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Abstract. The implementation of 3D stereo matching in real time is
an important problem for many vision applications and algorithms. The
current work, extending previous results by the same authors, presents
in detail an architecture which combines the methods of Absolute Differ-
ences, Census, and Belief Propagation in an integrated architecture suit-
able for implementation with Field Programmable Gate Array (FPGA)
logic. Emphasis on the present work is placed on the justification of
dimensioning the system, as well as detailed design and testing infor-
mation for a fully placed and routed design to process 87 frames per
sec (fps) in 1920 × 1200 resolution, and a fully implemented design for
400 × 320 which runs up to 1570 fps.
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1 Introduction

Stereo vision is a research area in which progress is made for some decades now,
and yet emerging algorithms, technologies, and applications continue to drive
research to new advancements. The purpose of stereo vision algorithms is to
construct an accurate depth map out of two or more images of the same scene,
taken under a slightly different angle/position. In a set of two images one image
has the role of the reference image while the other is the non-reference one. The
basic problem of finding pairs of pixels, one in the reference image and the other
in the non-reference image that correspond to the same point in space, is known
as the correspondence problem and has been studied for many decades [1]. The
difference in coordinates of the corresponding pixels (or similar features in the
two stereo images) is the disparity. Based on the disparity between correspond-
ing pixels and on stereo camera parameters such as the distance between the
two cameras and their focal length, one can extract the depth of the related
point in space by triangulation. This problem has been widely researched by
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the computer vision community and appears not only in stereo vision but in
other image processing topics as well such as optical flow calculation [2]. The
range of applications of 3D stereo vision cannot be underestimated, with new
fields of application emerging continuously, such as in recent research on shape
reconstruction of space debris [3].

The class of algorithms which we study falls into the broad category of pro-
ducing dense stereo maps. An extensive taxonomy of dense stereo vision algo-
rithms is available in [4], and an online constantly renewed comparison can be
found in [5], containing mainly software implementations. In general, the algo-
rithm searches for pixel matches in an area around the reference pixel in the
non-reference frame. This entails a heavy processing task as for each pixel the
2D search space should be exhaustively explored. To reduce the search space, a
constraint called epipolar line can be applied. This constraint aims at reducing
the 2D area search space to a 1D line by assuming that the two cameras are
placed on the same horizontal axis (much like the human eyes) and that the
corresponding images do not have a vertical displacement, thus the pixels which
correspond to the same image location are only displaced horizontally. The epipo-
lar line constraint is enforced through a preprocessing step called rectification,
which is applied to the input pair of stereo images. In this work we concentrate
on the stereo correspondence algorithm and not on the rectification step, assum-
ing that images are rectified prior to processing. We present an FPGA-based
implementation that is scalable and can be adjusted to the application at hand,
offering great speed-up over a software implementation. Essentially, we extend
our work published in [6], by including more results and a detailed analysis on
aspects related to performance and resource utilization. We should note here that
stereo matching is embarrassingly parallel and thus someone would reasonably
expect getting high performance gains from a custom hardware implementation.
Hence, our contributions go beyond solely achieving high performance results,
and these are:

– an analysis showing how the use of aggregation alleviates the need to employ
the more computationally demanding Sum of Absolute Differences (SAD)
algorithm while still maintaining good results;

– an analysis on how to dimension the combination of the Absolute Diferences
(AD) and the Census algorithms with aggregation in a single hardware imple-
mentation;

– the FPGA-based architecture with detailed tradeoff analysis in the use of its
primitive resources (Block RAM, Flip-Flops, logic slices), which justifies the
use of FPGAs in the field of stereo vision;

– a placed-and-routed design allowing real-time processing up to 87 fps for full
HD 1920 × 1200 frames in a medium-size FPGA;

– a modification at the final phase of design cycle that improved by 1.6x the
system performance;

– a detailed cost vs. accuracy analysis and on-FPGA RAM usage for design
optimization.
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The chapter is organized as follows: Sect. 2 discusses previous work, focusing
mainly on hardware-related studies, and with a more up-to-date comparison of
recent research results vs. those in our previous work [6]. Section 3 describes the
algorithm and its individual steps. Section 4 analyses the benefits of mapping
the algorithm to an FPGA with emphasis on dimensioning, and especially on
the usefulness of aggregation in addition to AD and Census vs. the SAD algo-
rithm. An in-depth discussion of our system is given in Sect. 5, including the
implementation of belief propagation. Section 6 has the system performance and
the usage of resources, and Sect. 7 summarizes the chapter.

