
Solving Prediction Games with Parallel Batch
Gradient Descent

Michael Großhans1 and Tobias Scheffer2(B)

1 freiheit.com technologies gmbh, Hamburg, Germany
michael.grosshans@freiheit.com

2 Department of Computer Science, University of Potsdam, Potsdam, Germany
scheffer@cs.uni-potsdam.de

Abstract. Learning problems in which an adversary can perturb
instances at application time can be modeled as games with data-
dependent cost functions. In an equilibrium point, the learner’s model
parameters are the optimal reaction to the data generator’s perturba-
tion, and vice versa. Finding an equilibrium point requires the solution
of a difficult optimization problem for which both, the learner’s model
parameters and the possible perturbations are free parameters. We study
a perturbation model and derive optimization procedures that use a sin-
gle iteration of batch-parallel gradient descent and a subsequent aggrega-
tion step, thus allowing for parallelization with minimal synchronization
overhead.

1 Introduction

In many security-related applications, the assumption that training data and
data at application time are identically distributed is routinely violated. For
instance, new malware is designed to bypass detection methods which their
designers believe virus and malware scanners to employ, and email spamming
tools allow their users to develop templates of randomized messages that pro-
duce a low spam score with current filters. In these examples, the party that
creates the predictive model and the data-generating party factor the possible
actions of their opponent into their decisions. This interaction can be modeled
as a prediction game in which one player controls the predictive model whereas
another exercises some control over the process of data generation.

Robust learning methods have been derived under the zero-sum assumption
that the loss of one player is the gain of the other, for several types of adversar-
ial feature transformations [7,8,11–13,17,23,24]. Settings in which both players
have individual cost functions—a fraudster’s profit is not the negative of an email
service provider’s goal of achieving a high spam recognition rate at close-to-zero
false positives—cannot adequately be modeled as zero-sum games.

When the learner has to act first and model parameters are disclosed to the
data generator, this non-zero-sum interaction can be modeled as a Stackelberg
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competition [4,15]. A Stackelberg competition always has an optimal solution,
but generally a difficult bi-level optimization problem has to be solved to find it
[4]. For simultaneously acting players, one may resort to the concept of a Nash
equilibrium. An equilibrium is a pair of a predictive model and a transformation
of the input distribution. In an equilibrium point, the learner’s model parameters
are the optimal reaction to the data generator’s perturbation function, and vice
versa. If a game has a unique Nash equilibrium and is played by rational players
that aim at minimizing their costs, it may be reasonable for each player to
assume that the opponent will play according to the Nash equilibrium strategy
as well. If, however, multiple equilibria exist and the players choose their strategy
according to distinct ones, then the resulting combination may be arbitrarily
disadvantageous for either player. For certain cost functions, the prediction game
has been shown to have a unique Nash equilibrium [3].

Finding the equilibrium point of a prediction game requires the solution of
a difficult optimization problem: in each iteration of an outer gradient-descent,
nested optimization problems have to be solved. This process is two orders of
magnitude more expensive than iid learning [3]—even more so, if the learner is
uncertain about the adversary’s cost function [14].

Gradient descent algorithms can be parallelized by distributing the data in
batches across multiple worker nodes. Casting gradient descent into the MapRe-
duce programming model [6] offers an almost unlimited potential speed-up,
because synchronization is limited to a final reduce step, and, unlike multicore
or GPU parallelism, MapReduce is not constrained by the limited number of
cores that can be fitted into a single unit of computing hardware. In order to
conduct gradient descent within the MapReduce model, parallel nodes have to
perform gradient descent on subsets of the data. Only in the final step, the local
parameter vectors are aggregated [18,26]. This procedure has known convergence
bounds [26].

Work on HaLoop [5] and ScalOps [25] aims at allowing for more flexible algo-
rithm design that may include aggregation steps during the parallel optimiza-
tion process [19]; this, however comes at the cost at higher communication costs
which limit the gain of increased parallelization. This paper therefore focuses on
rephrasing the search for an equilibrium point of a prediction game within the
MapReduce model.

The known analysis and algorithm for finding the equilibrial prediction model
[3] are based on a model of the adversarial data transformation that allows the
perturbation of each instance to potentially depend on other instances. It is
therefore unsuitable for parallelization: When the perturbation of an instance
may depend on different instances, a node that does not have access to all inter-
dependent instances cannot anticipate the outcome of the adversary’s action.
Therefore, we derive a model of adversarial manipulations of the input distribu-
tion that is based on the manipulation of individual feature vectors.

