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Abstract. In this work, we generalized and unified two recent com-
pletely different works of Jascha [10] and Lee [2] respectively into one
by proposing the proximal stochastic Newton-type gradient (PROX-
TONE) method for optimizing the sums of two convex functions: one is
the average of a huge number of smooth convex functions, and the other
is a nonsmooth convex function. Our PROXTONE incorporates second
order information to obtain stronger convergence results, that it achieves
a linear convergence rate not only in the value of the objective function,
but also for the solution. The proofs are simple and intuitive, and the
results and technique can be served as a initiate for the research on the
proximal stochastic methods that employ second order information. The
methods and principles proposed in this paper can be used to do logistic
regression, training of deep neural network and so on. Our numerical
experiments shows that the PROXTONE achieves better computation
performance than existing methods.

1 Introduction and Problem Statement

In this work, we consider the problems of the following form:

min
x∈Rp

f(x) :=
1
n

n∑

i=1

gi(x) + h(x), (1)

where gi is a smooth convex loss function associated with a sample in a train-
ing set, and h is a non-smooth convex penalty function or a regularizer. Let
g(x) = 1

n

∑n
i=0 gi(x). We assume the optimal value f� is attained at some opti-

mal solution x�, not necessarily unique. Problems of this form often arise in
machine learning, such as the least-squares regression, the Lasso, the elastic net,
the logistic regression, and deep neural network.

For optimizing (1), the standard and popular proximal full gradient method
(ProxFG) uses iterations of the form

xk+1 = arg min
x∈Rp

{
∇g(xk)T x +

1
2αk

‖x − xk−1‖2 + h(x)
}

, (2)
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where αk is the step size at the k-th iteration. Under standard assumptions the
sub-optimality achieved on iteration k of the ProxFG method with a constant
step size is given by

f(xk) − f(x∗) = O(
1
k

).

When f is strongly-convex, the error satisfies [11]

f(xk) − f(x∗) = O(
(L − μg

L + μh

)k),

where L is the Lipschitz constant of f(x), μg, and μh are the convexity param-
eters of g(x) and h(x) respectively. These notations mentioned here will be
detailed in Section 1.1. This result in a linear convergence rate, which is also
known as a geometric or exponential rate because the error is cut by a fixed
fraction on each iteration.

Unfortunately, the ProxFG methods can be unappealing when n is large
or huge because its iteration cost scales linearly in n. When the number of
components n is very large, then each iteration of (2) will be very expensive
since it requires computing the gradients for all the n component functions gi,
and also their average.

To overcome this problem, researchers proposed the proximal stochastic gra-
dient descent methods (ProxSGD), whose main appealing is that they have an
iteration cost which is independent of n, making them suited for modern prob-
lems where n may be very large. The basic ProxSGD method for optimizing (1),
uses iterations of the form

xk = proxαkh

(
xk−1 − αk∇gik(xk−1)

)
, (3)

where at each iteration an index ik is sampled uniformly from the set {1, ..., n}.
The randomly chosen gradient ∇gik(xk−1) yields an unbiased estimate of the
true gradient ∇g(xk−1) and one can show under standard assumptions that, for
a suitably chosen decreasing step-size sequence {αk}, the ProxSGD iterations
have an expected sub-optimality for convex objectives of [1]

E[f(xk)] − f(x∗) = O(
1√
k

)

and an expected sub-optimality for strongly-convex objectives of

E[f(xk)] − f(x∗) = O(
1
k

).

In these rates, the expectations are taken with respect to the selection of the ik
variables.

Besides these first order method, there is another group of methods, called
proximal Newton-type methods, which converge much faster, but need more
memory and computation to obtain the second order information about the
objective function. These methods are always limited to small-to-medium scale
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problems that require a high degree of precision. For optimizing (1), proximal
Newton-type methods [2] that incorporate second order information use itera-
tions of the form xk+1 ← xk + Δxk, here Δxk is obtained by

Δxk = arg min
d∈Rp

∇g(xk)T d +
1
2
dT Hkd + h(xk + d), (4)

where Hk denotes an approximation to ∇2g(xk). According to the strategies
for choosing Hk, we obtain different method, such as proximal Newton method
(ProxN) when we choose Hk to be ∇2g(xk); proximal quasi-Newton method
(ProxQN) when we build an approximation to ∇2g(xk) using changes mea-
sured in ∇g according to a quasi-Newton strategy [2]. Indeed if we compared (4)
with (2), it can be seen ProxN is the ProxFG with scaled proximal mappings.