2 Relevant Research

In recent years there is considerable work on 3D stereo vision, and in particular
on hardware systems to support real-time 3D stereo vision. Most of these results
are with FPGA technology, although there exist approaches with Digital Sig-
nal Processors (DSP) and Graphics Processor Units (GPU). Due to its intrinsic
heavy parallelization and pipelining, it is one of the most promising candidates
that can benefit from hardware implementation. However, several factors should
be considered when it comes to develop such a design. The main factors are
the maximum resolution supported and whether processing can be done at real-
time; a rate of 30 fps is desirable for the human eye, but higher rates might be
useful in industrial applications. Table 1 consolidates representative implemen-
tations in different technologies, with information on the maximum resolution
and processing rate.

The work in [7] was one of the earliest ones to combine the development of
cost calculation with the Laplacian of Gaussian in a DSP. More recently, several
works developed different algorithms in fully functional FPGA-based systems

Table 1. Implementation of 3D stereo vision in different technologies

Refernces Resolution Disparity fps Technology Year

[7] 160 × 120 32 30 DSP 1997

[8] 320 × 240 20 150 Spartan-3 2007

[9] 320 × 240 16 75 Virtex-II 2010

[10] 320 × 240 16 574 GPU 2010

[6] 400 × 320 64 1570 Virtex-5 2013

[11] 640 × 480 128 30 4 Stratix S80 2006

[12] 640 × 480 64 230 Virtex-4 2010

[13] 640 × 480 54 >30 Spartan-6 2013

[14] 640 × 480 60 507.9 Virtex-6 2014

[14] 1024 × 768 60 199.3 Virtex-6 2014

[15] 1920 × 1080 300 30 Spartan-6 2011

[6] 1920 × 1200 64 87 Virtex-5 2013
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ranging from relatively simple [8,9] to more complex ones [11,12,14,15]. The
authors of [12,15] have designed full stereo vision systems incorporating the rec-
tification preprocessing step. The work in [10] provides designs of an algorithm
based on census transform in three different technologies, i.e. CPU, GPU and
DSP; the maximum performance was obtained with the GPU. The authors in
[16] introduced a local stereo matching scheme, making use of a guided filter for
weighted cost aggregation to achieve impressive results relative to the quality
of local algorithms. Their implementation on a GPU achieved real-time perfor-
mance with 23 fps on average. The authors of [17] compare FPGA and GPU
implementations of stereo vision to expose the trade-off between the flexibility
but relatively low speed of an FPGA, and the high speed and fixed architecture
of the GPU; that work highlights the relative strengths and limitations of the two
systems. An interesting work reviewing algorithms suitable for low-cost FPGA
implementation was published in [18], concluding that the memory footprint
of the algorithm is the most important consideration given the limited on-chip
memory of FPGAs; three different algorithms were demonstrated as a part of a
real-time self-contained stereo vision system based on a Xilinx Spartan 6.

The supported disparity is an important parameter that scales with the
image resolution. As shown in Table 1, disparity for medium resolutions should
be between 64 and 128; this was the case for our functional prototype as well.
Our system surpasses all previous systems in terms of performance. The sys-
tem we implemented in a Xilinx Virtex-5 FPGA sustains a processing rate of
1570 fps for 400 × 320 frames. To the best of our knowledge this is far better
than any published work. For 640×533 resolution we achieved a processing rate
of 589 fps, while we support 1920× 1200 resolution at a rate of 87 fps. Moreover,
our analysis differs from other publications in the sense that we study the way
FPGA primitive resources suit the characteristics of each stage of the stereo
vision algorithm.

