = 80.5%, but is still
much above previous state-of-the-art [1,2,3,5]. These superpixel labels are used
for assessing ‘positive’ and ‘negative’ superpixel examples for training. Assigning
image regions drastically reduces the amount of ConvNet observations needed
per CT volume compared to a purely patch-based approach and leads to more
balanced training data sets. Our multi-level deep ConvNets will effectively prune
the coarse pancreas over-segmentation to increase the final DSC measurements.

2.2 Convolutional Neural Network (ConvINet) Setup

We use ConvNets with an architecture for binary image classification. Five layers
of convolutional filters compute and aggregate image features. Other layers of the
ConvNets perform maz-pooling operations or consist of fully-connected neural
networks. Our ConvNet ends with a final two-way layer with softmaz probability
for ‘pancreas’ and ‘non-pancreas’ classification (see Fig. 1). The fully-connected
layers are constrained using “DropOut” in order to avoid over-fitting by acting
as a regularizer in training [14]. GPU acceleration allows efficient training (we
use cuda-convnet2').
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Fig. 1. The proposed ConvNet architecture. The number of convolutional filters and
neural network connections for each layer are as shown. This architecture is constant
for all ConvNet variations presented in this paper (apart from the number of input
channels): P—ConvNet, R1—ConvNet, and R2—ConvNet.

! https://code.google.com/p/cuda-convnet2
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Fig. 2. The first layer of learned convolutional kernels using three representations:
a) 2.5D sliding-window patches (P—ConvNet), b) CT intensity superpixel regions
(R1—ConvNet), and ¢) CT intensity + Py map over superpixel regions (R2—ConvNet).

2.3 P—ConvNet: Deep Patch Classification

We use a sliding window approach that extracts 2.5D image patches composed of
axial, coronal and sagittal planes within all voxels of the initial set of superpixel
regions {Srr} (see Fig. 3). The resulting ConvNet probabilities are denoted as
Py hereafter. For efficiency reasons, we extract patches every n voxels and then
apply nearest neighbor interpolation. This seems sufficient due to the already
high quality of P and the use of overlapping patches to estimate the values at
skipped voxels.

Fig. 3. Axial CT slice of a manual (gold standard) segmentation of the pancreas. From
left to right, there are the ground-truth segmentation contours (in red), RF based
coarse segmentation {Srr}, and the deep patch labeling result using P—ConvNet.

2.4 R—ConvNet: Deep Region Classification

We employ the region candidates as inputs. Each superpixel € {Sgr} will be
observed at several scales Ny with an increasing amount of surrounding contexts
(see Fig. 4). Multi-scale contexts are important to disambiguate the complex
anatomy in the abdomen. We explore two approaches: R; —ConvNet only looks
at the CT intensity images extracted from multi-scale superpixel regions, and
a stacked Ro—ConvNet integrates an additional channel of patch-level response
maps P, for each region as input. As a superpixel can have irregular shapes, we
warp each region into a regular square (similar to RCNN [10]) as is required by
most ConvNet implementations to date. The ConvNets automatically train their
convolutional filter kernels from the available training data. Examples of trained
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Fig. 4. Region classification using R—ConvNet at different scales: a) one-channel input
based on the intensity image only, and b) two-channel input with additional patch-
based P—ConvNet response.

first-layer convolutional filters for P—ConvNet, R; —ConvNet, Ro—ConvNet are
shown in Fig. 2. Deep ConvNets behave as effective image feature extractors
that summarize multi-scale image regions for classification.

2.5 Data Augmentation

Our ConvNet models (R;—ConvNet, Ro—ConvNet) sample the bounding boxes
of each superpixel € {Sgr} at different scales s. During training, we randomly
apply non-rigid deformations ¢ to generate more data instances. The degree of
deformation is chosen so that the resulting warped images resemble plausible
physical variations of the medical images. This approach is commonly referred
to as data augmentation and can help avoid over-fitting [6,8]. Each non-rigid
training deformation t is computed by fitting a thin-plate-spline (TPS) to a
regular grid of 2D control points {w;;i =1,2,...,k}. These control points are
randomly transformed within the sampling window and a deformed image is
generated using a radial basic function ¢(r), where t(z) = Zle ciod (||l — wil)
is the transformed location of x and {¢;} is a set of mapping coefficients.