The rest of this paper is organized as follows. Section 2 lays out the problem
setting and introduces an adversarial data generation model. In Section 3 we
study conditions under which a unique equilibrium point exists under this data
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generation model. We derive a method for finding the unique equilibrium point
in a way that can be parallelized in Section 4. Section 5 presents empirical result
and Section 6 concludes.

2 Problem Setting and Data Transformation Model

We study static prediction games between two players: The learner and its
adversary, the data generator. For example, in email spam filtering, the learner
may be an email service provider whereas the data generator is an amalgamated
model of all legitimate and abusive email senders.

At training time, the data generator produces a matrix X of training
instances x1, . . . ,xn and a corresponding vector y of class labels yi ∈ Y. These
object-class pairs are drawn according to a training distribution with density
function p(x, y).

The task of the learner is to select the parameters w ∈ W ⊂ R
m of a

linear model fw(x) = wTx. Simultaneously, the data generator can choose a
parameterized transformation gA : R

m → R
m, with A ∈ A that perturbs

instances; regularizer ρgΩg(A) quantifies transformation costs which the data
generator incurs. For instance, a spammer may obfuscate text messages and
remove conspicuous URLs at the cost of reducing the response rate. At test
time, instances are drawn according to p(x, y) and perturbed by gA; this defines
the test distribution.

The learner’s theoretical costs at application time are given by Equation 1;
the data generator’s theoretical costs by Equation 2.

θf (w,A) =
∑

y∈Y

∫
�f (fw(gA(x)), y)p(x, y)dx (1)

θg(w,A) =
∑

y∈Y

∫
�g(fw(gA(x)), y)p(x, y)dx + ρgΩg(A) (2)

The theoretical costs of both players depend on the unknown test distribu-
tion; we will therefore resort to regularized, empirical costs based on the training
sample. The empirical costs incurred by the predictive model fw and transfor-
mation gA are

θ̂f (w,A) =
1
n

n∑

i=1

�f (wTgA(x), yi) + ρfΩf (w)

θ̂g(w,A) =
1
n

n∑

i=1

�g(wTgA(x), yi) + ρgΩg (A) .

We employ a linear, parameterized data transformation model of the form
gA(x) = x + Ax, where A ∈ R

m×m is the transformation matrix chosen by
the adversary. Under this model, the perturbation vector that is added to each
instance x is a linear function of x. For A = 0, instances remain unperturbed.
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This model subsumes many relevant data-manipulation operations. For instance,
features are scaled by nonzero values at the diagonal elements of A; features i
are deleted by aii = −1. Feature i is replaced by feature j (e.g., Viagra →
V1agra) by a matrix that has entries aii = −1 and aji = 1, and is 0 everywhere
else.

We will write the transformation matrix as vector of m-dimensional row
vectors A = [a1, . . . ,am]T or as an m2-dimensional vector a =

[
aT1 , . . . ,aTm

]T

whenever this will simplify the notation.
Under this data transformation model, standard �2 regularization for the

data generator [3] would amount to

‖(xi + Axi) − xi‖2 =
1
n

n∑

i=1

‖Axi‖2

which is not strongly convex in A for every data matrix X. Hence, this regular-
izer can have multiple optima, which should be avoided. Therefore, we use the
Frobenius norm of A as regularizer for the data generator; we use standard �2
regularization for the learner:

Ωf (w) = ‖w‖2 , (3)

Ωg(A) =
1
2

‖A‖2F =
1
2

‖a‖2 . (4)

3 Analysis of Equilibrium Points

Note that both θ̂f and θ̂g depend on both players’ actions. Neither player can
minimize their costs without considering their adversary’s options. This moti-
vates the concept of an equilibrium point. Assume that the learner considers
using model parameters w1. The learner can now determine a possible reaction
A1 of the data generator that would minimize θ̂g for the given w1. In turn,
the learner can determine model parameters w2 that would minimize θ̂f for
this transformation A1, continue to determine reaction A2, and so on. It his
sequence of reactions reaches a fixed point—a point (w∗,A∗) that is the best
possible reaction to itself—then this point is a Nash equilibrium and satisfies

w∗ = arg min
w

θ̂f (w,A∗), (5)

A∗ = arg min
A

θ̂f (w∗,A). (6)

In this section, we analyze the prediction game between learner and data gen-
erator that we have introduced in the previous section. We will derive conditions
under which equilibrium points exist, and conditions under which an equilibrium
point is unique.