A more recent version of our system, aiming at a low-cost embeddable design
has been published in [13]. This design is substantially smaller in FPGA resources
vs. the current work, however, the design in [13] has fewer capabilities, including
a 15 % loss of 3D stereo matching capability in the near depth of field, which
comes from limitations in the number of pixels among which the disparities are
computed (54 in [13] vs. 64 in the present work), and the number of frames per
second was deliberately lowered to 30 in order to reduce power consumption;
however, with a higher clock rate a higher fps rate could be achieved.

3 The Algorithm

A typical approach in stereo matching is to employ a local algorithm which
matches corresponding pixels in the image pair. This local algorithm computes
matching costs between a pixel in the reference frame and a set of pixels in the
target frame and selects the match with the minimum cost. This is known as
the Winner-Take-All (WTA) strategy, according to which the algorithm selects
the match with the global minimum cost in the search space. Essentially, this
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process is equivalent to computing a 3D cost matrix (called Disparity Search
Image or DSI, shown in Fig. 1) of size W ×H×Dmax, - where W the frame width,
H the frame height and Dmax the size of the search space - and selecting the
index of the minimum in the Dmax dimension. To improve the results, usually
a cost aggregation step that acts on the DSI is interjected between the cost
computing and match selecting steps. Post-processing steps can further refine
the resulting disparity map.

Fig. 1. Disparity Search Image (DSI) volume

Our algorithm consists of the cost computation step implemented by the
Absolute Difference (AD) census combination matching cost, a simple fixed win-
dow aggregation scheme, a left/right consistency check and a scan-line belief
propagation solution as a post processing step. Each step of the algorithm will
be explained below, whereas the justification for the choice of this combination
of algorithms will become evident from quantitative data in Sect. 4.

The AD measure is defined as the absolute difference between two pixels,
CAD = |p1 − p2|, while census [19] is a window based cost that assigns a bit-
string to a pixel and is defined as the sum of the Hamming distance between
the bit-strings of two pixels. Let Wc be the size of the census window. A pixel’s
bit-string is of size W 2

c − 1 and is constructed by assigning 1 if pi > pc or 0
otherwise, for pi ∈ Window, and pc the central pixel of the window. The two
costs are fused by a truncated normalized sum:

C(pR, pT ) = max(
CAD(pR, pT )

CMax
AD

+
CCensus(pR, pT )

CMax
Census

, λtrunc) (1)
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where λtrunc is the truncation value given as parameter. This matching cost
encompasses image local light structure (census) as well as information about
the light itself (AD), and produces better results than its parts alone, as was
shown in [20]. At object borders, the aggregation window necessarily includes
costs belonging to two or more objects in the scene, whereas ideally we would
like to aggregate only costs of one object. For this reason, truncating the costs
to a maximum value helps at least limiting the effect of any outliers in each
aggregation window [4].

After initializing the DSI volume with AD-Census costs, we perform a simple
fixed window aggregation on the W × H slices of the DSI, illustrated in Fig. 2.
This is based on the assumption that neighbouring pixels (i.e. pixels belonging in
the same window) most likely share the same disparity (depth) as well. Although
this does not stand for object borders and slanted surfaces, it produces good
results. On the other hand, one should select carefully the size of the aggregation
window Wa, as large windows tend to lead to an edge fattening effect in object
borders while small aggregation windows lead to loss of accuracy in the inside
area of an object itself, which results in a noisy output.

Fig. 2. Example of 3× 3 fixed window aggregation of DSI costs

Finally, we perform a left/right consistency check (LRC check) which repeats
the match selection step but with the opposite frame as reference and compares
the new disparity image with the original one. This process allows to detect mis-
matches due to occlusions (areas of the scene that appear only in one frame).
Using the mismatches detected, our scan-line belief propagation solution propa-
gates local confident matches along the scan-line, by accumulating matches that
passed the LRC check in a queue (called confident queue due to that it stores
only disparities that passed the LRC check), and propagating them to local
matches classified as occlusions in a neighborhood queue.
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4 Dimensioning of the FPGA Architecture