2.6 Cross-Scale and 3D Probability Aggregation

At testing, we evaluate each superpixel at N, different scales. The probability
scores for each superpixel being pancreas are averaged across scales: p(x) =
J\l,g Zf\;sl pi(z). Then the resulting per-superpixel ConvNet classification val-
ues {p1(z)} and {p2(z)} (according to R;—ConvNet and Ry—ConvNet, respec-
tively), are directly assigned to every pixel or voxel residing within any super-
pixel € {Sgrr}. This process forms two per-voxel probability maps Pj(x) and
P, (z). Subsequently, we perform 3D Gaussian filtering in order to average and
smooth the ConvNet probability scores across CT slices and within-slice neigh-
boring regions. 3D isotropic Gaussian filtering can be applied to any Pj(z) with
k =0,1,2 to form smoothed G(Py(x)). This is a simple way to propagate the 2D
slice-based probabilities to 3D by taking local 3D neighborhoods into account. In
this paper, we do not work on 3D supervoxels due to computational efficiency?

2 Supervoxel based regional ConvNets need at least one-order-of-magnitude wider in-
put layers and thus have significantly more parameters to train.



DeepOrgan: Multi-level Deep Convolutional Networks 561

and generality issues. We also explore conditional random fields (CRF) using an
additional ConvNet trained between pairs of neighboring superpixels in order
to detect the pancreas edge (defined by pairs of superpixels having the same
or different object labels). This acts as the boundary term together with the
regional term given by Ro—ConvNet in order to perform a min-cut/max-flow
segmentation [15]. Here, the CRF is implemented as a 2D graph with connec-
tions between directly neighboring superpixels. The CRF weighting coefficient
between the boundary and the unary regional term is calibrated by grid-search.

3 Results and Discussion

Data: Manual tracings of the pancreas for 82 contrast-enhanced abdominal
CT volumes were provided by an experienced radiologist. Our experiments are
conducted using 4-fold cross-validation in a random hard-split of 82 patients
for training and testing folds with 21, 21, 20, and 20 patients for each testing
fold. We report both training and testing segmentation accuracy results. Most
previous work [1,2,3] uses leave-one-patient-out cross-validation protocols which
are computationally expensive (e.g., ~ 15 hours to process one case using a
powerful workstation [1]) and may not scale up efficiently towards larger patient
populations. More patients (i.e. 20) per testing fold make the results more
representative for larger population groups.

Evaluation: The ground truth superpixel labels are derived as described in
Sec. 2.1. The optimally achievable DSC for superpixel classification (if classified
perfectly) is 80.5%. Furthermore, the training data is artificially increased by
a factor Ny x N using the data augmentation approach with both scale and
random TPS deformations at the R—ConvNet level (Sec. 2.5). Here, we train
on augmented data using Ny, = 4, N; = 8. In testing we use Ny = 4 (without
deformation based data augmentation) and o = 3 voxels (as 3D Gaussian filter-
ing kernel width) to compute smoothed probability maps G(P(x)). By tuning
our implementation of [5] at a low operating point, the initial superpixel candi-
date labeling achieves the average DSCs of only 26.1% in testing; but has a 97%
sensitivity covering all pancreas voxels. Fig. 5 shows the plots of average DSCs
using the proposed ConvNet approaches, as a function of Py(x) and G(Py(x))
in both training and testing for one fold of cross-validation. Simple Gaussian 3D
smoothing (Sec. 2.6) markedly improved the average DSCs in all cases. Maxi-
mum average DSCs can be observed at pg = 0.2, p; = 0.5, and p2 = 0.6 in our
training evaluation after 3D Gaussian smoothing for this fold. These calibrated
operation points are then fixed and used in testing cross-validation to obtain the
results in Table 1. Utilizing Ro—ConvNet (stacked on P—ConvNet) and Gaus-
sian smoothing (G(Pz(x))), we achieve a final average DSC of 71.8% in testing,
an improvement of 45.7% compared to the candidate region generation stage at
26.1%. G(Py(x)) also performs well wiht 69.5% mean DSC and is more efficient
since only dense deep patch labeling is needed. Even though the absolute dif-
ference in DSC between G(Py(z)) and G(Ps(z)) is small, the surface-to-surface