Based on the related background introduced above, now we can describe our
approaches and findings. The primary contribution of this work is the proposal
and analysis of a new algorithm that we call the proximal stochastic Newton-type
gradient (PROXTONE, pronounced /prok stone/) method, a stochastic variant
of the ProxN method. The PROXTONE method has the low iteration cost as
that of ProxSGD methods, but achieves the convergence rates like the ProxFG
method stated above. The PROXTONE iterations take the form xk+1 ← xk +
tkΔxk, where Δxk is obtained by

Δxk ← arg min
d

dT (∇k + Hkxk) +
1
2
dT Hkd + h(xk + d), (5)

here ∇k = 1
n

∑n
i=1 ∇i

k, Hk = 1
n

∑n
i=1 Hi

k, and at each iteration a random index
j and corresponding Hj

k+1 is selected, then we set

∇i
k+1 =

{
∇gi(xk+1) − Hi

k+1x
k+1 if i = j,

∇i
k+1 otherwise.

and Hi
k+1 ← Hi

k (i �= j).
That is, like the ProxFG and ProxN methods, the steps incorporates a gradi-

ent with respect to each function; but, like the ProxSGD method, each iteration
only computes the gradient with respect to a single example and the cost of
the iterations is independent of n. Despite the low cost of the PROXTONE
iterations, we show in this paper that the PROXTONE iterations have a linear
convergence rate for strongly-convex objectives, like the ProxFG method. That
is, by having access to j and by keeping a memory of the approximation for
the Hessian matrix computed for the objective funtion, this iteration achieves a
faster convergence rate than is possible for standard ProxSGD methods.

Besides PROXTONE, there are a large variety of approaches available to
accelerate the convergence of ProxSGD methods, and a full review of this
immense literature would be outside the scope of this work. Several recent
work considered various special cases of (1), and developed algorithms that
enjoy the linear convergence rate, such as ProxSDCA [8], MISO [3], SAG [7],
ProxSVRG [11], SFO [10], and ProxN [2]. All these methods converge with an
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exponential rate in the value of the objective function, except that the ProxN
achieves superlinear rates of convergence for the solution, however it is a batch
mode method. Shalev-Shwartz and Zhang’s ProxSDCA [8,9] considered the case
where the component functions have the form gi(x) = φi(aT

i x) and the Fenchel
conjugate functions of φi and h can be computed efficiently. Schimidt et al.’s
SAG [7] and Jascha et al.’s SFO [10] considered the case where h(x) ≡ 0.

Different from above related methods, our PROXTONE is a extension of
the SFO and ProxN to a proximal stochastic Newton-type method for solving
the more general nonsmooth ( compared to ProxSDCA, SAG and SFO) class
of problems defined in (1). PROXTONE makes connections between two com-
pletely different approaches. It achieves a linear convergence rate not only in the
value of the objective function, but also for the solution. We now outline the rest
of the study. Section 2 presents the main algorithm and gives an equivalent form
in order for the ease of analysis. Section 3 states the assumptions underlying
our analysis and gives the main results; we first give a linear convergence rate
in function value (weak convergence) that applies for any problem, and then
give a strong linear convergence rate for the solution, however with some addi-
tional conditions. We report some experimental results in Section 4 and provide
concluding remarks in Section 5.

1.1 Notations and Assumptions

In this paper, we assume the function h(x) is lower semi-continuous and convex,
and its effective domain, dom(h) := {x ∈ R

p |h(x) < +∞}, is closed. Each gi(x),
for i = 1, . . . , n, is differentiable on an open set that contains dom(h), and their
gradients are Lipschitz continuous, that is, there exist Li > 0 such that for all
x, y ∈ dom(h),

‖∇gi(x) − ∇gi(y)‖ ≤ Li‖x − y‖. (6)

Then from the Lemma 1.2.3 and its proof in Nesterov’s book [5], for i =
1, . . . , n, we have

|gi(x) − gi(y) − ∇gi(y)T (x − y)| ≤ Li

2
‖x − y‖2. (7)

A function f(x) is called μ-strongly convex, if there exist μ ≥ 0 such that for
all x ∈ dom(f) and y ∈ R

p,

f(y) ≥ f(x) + ξT (y − x) +
μ

2
‖y − x‖2, ∀ ξ ∈ ∂f(x). (8)