The algorithm can be mapped on an FPGA very efficiently due to its intrinsic
parallelism. For instance, the census transform requires W 2

c −1 comparisons per
pixel to compute the bit-string. Aggregation also requires W 2

a additions per cost.
For each pixel we must evaluate 64 possible matches by selecting the minimum
cost. These operations can be done in parallel. The buffer architecture requires
memories to be placed close to each other, as they shift data between them in
a very regular way. FPGA memory primitives (BRAMs) are located in such a
way they facilitate this operation. Figure 3 shows the critical components for
the different steps of the algorithm. Our system shares the pixel clock of the
cameras and processes the incoming pixels in a streaming fashion as long as the
camera clock does not surpass the system’s maximum frequency. This way we
avoid building a full frame buffer; we instead keep only the part of the image
that the algorithm is currently processing.

It is important to assess the need for flexibility regarding the algorithm para-
meters, and the gains of such a setup. First and foremost, we are seeking to build
a system that is frame-agnostic. Stating differently, we aim at supporting a series
of frame sizes within a range of choices; we regard this feature as obligatory. How-
ever, a limit on the maximum frame width was imposed for reasons explained in
Sect. 6. In addition, all the algorithmic parameters are adjustable; the maximum
disparity search range Dmax, the census window size Wc, and the aggregation
window size Wa. We chose to structure our system in a modular way in order

Fig. 3. Algorithm stages and critical components that fit well into FPGA regular struc-
tures



An FPGA-Based Real-Time System 175

to easily add/remove features. Features such as scanline belief propagation and
aggregation can be turned on or off selectively by the user. Figure 4 shows perfor-
mance results without aggregation and with various aggregation window sizes.

In order to develop an efficient architecture it is important to understand how
resources are used. In terms of sheer performance when no aggregation is used, the
SAD algorithm is the best, and so it would seem that it is best to implement it in
hardware. No aggregation means that the aggregation window is of size 1, when
computational cost is considered, the SAD algorithm is by far more expensive than
the alternatives, as it has approximately 2×W 2 comparisons. It is therefore useful
to consider cost vs. performance when we introduce aggregation to the system,
where we notice that the system-level performance with aggregation comes close
to the SAD performance, but at a lower computational cost.

The next question to answer in the development of a useful architecture is
the tradeoff between the census window size vs. the aggregation window size.
The effects of different census window sizes and different aggregation window
sizes is illustrated in Fig. 5, which contains in a more clear form the information
from Fig. 4 for the algorithms which were actually implemented in our system.

Fig. 4. Comparison of Census, AD and SAD performance with various aggregation
window sizes



176 K. Papadimitriou et al.

We analyzed the influence of the algorithm’s parameters on the quality metric
of percentage of good matches, over six (6) datasets of Middlebury’s 2005 data-
base [5]. We have settled on a Wc = 9×9 sized census window, a Wa = 5×5 sized
aggregation window and a Dmax = 64 disparity search range; these values offer
a good trade-off between overall quality and computational requirements. We
followed a similar procedure to determine all the other secondary parameters as
well, such as the confident neighborhood queue size and the neighborhood queue
size of the scan-line belief propagation module, and the LR check threshold of
the LR consistency check module [10].

There are negligible gains if we choose a larger Wc or Wa. The maximum
achievable percentage of good matches was 78,36 % for AD-Census (Wc = 7,
Wa = 13), therefore there is no actual benefit by choosing a large aggregation
window. It is thus our choice to fix the window sizes in our implementation. Our
design remains generic in any parameter aspect but it is not reconfigurable at
run-time. This decision simplifies our hardware design. For purposes of evalua-
tion and experimental verification of the design we designed our system using
Xilinx FPGAs, namely, a Virtex 5 XC5VLX110T as well as a Spartan 3 1000,
setting the parameters accordingly to fit the FPGA device at hand.

Last but not least, we need to consider what happens with occluded pixels from
one or the other camera. It is therefore useful to allow for some resources to be
used for Belief Propagation (BP), as shown in Sect. 5. Belief propagation (which
uses results from the Left-Right consistency check) does not consume significant

Fig. 5. Quality results in terms of the good matches for different census and aggregation
window sizes, when using the AD-Census
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resources but it solves the problem of uncertainty due to occluded pixels which
would result if only one camera were used as the only reference image.