Known results on the existence of equilibrium points for prediction games [3]
do not apply to the data transformation model derived in Section 2: Equation 4
regularizes A because regularization of ||X−gA(X)|| would not be convex in A,
and therefore Assumption 3 of [3] is not met.
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3.1 Existence of Equilibrium Points

We will now study under which conditions the prediction game between learner
and data generator with the data transformation introduced above has at least
one equilibrium point. We start by formulating conditions on action spaces and
loss functions in the following assumption.

Assumption 1. The players’ action sets W and A and loss functions �f and
�g satisfy the following properties.

1. Action spaces W ⊆ R
m and A ⊆ R

m × . . . × R
m are non-empty, compact

and convex,
2. The loss functions �f (z, y) and �g(z, y) are convex and continuous in z for

every y ∈ Y

Theorem 1. Under Assumption 1 the game has at least one equilibrium point.

Proof. By Assumption 1 the loss functions �f (zi, yi) and �g(zi, yi) are continuous
and convex in zi for any yi ∈ Y. Note that zi = wTxi +wTAxi is linear in w ∈
R

m and linear in A ∈ R
m2

for any (xi,yi) ∈ X × Y. Hence, for both ν ∈ {f, g},
the sum of loss terms

∑n
i=1 �ν(zi, yi) is jointly continuous in (w,A) ∈ R

m×(m+1)

and convex in both w ∈ R
m and A ∈ R

m×m. Both regularizers Ωf and Ωg are
jointly continuous in (w,A) ∈ R

m×(m+1). Additionally Ωf is strictly convex in
w ∈ R

m and Ωg is strictly convex in A ∈ R
m×m.

Hence, both empirical cost functions θ̂f and θ̂g are jointly continuous in
(w,A) ∈ R

m×(m+1). Additionally θ̂f is strictly convex in w ∈ R
m and θ̂g is

strictly convex in A ∈ R
m×m. Therefore by Theorem 4.3. in [2]—together with

the fact that both action spaces are non-empty, compact and convex—at least
one equilibrium point exists.

3.2 Uniqueness of Equilibrium Points

In this section, we will derive conditions for uniqueness of equilibrium points.
The significance of this result is that an action that is part of an equilibrium
point minimizes the costs for either player only if the opponent chooses the
same equilibrium point. Otherwise, either player’s costs may be arbitrarily high.
If multiple equilibria exist, the players cannot determine which action even a
perfectly rational opponent will take. We will make use of a theorem of Rosen
[22] which states that a unique equilibrium point exists if the Jacobian of the
combined loss

rwθf (w,A) + rAθg(w,A)

is positive definite for any fixed rw > 0, rA > 0. To prove this condition, we
formulate two lemmas. Lemma 1 and Lemma 2 derive two different forms of
matrices that are always positive (semi-)definite. In the following, the symbol ⊗
denotes the Kronecker-product.
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Lemma 1. For any A ∈ R
m×m and w ∈ R

m and any positive semi-definite
matrix X ∈ R

m×m, the matrix

M1 :=
[

AXAT wT ⊗ (AX)
w ⊗ (

XAT
) (

wwT
) ⊗ X

]
∈ R

(m2+m)×(m2+m)

is positive semi-definite.

Proof. Note that we can rewrite this matrix as a product of three matrices:
[

A
w ⊗ Im

]
X

[
AT wT ⊗ Im

]T

where Im denotes the m × m unit matrix. By Assumption 1 the matrix X is
positive semi-definite and therefore the product vT

1Xv1 ≥ 0 is non-negative for
all vectors v1 ∈ R

m. By using the substitution v1 =
[
AT wT ⊗ Im

]
v2, the

product

vT
2

[
A

w ⊗ Im

]
X

[
AT wT ⊗ Im

]T
v2 = vT

1Xv1 ≥ 0

is non-negative. Hence, the matrix M1 is positive semi-definite, which completes
the proof.

Lemma 2. For any x ∈ R
m and any a, b ∈ R

+ the matrix

M2 :=
[

aIm Im ⊗ xT

Im ⊗ x bIm2

]
∈ R

(m2+m)×(m2+m)

is positive definite, if and only if a · b > xTx.

Proof. The matrix is a symmetric square matrix. Hence it is positive defi-
nite if and only if all eigenvalues λi > 0 for all i ∈ {0, . . . , m2 + m}. Let(
wT,vT

1 , . . . ,vT
m

)T be an arbitrary eigenvector with eigenvalue λ and let us define

V =

⎡

⎢⎣
vT
1
...

vT
m

⎤

⎥⎦ .

Then—by using the definition of eigenvectors—the following equations hold:

(λ − a)w = Vx (7)

(λ − b)V = wxT. (8)

By combining Equation 7 and Equation 8 the following equation

(λ − a)(λ − b)w = xTxw (9)



158 M. Großhans and T. Scheffer

holds for every eigenvector
(
wT,vT

1 , . . . ,vT
m

)T with corresponding eigen-
value λ.