The convexity parameter of a function is the largest μ such that the above
condition holds. If μ = 0, it is identical to the definition of a convex function. The
strong convexity of f(x) in (1) may come from either g(x) or h(x) or both. More
precisely, let g(x) and h(x) have convexity parameters μg and μh respectively,
then μ ≥ μg + μh. From Lemma B.5 in [3] and (8), we have

f(y) ≥ f(x∗) +
μ

2
‖y − x∗‖2. (9)
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2 The PROXTONE Method

In this section we present the Proximal Stochastic Newton-type Gradient
Descent (PROXTONE) algorithm for solving problems of the form (1). There
are two key steps in the algorithm: (step 2) the regularized quadratic model (5)
is solved to give a search direction; (step 4) the component function gj(x) is
sampled randomly and the regularized quadratic model (5) is updated using
this selected function. Once these key steps have been performed, the current
point xk is updated to give a new point xk+1, and the process is repeated.

We summarize the PROXTONE method of (5) in Algorithm 1, while a thor-
ough description of each of the key steps in the algorithm will follow in the rest
of this section. It can be easily checked that if n = 1, then it becomes the deter-
mined proximal Newton-type methods proposed by Lee and Sun et al. [2] for
minimizing composite functions:

min
x∈Rp

f(x) := g(x) + h(x) (10)

by (4). Thus PROXTONE is indeed a generalization of ProxN [2].

Algorithm 1. PROXTONE: A generic PROXimal sTOchastic NEwton-type
gradient descent method
Input: start point x0 ∈ dom f ; for i ∈ {1, 2, .., n}, let Hi

−1 = Hi
0 be a positive definite

approximation to the Hessian of gi(x) at x0, ∇i
−1 = ∇i

0 = ∇gi(x
0) − Hi

0x
0; and

∇0 = 1
n

∑n
i=1 ∇i

0, H0 = 1
n

∑n
i=0 Hi

0.
1: repeat
2: Solve the subproblem for a search direction:�xk ← arg mind dT (∇k + Hkxk) +
1
2
dTHkd + h(xk + d).

3: Update: xk+1 = xk + �xk.
4: Sample j from {1, 2, .., n}, use the ∇gj(x

k+1) and Hj
k+1, which is a positive definite

approximation to the Hessian of gj(x) at xk+1, to update the ∇i
k+1 (i ∈ {1, 2, .., n}):

∇j
k+1 ← ∇gj(x

k+1) − Hj
k+1x

k+1, while leaving all other ∇i
k+1 and Hi

k+1 unchanged:

∇i
k+1 ← ∇i

k and Hi
k+1 ← Hi

k (i �= j) ; and finally obtain ∇k+1 and Hk+1 by ∇k+1 ←
1
n

∑n
i=1 ∇i

k+1, Hk+1 ← 1
n

∑n
i=1 Hi

k+1.
5: until stopping conditions are satisfied.
Output: xk.

It is also a generalization of recent work by Jascha [10], whose SFO is the
special case of our PROXTONE with h(x) ≡ 0. Our algorithm in Jascha’s style
is summarized in Algorithm 2 which is equivalent to the original PROXTONE.
To see the equivalence, keep in mind that Gk(x) in Algorithm 2 is a quadratic
function, we only need to check the following equations:

∇2Gk(x) =
1
n

n∑

i=1

Hi
k and ∇Gk(x) =

1
n

n∑

i=1

∇gi(x) +
1
n

n∑

i=1

(x − xk)T Hi
k,
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and

∇k + Hkxk =
1
n

n∑

i=1

[∇gi(xθi,k) + (xk − xθi,k−1)T Hi
θi,k

]. (11)

In following analysis, we will not distinguish these two forms of PROXTONE
from each other.

Algorithm 2. PROXTONE in a form that is easy to analyze
Input: start point x0 ∈ dom f ; for i ∈ {1, 2, .., n}, let g0

i (x) = gi(x
0) + (x −

x0)T∇gi(x
0) + 1

2
(x − x0)THi

0(x − x0), where the notation Hi
0 (i ∈ {1, 2, .., n}) are

totally the same as they in Algorithm 1; and G0(x) = 1
n

∑n
i=1 g0

i (x).
1: repeat
2: Solve the subproblem for new approximation of the solution:

xk+1 ← arg min
x

[
Gk(x) + h(x)

]
. (12)

3: Sample j from {1, 2, .., n}, and update the quadratic models or surrogate functions:

gk+1
j (x) = gj(x

k+1) + (x − xk+1)T∇gj(x
k+1) +

1

2
(x − xk+1)THi

k+1(x − xk+1), (13)

while leaving all other gk+1
i (x) unchanged: gk+1

i (x) ← gk
i (x) (i �= j); and Gk+1(x) =

1
n

∑n
i=1 gk+1

i (x).
4: until stopping conditions are satisfied.
Output: xk.