5 Design and Implementation

The system in Fig. 6 receives two 8-bit pixel values per clock period, each one for
the corresponding image in the stereo pair. A window buffer is constructed for
each data flow in two steps. Lines Buffer stores Wc − 1 scan-lines of the image,
each in a BRAM, conceptually transforming the single pixel input of our system
to a Wc sized column vector. Window Buffer acts as a Wc sized buffer for this
vector, essentially turning it into a W 2

c matrix. This matrix is subsequently fed
into Census Bitstring Generator of Fig. 6, which performs W 2

c − 1 comparisons
per clock, producing the census bit-string. Central pixels/Bit-strings FIFO stores
64 non-reference census bit-strings and window central pixels, which along with
the reference bit-string and central pixel are driven to 64 Compute Cost mod-
ules. This component performs the XOR/summing that is required to produce
the Hamming distance for the census part of the cost, along with the absolute
difference for the AD part and the necessary normalization and addition of the
two. The maximum census cost value is 80 as there are 81 pixels in the win-
dow excluding the central pixel from calculations. Likewise, the maximum AD
cost value is 255 as each pixel is 8 bits wide. As the two have different ranges,
we scale the census part from the 0–80 range to a 0–255 range, by turning it
into an 8-bit value. To produce the final AD-Census cost we add the two parts

Fig. 6. Datapath of the cost computation (left side) and aggregation (right side)
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together, resulting in a 9-bit cost to account for overflow. Truncating this cost to
6-bit produces a slight improvement in quality as discussed in Sect. 3, and also
reduces buffering requirements in the aggregation step.

For the aggregation stage, 22 line buffers (Aggregation Lines Buffer in Fig. 6)
are used for 64 streams of 6-bit costs, each lines buffer allocated to 3 streams.
BRAM primitives are configured as multiples of 18 K independent memories, so
we maximize memory utilization by packing three costs per BRAM, accepting
a maximum depth of 1024 per line. Like the Lines Buffers at the input, they
conceptually transform the stream of data to Wa sized vertical vectors. Each
vector is summed separately in the Vertical Sum components and driven to
delay adders (Horizontal Sum), which output X(t) + X(t − 1) + ... + X(t − 4).
At the end of this procedure we have 64 aggregated costs.

Following the aggregation of costs, the LRC component illustrated in Fig. 7,
filters out mismatches caused by occlusions; its operation is illustrated in Fig. 8.
The architecture of LRC is based on the observation that by computing the right-
to-left disparity at reference pixel p(x, y), we have already computed the costs
needed to extract the left-to-right disparity at non-reference pixel p′(x, y). The
LRC buffer is a delay in the form of a ladder that outputs the appropriate left-
to-right costs needed to extract the non-reference disparity. The WTA modules
select the match with the best (lowest) cost using comparator trees. The reference
disparity is delayed in order to allow enough time for the non-reference disparities
space to build up in NonReference Disparities Buffer and then it is used to index
said buffer. Finally, a threshold in the absolute difference between DispRL(x, y)
and DispLR(x, y) indicates the false matches detected.

Fig. 7. Datapaths of the left/right consistency check (left side) and scan-line belief
propagation (right side)

The datapath for the scan-line belief propagation algorithm is shown in Fig. 7.
The function of this component is based on two queues: the Confident Neigh-
borhood Queue and the Neighborhood Queue. As implied by its name, the Con-
fident Neighborhood Queue places quality constraints on its contents, meaning
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Fig. 8. Top row has pixels of the Right image, whereas bottom row has pixels of the
Left image. The grey pixel in the center of the Right image has a search space in the
Left image shown with the broad grey area. To determine the validity of DispRL(x, y),
we need all left-to-right disparities in the broad grey area, thus we need right-to-left
costs up to x + Dmax. The same stands for the diagonal shaded pixel in the center of
the Left image.

that only disparities passing the LR consistency check are written in it. Fur-
thermore, at each cycle it calculates the average of the confident disparities,
as this value will ultimately be propagated to non confident ones in the neigh-
borhood queue. This average is calculated by a constant multiplier, using fixed
point arithmetic and rounding to reduce any number representation errors. On
the other hand, the Neighborhood Queue simply keeps track of local disparities
and their LR status. When the Propagate signal is asserted (active when a new
confident disparity is calculated and stored in the New Confident Disparity reg-
ister), the NewDisp is written to all records with a false LRC flag. NewDisp is
selected to be Previous Confident Disparity when this value is smaller than New
Confident Disparity, otherwise it is assigned New Confident Disparity, effectively
propagating confident background depths.