562 H.R. Roth et al.

distance improves significantly from 1.46+1.5mm to 0.94+0.6mm, (p<0.01). An
example of pancreas segmentation at this operation point is shown in Fig. 6.
Training of a typical R—ConvNet with N x N, x N; =~ 850k superpixel exam-
ples of size 64 x 64 pixels (after warping) takes ~55 hours for 100 epochs on a
modern GPU (Nvidia GTX Titan-Z). However, execution run-time in testing is
in the order of only 1 to 3 minutes per CT volume, depending on the number of
scales N;. Candidate region generation in Sec. 2.1 consumes another 5 minutes
per case.

To the best of our knowledge, this work reports the highest average DSC
with 71.8% in testing. Note that a direct comparison to previous methods is not
possible due to lack of publicly available benchmark datasets. We will share our
data and code implementation for future comparisons®*. Previous state-of-the-
art results are at ~68% to ~69% [1,2,3,5]. In particular, DSC drops from 68%
(150 patients) to 58% (50 patients) under the leave-one-out protocol [3]. Our
results are based on a 4-fold cross-validation. The performance degrades grace-
fully from training (83.6+£6.3%) to testing (71.84£10.7%) which demonstrates
the good generality of learned deep ConvNets on unseen data. This difference is
expected to diminish with more annotated datasets. Our methods also perform
with better stability (i.e., comparing 10.7% versus 18.6% [1], 15.3% [2] in the
standard deviation of DSCs). Our maximum test performance is 86.9% DSC
with 10%, 30%, 50%, 70%, 80%, and 90% of cases being above 81.4%, 77.6%,
74.2%, 69.4%, 65.2% and 58.9%, respectively. Only 2 outlier cases lie below 40%
DSC (mainly caused by over-segmentation into other organs). The remaining
80 testing cases are all above 50%. The minimal DSC value of these outliers is
25.0% for G(P2(x)). However [1,2,3,5] all report gross segmentation failure cases
with DSC even below 10%. Lastly, the variation CRF(Ps(x)) of enforcing Ps(z)
within a structured prediction CRF model achieves only 68.2% +4.1%. This is
probably due to the already high quality of G(Py) and G(P,) in comparison.

Table 1. 4-fold cross-validation: optimally achievable DSCs, our initial candidate
region labeling using Srr, DSCs on P(z) and using smoothed G(P(z)), and a CRF
model for structured prediction (best performance in bold).

DSC (%) |Opt.|Srr@) | Po(z)|G(Po(x))| PL(x)|G(Py(2)) | Pa(2)| G(P2(a)) [CRE (Pa(x))

Mean 80.5| 26.1 | 60.9| 69.5 56.8 | 629 |649| T71.8 68.2
Std 36 | 71 |104 9.3 11.4 16.1 8.1 10.7 4.1
Min 70.9| 142 | 229 | 353 1.3 0.0 33.1| 25.0 59.6
Max 85.9| 45.8 | 80.1 844 | 774 873 | 779 | 86.9 74.2

3 http://www.cc.nih.gov/about/SeniorStaff/ronald_summers.html
4 http://www.holgerroth.com/
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Fig. 5. Average DSCs as a function of un-smoothed Py (z),k = 0,1, 2, and 3D smoothed
G(Px(x)),k = 0,1,2, ConvNet probability maps in training (left) and testing (right)
in one cross-validation fold.

Fig. 6. Example of pancreas segmentation using the proposed R2—ConvNet approach
in testing. a) The manual ground truth annotation (in red outline); b) the G(P2(z))
probability map; c) the final segmentation (in green outline) at p2 = 0.6 (DSC=82.7%).