To better understand this method, we make the following illustration and
observations.

2.1 The Regularized Quadratic Model in Algorithm 2

For fixed x ∈ R
p, we define a regularized piecewise quadratic approximation of

f(x) as follows:

Gk(x) + h(x) =
1
n

n∑

i=1

gk
i (x) + h(x)

where gk
i (x) is the quadratic model for gi(x)

gk
i (x)

=gi(xθi,k) + (x − xθi,k)T ∇gi(xθi,k) +
1
2
(x − xθi,k)T Hi

θi,k
(x − xθi,k), (14)

here θi,k is a random variable which have the following conditional probability
distribution in each iteration:

P(θi,k = k|j) =
1
n

and P(θi,k = θi,k−1|j) = 1 − 1
n

, (15)



Large Scale Optimization with Proximal Stochastic Newton-Type 697

and Hi
θi,k

is any positive definite matrix, which possibly depends on xθi,k . Then
at each iteration the search direction is found by solving the subproblem (12).

One of the crucial ideas of this algorithm is that the component function to be
used for updating the search direction at each iteration is chosen randomly. This
allows the function to be selected very quickly. After the component function
gj(x) selected and updated by (13), while leaving all other gk+1

i (x) unchanged.

2.2 The Hessian Approximation

Arguably, the most important feature of this method is that the regularized
quadratic model (12) incorporates second order information in the form of a
positive definite matrix Hi

k. This is key because, at each iteration, the user has
complete freedom over the choice of Hi

k. A few suggestions for the choice of
Hi

k include: the simplest option is Hi
k = I that no second order information is

employed; Hi
k = ∇2gi(xk) provides the most accurate second order information,

but it is (potentially) more computationally expensive to work with.

3 Convergence Analysis

In this section we provide convergence theory for the PROXTONE algorithm.
Under the standard assumptions, we now state our convergence result.

Theorem 1. Suppose ∇gi(x) is Lipschitz continuous with constant Li > 0 for
i = 1, ..., n, and LiI  mI  Hi

k  MI for all i = 1, ..., n, k ≥ 1. h(x) is strongly
convex with μh ≥ 0. Let Lmax = {L1, ..., Ln}, then the PROXTONE iterations
satisfy for k ≥ 1:

E[f(xk)] − f∗ ≤ M + Lmax

2
[
1
n

M + Lmax

2μh + m
+ (1 − 1

n
)]k‖x∗ − x0‖2. (16)

The ideas of the proof is closed related to that of MISO by Mairal [3] and
for completeness we give a simple version in the appendix.

We have the following remarks regarding the above result:

– In order to satisfy E[f(xk)] − f∗ ≤ ε, the number of iterations k needs to
satisfy

k ≥ (log ρ)−1 log
[ 2ε

(M + Lmax)‖x∗ − x0‖2
]
,

where ρ = 1
n

M+Lmax

2μh+m + (1 − 1
n ).

– Inequality (16) gives us a reliable stopping criterion for the PROXTONE
method.

At this moment, we see that the expected quality of the output of PROX-
TONE is good. However, in practice we are not going to run this method many
times on the same problem. What is the probability that our single run can give
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us also a good result. Since f(xk) − f∗ ≥ 0, Markov’s inequality and Theorem 1
imply that for any ε > 0,

Prob
(
f(xk) − f∗ ≥ ε

)
≤ E[f(xk) − f∗]

ε
≤ (M + Lmax)ρk‖x∗ − x0‖2

2ε
.

Thus we have the following high-probability bound.

Corollary 1. Suppose the assumptions in Theorem 1 hold. Then for any ε > 0
and δ ∈ (0, 1), we have

Prob
(
f(xk) − f(x�) ≤ ε

) ≥ 1 − δ,

provided that the number of iterations k satisfies

k ≥ log
(

(M + Lmax)‖x∗ − x0‖2
2δε

)/
log

(
1
ρ

)
.