We report, below, some noticeable points regarding system operation:

– A small frame of unknown disparities is formed around the final disparity
image, where due to the image boundaries, the windows cannot be formed
and thus disparities cannot be computed.

– Searching for matches near the image boundary leads to reduced or trivial
disparity search spaces. In such cases our system finds the best match in the
possible range. Left/Right Consistency check filters out any incorrect matches
due to small search spaces.

– Belief propagation is activated on each end of line regardless of the LRC
indication, in order to fill in the occluded right area of the image.

– In order for high resolutions to work acceptably, the user needs to either
increase the Dmax accordingly or alternatively to reduce the inter-camera
spacing. The second option is preferable as it has no computational conse-
quences, whereas increasing Dmax has a cost on FPGA resources. Moreover,
as the features of the images are now more spaced out in pixel distances, the
other parameters of the system need also to be adjusted in order to maintain
output quality.
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6 Performance Evaluation and Resource Utilization

The system which was described, above, can process one pixel pair per clock
period, after an initial latency. The most computationally intensive part of the
main stage of the algorithm lies in the XOR/sum module of the AD census, which
computes the XOR/sum of 64 80-bit strings at the same time. A similar situation
stands for the WTA module, which performs 64 11-bit simultaneous comparisons.
We cope with both bottlenecks through fully pipelined adder/comparator trees
in order to increase the throughput. After the initial implementation, we added
extra pipeline stages to further enhance performance. Below we present the dif-
ferences between the initial (unoptimized) design, and the second (optimized)
design. Table 2 shows the performance results of the system implemented in a
Xilinx Virtex-5 FPGA. The maximum clock after place and route for the unopti-
mized design is 131 MHz, while for the optimized design is 201 MHz. Table 3 has
the differences in resource utilization between the two designs; it demonstrates
that for a speed improvement of over 50 %, the resource utilization penalty is
rather small. Based on data we gathered from the tools, the critical path lies
on a control signal driving the FSM of the aggregation line buffers; 16,6 % is
attributed to logic while the rest 83,4 % of the delay is due to routing.

Table 2. Design clock and processing rates for the optimized vs. unoptimized design
in Virtex XC5VLX110T FPGA for various resolutions

100× 83 384× 320 644× 533 1024× 853 1600× 1333 1920× 1200

Unoptimized design (131MHz) 15,783 fps 1,066 fps 384 fps 150 fps 61 fps 56 fps

Optimized design (201MHz) 24,216 fps 1,635 fps 589 fps 230 fps 94 fps 87 fps

Table 3. Resource utilization of the unoptimized vs. optimized design in Virtex
XC5VLX110T FPGA for Dmax = 64, Wc = 9, Wa = 5

Slices (%) LUTs (%) Flip-Flops (%) BRAMs (%)

Available 17,280 69,120 69,120 148

Unoptimized design (131MHz) 13,556 (78%) 37.107 (53%) 39,565 (57%) 59 (39%)

Optimized design (201MHz) 14,239 (82%) 37,986 (55%) 41,792 (60%) 59 (39%)

We should point out here that Wc, Wa and Dmax parameters are related
with tasks carried out in parallel, thus they do not affect system performance
but only resource utilization. Table 4 has the distribution of resources along with
the percentage breakdown in each type of resources for the optimized design.