4 Conclusion

We present a bottom-up, coarse-to-fine approach for pancreas segmentation in
abdominal CT scans. Multi-level deep ConvNets are employed on both image
patches and regions. We achieve the highest reported DSCs of 71.8+10.7% in
testing and 83.646.3% in training, at the computational cost of a few minutes,
not hours as in [1,2,3]. The proposed approach can be incorporated into multi-
organ segmentation frameworks by specifying more tissue types since ConvNet
naturally supports multi-class classifications [6]. Our deep learning based organ
segmentation approach could be generalizable to other segmentation problems
with large variations and pathologies, e.g. tumors.

Acknowledgments. This work was supported by the Intramural Research Pro-
gram of the NIH Clinical Center.



564

H.R. Roth et al.

References

10.

11.

12.

13.

14.

15.

Wang, Z., Bhatia, K.K., Glocker, B., Marvao, A., Dawes, T., Misawa, K., Mori, K.,
Rueckert, D.: Geodesic patch-based segmentation. In: Golland, P., Hata, N., Baril-
lot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part 1. LNCS, vol. MICCALI,
pp. 666-673. Springer, Heidelberg (2014)

Chu, C., et al.: Multi-organ segmentation based on spatially-divided probabilistic
atlas from 3D abdominal CT images. In: Mori, K., Sakuma, I., Sato, Y., Barillot,
C., Navab, N. (eds.) MICCAI 2013, Part IT. LNCS, vol. 8150, pp. 165-172. Springer,
Heidelberg (2013)

Wolz, R., Chu, C., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D.: Auto-
mated abdominal multi-organ segmentation with subject-specific atlas generation.
TMI 32(9), 1723-1730 (2013)

Ling, H., Zhou, S.K., Zheng, Y., Georgescu, B., Suehling, M., Comaniciu, D.: Hi-
erarchical, learning-based automatic liver segmentation. In: IEEE CVPR, pp. 1-8
(2008)

Farag, A., Lu, L., Turkbey, E., Liu, J., Summers, R.M.: A bottom-up approach
for automatic pancreas segmentation in abdominal CT scans. MICCAI Abdominal
Imaging workshop, arXiv preprint arXiv:1407.8497 (2014)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS, pp. 1097-1105 (2012)

Mostajabi, M., Yadollahpour, P., Shakhnarovich, G.: Feedforward semantic seg-
mentation with zoom-out features. arXiv preprint arXiv:1412.0774 (2014)
Ciresan, D.C.; Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection
in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma,
1., Sato, Y., Barillot, C., Navab, N. (eds.) MICCALI 2013, Part II. LNCS, vol. 8150,
pp. 411-418. Springer, Heidelberg (2013)

Roth, H.R., et al.: A new 2.5D representation for lymph node detection using
random sets of deep convolutional neural network observations. In: Golland, P.,
Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS,
vol. MICCALI, pp. 520-527. Springer, Heidelberg (2014)

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In: IEEE CVPR, pp. 580-587
(2014)

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic super-
pixels compared to state-of-the-art superpixel methods. PAMI 34(11) (2012)

Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel
segmentation. In: IEEE CVPR, pp. 2097-2104 (2011)

Everingham, M., Eslami, S.A., Gool, L.V., Williams, C.K., Winn, J., Zisserman,
A.: The PASCAL visual object classes challenge: A retrospective. IJCV 111(1),
98-136 (2014)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. JMLR 15(1),
1929-1958 (2014)

Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation.
1JCV 70(2), 109-131 (2006)



	DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation
	1 Introduction
	2 Methods
	2.1 Candidate Region Generation
	2.2 Convolutional Neural Network (ConvNet) Setup
	2.3 P-ConvNet: Deep Patch Classification
	2.4 R-ConvNet: Deep Region Classification
	2.5 Data Augmentation
	2.6 Cross-Scale and 3D Probability Aggregation

	3 Results and Discussion
	4 Conclusion