Based on Theorem 1 and its proof, we give a deeper and stronger result that
the PROXTONE achieves a linear convergence rate for the solution.

Theorem 2. Suppose ∇gi(x) and ∇2gi are Lipschitz continuous with constant
Li > 0 and Ki > 0 respectively for i = 1, ..., n, h(x) is strongly convex with μh ≥
0. Let Lmax = {L1, ..., Ln} and Kmax = (1/n)

∑n
i=1 Li. If Hi

θi,k
= ∇2gi(xθi,k)

and LiI  mI  Hi
k  MI, then PROXTONE converges exponentially to x� in

expectation:

E[‖xk+1 − x�‖]

≤(
Kmax + 2Lmax

m

M + Lmax

2μh + m
+

2Lmax

m
)[

1
n

M + Lmax

2μh + m
+ (1 − 1

n
)]k−1‖x∗ − x0‖2.

In order to satisfy E[‖xk+1 − x�‖] ≤ ε, the number of iterations k needs to
satisfy

k ≥ (log ρ)−1 log
[ ε

C‖x∗ − x0‖2
]
,

where ρ is as before and C = Kmax+2Lmax

m
M+Lmax

2μh+m + 2Lmax

m .
Due to the Markov’s inequality, Theorem 2 implies the following result.

Corollary 2. Suppose the assumptions in Theorem 2 hold. Then for any ε > 0
and δ ∈ (0, 1), we have

Prob
(‖xk+1 − x�‖ ≥ ε

) ≥ 1 − δ,

provided that the number of iterations k satisfies

k ≥ log

(
((Kmax + 2Lmax)(M + Lmax) + 2Lmax(2μh + m))‖x∗ − x0‖2

m(2μh + m)δε

)/

log

(
1

ρ

)

.
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4 Numerical Experiments

The technique proposed in this paper has wide applications, it can be used to
do least-squares regression, the Lasso, the elastic net, and the logistic regression.
Furthermore the principle of PROXTONE can also be applies to do nonconvex
optimization problems, such as training of deep convolutional network and so on.

In this section we present the results of some numerical experiments to illus-
trate the properties of the PROXTONE method. We focus on the sparse regular-
ized logistic regression problem for binary classification: given a set of training
examples (a1, b1), . . . , (an, bn) where ai ∈ R

p and bi ∈ {+1,−1}, we find the
optimal predictor x ∈ R

p by solving

min
x∈Rp

1
n

n∑

i=1

log
(
1 + exp(−bia

T
i x)

)
+ λ1‖x‖22 + λ2‖x‖1,

where λ1 and λ2 are two regularization parameters. We set

gi(x) = log(1 + exp(−bia
T
i x) + λ1‖x‖22, h(x) = λ2‖x‖1, (17)

and
λ1 = 1E − 4, λ2 = 1E − 4.

In this situation, the subproblem (12) become a lasso problem, which can be
effectively and accurately solved by the proximal algorithms [6].

(a) (b)

Fig. 1. A comparison of PROXTONE to competing optimization techniques for two
datasets. The bold lines indicate the best performing hyperparameter for each opti-
mizer.

We used some publicly available data sets. The protein data set was obtained
from the KDD Cup 20041; the covertype data sets were obtained from the LIB-
SVM Data2.
1 http://osmot.cs.cornell.edu/kddcup
2 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets

http://osmot.cs.cornell.edu/kddcup
http://www.csie.ntu.edu.tw/~{}cjlin/libsvmtools/datasets
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The performance of PROXTONE is compared with some related algorithms:

– ProxSGD: We used a constant step size that gave the best performance among
all powers of 10.

– ProxSAG: This is a proximal version of the SAG method, with the trailing
number providing the Lipschitz constant.

The results of the different methods are plotted for the first 100 effective
passes through the data in Figure 1. The PROXTONE iterations seem to achieve
the best of all.