We conducted several experiments by varying the parameters in each stage so
as to assess system performance in terms of scalability and increase in resource
utilization. Tables 5, 6, 7 have the FPGA resource results for different parame-
ter values. It is obtained that the design clock is not affected. At the same time
we observe that once a parameter increases, the amount of resources needed
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Table 4. Resource utilization of the optimized design in Virtex XC5VLX110T FPGA
for Dmax = 64, Wc = 9, Wa = 5

LUTs (%) Flip-Flops (%) BRAMs (%)

Available 69,120 69,120 148

Total consumed 37,986/69,120 (55%) 41,792/69,120 (60%) 59/148 (40%)

AD census 25,135/37,986 (66%) 29,167/41,792 (70%) 8/59 (14%)

Aggregation 6,547/37,986 (17%) 7,312/41,792 (17%) 51/59 (86%)

Left/Right check 4,638/37,986 (12%) 4,734/41,792 (11%) 0/59 (0%)

Scanline belief propagation 543/37,986 (1.5%) 634/41,792 (1.5%) 0/59 (0%)

for a resource category might increase drastically while another category is
not affected, i.e. in Table 6 as Wc increases, the amount of flip-flops and LUTs
increases as opposed to the amount of BRAMs which remains unchanged.

Table 5. Impact of Dmax on resource utilization and performance, when Wc = 9 and
Wa = 5

Dmax LUTs (%) Flip-Flops (%) BRAMs (%) Max Clock

16 10,284 (14%) 12,531 (18 %) 30 (20 %) 201.207 MHz

32 19,148 (27%) 22,687 (32 %) 30 (20 %) 201.045 MHz

64 37,986 (54%) 41,792 (60 %) 59 (39 %) 201.518 MHz

Table 6. Impact of Wc on resource utilization and performance, when Dmax = 64 and
Wa = 5

Wc LUTs (%) Flip-Flops (%) BRAMs (%) Max Clock

5 21,637 (31 %) 21,866 (31%) 59 (39%) 201.086 MHz

7 29,813 (43 %) 31,840 (46%) 59 (39%) 201.113 MHz

9 37,986 (54 %) 41,792 (60%) 59 (39%) 201.518 MHz

Aggregation of the costs consumes most of our BRAM resources, as we have
to construct Dmax×Wa cost line buffers (a total of Dmax×Wa×FrameWidth×
CostSize bits must be buffered). BRAM primitives of Virtex 5 FPGAs support
only certain aspect ratios. The vendor tool employs these primitives to con-
struct bigger memories, using an allocation algorithm. Memories with different
widths/depths from those ratios are mapped to the closest possible solution but
may not use the resources optimally. Memories with ratios of 1 × 16K (16,384
elements of 1-bit), 2 × 8K, 4 × 4K, 9 × 2K, 18 × 1K, 36 × 512 are guaranteed to
utilize a single 18 K primitive and thus use the resources optimally.
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Table 7. Impact of Wa on resource utilization and performance, when Dmax = 64 and
Wc = 9

Wa LUTs (%) Flip-Flops (%) BRAMs (%) Max Clock

1 (off) 28,505 (41 %) 33,047 (47%) 9 (6 %) 201.005 MHz

3 34,618 (50 %) 38,660 (55%) 31 (20 %) 201.167 MHz

5 37,986 (54 %) 41,792 (60%) 59 (39 %) 201.518 MHz

In addition, very large frame sizes cause parameter bloating. In specific,
images with 1800 × 1500 resolution require at least Dmax = 180 for achiev-
ing satisfactory results in terms of quality (without altering the current camera
baseline). While keeping the other parameters constant (Wc = 9, Wa = 5), such
a large Dmax would require buffering 180×5×1800 elements in the aggregation
stage.

Due to the above we decided to put a limit on the image width. Restricting
the frame width to 1024 pixels allowed us to:

– Pack at least two lines per 18K BRAM using a 18 × 1K BRAM primitive
configuration. For each cost line we allocate 9 × 1024 bits.

– Avoid excessive parameter bloating.

Using AD-Census, the costs are 9-bit long as described earlier. This benefits
our design as BRAM primitives can be used optimally in a 18×1K configuration.
Using pure Census, cost size is reduced to 7-bits. We can maximize BRAM usage
by using 9-bit costs, so we have room to increase census window size Wc up to
21 × 21, with little additional cost to resource usage.