5 Conclusions

This paper introduces a proximal stochastic method called PROXTONE for
minimizing regularized finite sums. For nonsmooth and strongly convex prob-
lems, we show that PROXTONE not only enjoys the same linear rates as those
of MISO, SAG, ProxSVRG and ProxSDCA, but also showed that the solution
of this method converges in exponential rate too. There are some directions
that the current study can be extended. In this paper, we have focused on the
theory and the convex experiments of PROXTONE; it would be meaningful to
also make clear the implementation details and do the numerical evaluation to
nonconvex problems [10]. Second, combine with randomized block coordinate
method [4] for minimizing regularized convex functions with a huge number of
varialbes/coordinates. Moreover, due to the trends and needs of big data, we
are designing distributed/parallel PROXTONE for real life applications. In a
broader context, we believe that the current paper could serve as a basis for
examining the method on the proximal stochastic methods that employ second
order information.

Appendix

In this Appendix, we give the proofs of the two propositions.

A Proof of Theorem 1

Since in each iteration of the PROXTONE, we have (14) and (15), that yields

E[‖x∗ − xθi,k‖2] =
1
n
E[‖x∗ − xk‖2] + (1 − 1

n
)E[‖x∗ − xθi,k−1‖2]. (18)

Since 0  Hi
θi,k

 MI and ∇2gk
i (x) = Hi

θi,k
, by Theorem 2.1.6 of [5] and

the assumption, ∇gk
i (x) and ∇gi(x) are Lipschitz continuous with constant M

and Li respectively, and further ∇gk
i (x) − ∇gi(x) is Lipschitz continuous with

constant M + Li for i = 1, . . . , n. This together with (7) yieds

|[gk
i (x) − gi(x)] − [gk

i (y) − gi(y)] − ∇[gk
i (y) − gi(y)]T (x − y)| ≤ M + Li

2
‖x − y‖2.
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Applying the above inequality with y = xθi,k , and using the fact that
∇[gk

i (xθi,k)] = ∇[gi(xθi,k)] and gk
i (xθi,k) = gi(xθi,k), we have

|gk
i (x) − gi(x)| ≤ M + Li

2
‖x − xθi,k‖2.

Summing over i = 1, . . . , n yields

[Gk(x) + h(x)] − [g(x) + h(x)] ≤ 1
n

n∑

i=1

M + Li

2
‖x − xθi,k‖2. (19)

Then by the Lipschitz continuity of ∇gi(x) and the assumption LiI  mI  Hi
k,

we have

gi(x)

≤ gi(xθi,k) + ∇gi(xθi,k)T (x − xθi,k)| +
Li

2
‖x − xθi,k‖2

≤ gi(xθi,k) + (x − xθi,k)T ∇gi(xθi,k) +
1
2
(x − xθi,k)T Hi

θi,k
(x − xθi,k) = gk

i (x),

and thus, by summing over i yields g(x) ≤ Gk(x), and further by the optimality
of xk+1, we have

f(xk+1) ≤ Gk(xk+1) + h(xk+1) ≤ Gk(x) + h(x)

≤ f(x) +
1
n

n∑

i=1

M + Li

2
‖x − xθi,k‖2 (20)

Since mI  Hθi,k
and ∇2gk

i (x) = Hθi,k
, by Theorem 2.1.11 of [5], gk

i (x) is
m-strongly convex. Since Gk(x) is the average of gk

i (x), thus Gk(x) + h(x) is
(m + μh)-strongly convex, we have

f(xk+1) +
m + μh

2
‖x − xk+1‖2 ≤ Gk(xk+1) + h(xk+1) +

m + μh

2
‖x − xk+1‖2

≤ Gk(x) + h(x)
= f(x) + [Gk(x) + h(x) − f(x)]

≤ f(x) +
1
n

n∑

i=1

M + Li

2
‖x − xθi,k‖2.

By taking the expectation of both sides and let x = x∗ yields

E[f(xk+1)] − f∗ ≤ E[
1
n

n∑

i=1

M + Li

2
‖x∗ − xθi,k‖2] − E[

m + μh

2
‖x∗ − xk+1‖2].

We have
μh

2
‖xk+1 − x∗‖2 ≤ E[f(xk+1)] − f∗

≤ E[
1
n

n∑

i=1

M + Lmax

2
‖x − xθi,k‖2] − E[

m + μh

2
‖x − xk+1‖2].
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thus

‖xk+1 − x∗‖2 ≤ M + Lmax

2μh + m
E[

1
n

n∑

i=1

‖x∗ − xθi,k‖2]. (21)

then we have

E[
1
n

n∑

i=1

‖x∗ − xθi,k‖2] =
1
n

‖xk − x∗‖2 + (1 − 1
n

)E[
1
n

n∑

i=1

‖x∗ − xθi,k−1‖2]

≤ 1
n

‖xk − x∗‖2 + (1 − 1
n

)E[
1
n

n∑

i=1

‖x∗ − xθi,k−1‖2]

≤ [
1
n

M + Lmax

2μh + m
+ (1 − 1

n
)]E[

1
n

n∑

i=1

‖x∗ − xθi,k−1‖2]

≤ [
1
n

M + Lmax

2μh + m
+ (1 − 1

n
)]kE[

1
n

n∑

i=1

‖x∗ − xθi,0‖2]

≤ [
1
n

M + Lmax

2μh + m
+ (1 − 1

n
)]k‖x∗ − x0‖2.

Thus we have E[f(xk+1)] − f∗ ≤ M+Lmax

2 [ 1n
M+Lmax

2μh+m + (1 − 1
n )]k‖x∗ − x0‖2.

B Proof of Theorem 2

We first examine the relations between the search directions of ProxN and
PROXTONE.

By (4), (5) and Fermat’s rule, Δxk
ProxN and Δxk are also the solutions to

Δxk
ProxN = arg min

d∈Rp
∇g(xk)T d + (Δxk

ProxN )T Hkd + h(xk + d),

Δxk = arg min
d∈Rp

(∇k + Hkxk)T d + (Δxk)T Hkd + h(xk + d).

Hence Δxk and Δxk
ProxN satisfy

∇g(xk)T Δxk + (Δxk
ProxN )T HkΔxk + h(xk + Δxk)

≥∇g(xk)T Δxk
ProxN + (Δxk

ProxN )T HkΔxk
ProxN + h(xk + Δxk

ProxN )

and

(∇k + Hkxk)T Δxk
ProxN + (Δxk)T HkΔxk

ProxN + h(xk + Δxk
ProxN )

≥ (∇k + Hkxk)T Δxk + (Δxk)T HkΔxk + h(xk + Δxk).

We sum these two inequalities and rearrange to obtain

(Δxk)T HkΔxk − 2(Δxk
ProxN )T HkΔxk + (Δxk

ProxN )T HkΔxk
ProxN

≤ (∇k + Hkxk − ∇g(xk))T (Δxk
ProxN − Δxk).
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The assumptions mI  Hθi,k
yields that mI  Hk, together with (11) we

have

m‖Δxk − Δxk
ProxN‖2 (22)

≤ ‖ 1
n

n∑

i=1

(∇gi(xθi,k) − ∇gi(xk) − (xθi,k − xk)T Hi
θi,k

)‖‖(Δxk − Δxk
ProxN )‖.

Since ∇2gi is Lipschitz continuous with constant Ki > 0, by Lemma 1.2.4 of [5]
we have

‖∇gi(xθi,k) − ∇gi(xk) − (xθi,k − xk)T Hi
θi,k

‖ ≤ Ki

2
‖xθi,k − xk‖2. (23)

Then from (22) and (23), we have

‖Δxk − Δxk
ProxN‖ ≤ Kmax

2mn

n∑

i=1

‖xθi,k−1 − xk‖2. (24)

Since the ProxN method converges q-quadratically (cf. Theorem 3.3 of [2]),

‖xk+1 − x�‖
≤ ‖xk + Δxk

ProxN − x�‖ + ‖Δxk − Δxk
ProxN‖

≤ Kmax

m
‖xk − x�‖2 + ‖Δxk − Δxk

ProxN‖. (25)

Thus from (24) and (25), we have almost surely that

‖xk+1 − x�‖

≤ Kmax

m
‖xk − x�‖2 +

Lmax

2mn

n∑

i=1

‖xθi,k−1 − xk‖2

≤ Kmax

m
‖xk − x�‖2 +

Lmax

mn

n∑

i=1

2‖xθi,k−1 − x∗‖2 +
Lmax

mn

n∑

i=1

2‖x∗ − xk‖2.

Then by (21), we have

‖xk+1 − x�‖ ≤ (
Kmax + 2Lmax

m

M + Lmax

2μh + m
+

2Lmax

m
)E[

1
n

n∑

i=1

‖xθi,k − x∗‖2]

which yieds

‖xk+1 − x�‖ ≤ (
Kmax + 2Lmax

m

M + Lmax

2μh + m
+

2Lmax

m
)[

1
n

M + Lmax

2μh + m

+ (1 − 1
n

)]k‖x∗ − x0‖2.
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