If the cost size is less than 9-bits or if the frame width is less than 1024 we
can pack more lines. This aspect of our design is also parametric, as depending
on the frame size and cost size, each BRAM can fit up to 6 lines in a 36 × 512
BRAM configuration.

In an effort to reduce BRAM consumption even further, we performed a cost
size-accuracy tradeoff experimental analysis, depicted in Fig. 9. AD-Census was
redefined as:

ADCensus′ = min(ADCensus, SaturationV alue) (2)

Selecting saturation values to be power of 2, can reduce cost size and thus
fit more data into the BRAMs that implement the aggregation buffers. Our
analysis shows that there is a slight benefit in doing so: for a saturation value of
63 (cost size reduced to 6-bits), and for the default Wc and Wa values of 9 and 5
respectively, we observe a 0.5 % improvement over the cost without saturation.

This is an important result because it puts our quality almost on par with
a Wc = 11 and Wa = 5 parameter set. This slight improvement is attributed to
the reduction of the influence of outliers within the aggregation window by trun-
cating the cost. With 6-bit costs, we can pack 3 streams of costs per Aggregation
Lines Buffer, thus reducing BRAM consumption even further. Note that all the
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Fig. 9. Cost size/accuracy analysis. The peak value shifts to the right as the true
maximum cost increases.

results presented so far with regard to FPGA resource utilization, correspond to
designs incorporating the previous optimizations.

Figure 10 shows the effect of optimizations on BRAM utilization for Wc = 9,
Wa = 5, Dmax = 64 and a maximum frame width of 1024 pixels. Operating with
small frame sizes allows for optimal algorithm performance.

We performed extensive verification of our designs Fig. 11 has the set of
images we used to test our prototype. We entered stereo images and we compared
the software and the FPGA output over the ground truth. The SW version aimed
to support the validation phase; we developed it in Matlab prior to the FPGA
design. In terms of the physical setup for the verification, Fig. 12 shows the
methodology we followed to validate the FPGA system. The values of the pixels
in the output of the FPGA processing were subtracted from the values of the
pixels in the output of the SW, pixel-per-pixel so as to create an array holding
their differences. We obtained that SW and HW produced similar results. The
error lines are attributed to a slightly different selection policy in the WTA
process of the LRC stage. In particular, when it comes to compare two equal
cost values, our SW selects one cost value randomly, while our HW selects always
the first one. This variation occurs early in the algorithmic flow, thus it is not
only propagated but it is also amplified in the belief propagation module where
local estimates of correct disparities are spread to incorrectly matched pixels
along the scan-line. Finally, the errors at the borders that occur in both SW and
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Fig. 10. BRAM resource utilization with the optimized aggregation buffer structure

Fig. 11. Top row has Moebius 400× 320 input dataset from Middlebury database and
the ideal (ground truth) result. The bottow row has algorithm’s output from SW and
HW implementations.
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HW outputs as compared with the ground truth, are due to the unavoidable
occlusions at the image borders.

Fig. 12. Validation methodology

The actual prototype in the Virtex-5 FPGA can process images of up to
400 × 320 resolution. We put our efforts on building a high-speed stereo match-
ing design, rather than solving the I/O issue. Instead, at off-line time we send
images into internal BRAMs through a serial protocol; once the entire image is
stored in the BRAMs the design starts processing it. We used hardware means for
measuring the time to complete the FPGA processing, and by performing exper-
iments on different images - mainly from Middlebury database - we achieved a
processing rate of 1570 fps. To the best of our knowledge this outperforms any
published FPGA-based system.

7 Conclusions and Future Work

In this chapter we presented the architecture and implementation of a real time
stereo matching algorithm in an FPGA, which utilizes efficiently the strengths
of this device. We validated the system on a prototype, and we exceeded real-
time requirements by a large margin for various parameter configurations. In
the future we will place our efforts to more advanced aggregation schemes as
they are the key to better quality disparity maps for local methods. Another
point that would benefit from further research is the scan-line belief propagation
method, which we plan to augment to two dimensions and thus eliminate its
streaking artifacts. Also we plan to complete the stereo vision core algorithm
with rectification and full camera integration.
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