Firstly, assume that w = 0 holds. Due to the definition of an eigenvector, the
matrix V 	= 0 is non-zero. By Equation 8, the corresponding eigenvalue would
be λ = b, and hence the corresponding eigenvalue would be positive.

Now assume that w 	= 0 holds. Then, by using Equation 9 it turns out that
(λ − a)(λ − b) = xTx. Solving this Equation for λ results in the following two
solutions:

λ1,2 =
a + b

2
±

√
(a − b)2

4
+ xTx.

Therefore, matrix M2 is positive semi-definite if and only if

a + b

2
≥

√
(a − b)2

4
+ xTx (10)

holds, which is equivalent to the inequality

(a + b)2

4
≥ (a − b)2

4
+ xTx.

Hence, the smallest eigenvalue is non-negative if and only if a ·b > xTx which
completes the proof.

We can now formulate Assumptions under which a unique equilibrium point
exists.

Assumption 2. For a given data matrix X ∈ R
m×n and labels y ∈ Yn, the

players’ action sets W and A, loss functions �f and �g, and regularization param-
eters ρf , ρg satisfy the following properties.

1. the second derivatives of the loss functions are equal for all y ∈ Y and z ∈ R

�′′
f (z, y) = �′′

g (z, y).

2a. The regularization parameters satisfy

ρfρg > sup
(w,A)∈W×A

x̄T
(w,A,X,y)x̄(w,A,X,y),

where x̄ is the (derivate-) weighted average over all instances

x̄(w,A,X,y) =
1
n

n∑

i=1

[
1
2

(
�′
f (wTφA(xi), yi) + �′

g(w
TφA(xi), yi)

)
xi

]
.

2b. (Sufficient condition for 2a) the regularization parameters satisfy

ρfρg > sup
(w,A)∈W×A

max
i∈{1,...,n}

τ2
i (w,A) · xT

i xi,

where τi(w,A) is specified by

τi(w,A) =
1
2

(
�′
pL(wTφA(xi), yi) + �′

g(w
TφA(xi), yi)

)
.
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Theorem 2. Under Assumptions 1 and 2, the prediction game between learner
and data generator has exactly one equilibrium point.

The conditions of Assumption 1 impose technical, rather common requirements
on the cost functions that can be met in practice. The first condition of Assump-
tion 2 requires the loss function of learner and data generator to have identi-
cal curvatures. This can be met, for instance, if both player use a logistic loss
function [3]. The second condition imposes a joint bound on the regularization
coefficients. Intuitively, if the data generator is allowed to perturb instances
strongly, then a unique equilibrium exists only if the learner’s cost function has
a sufficiently large regularization term.

Proof. By Assumption 1 the game has at least one equilibrium point. We now
turn towards the uniqueness of the equilibrium point. Therefore—by following
the theorems in [10,22]—we show that the pseudo-Jacobian

Jrw,rA
(w,A) =

[
rwIm 0
0 rAIm2

]
⎡

⎢⎢⎢⎣

∇2
w,wθ̂f ∇2

w,a1
θ̂g · · · ∇2

w,am
θ̂f

∇2
a1,wθ̂g ∇2

a1,a1
θ̂g · · · ∇2

a1,am
θ̂g

...
...

. . .
...

∇2
am,wθ̂g ∇2

am,a1
θ̂g · · · ∇2

am,am
θ̂g

⎤

⎥⎥⎥⎦

is positive definite at every point (w,A) ∈ W ×A for some fixed rw, rA > 0. We
set rw = rA = 1. Therefore the pseudo-Jacobian (first and second derivations
can be found in the Appendix) is given as

Jr(w,A) =

[
(Im + A)XΓfXT (Im + A)T wT ⊗ [

(Im + A)XΓfXT
]

w ⊗
[
XΓgXT (Im + A)T

] [
wwT

] ⊗ [
XΓgXT

]
]

+
[

ρfIm Im ⊗ [Xγf ]T

Im ⊗ [Xγg] ρgIm2

]
. (11)

Following Assumption 2(1) the matrices Γf = Γg are equal. Additionally,
according to Assumption 1(2) the loss functions are convex and, therefore, the
matrices Γf and Γg are positive semi-definite. Hence, the matrices XΓfXT and
XΓgXT are equal and positive semi-definite. Following Lemma 1 the first sum-
mand in Equation 11 is positive semi-definite.

The second summand is positive definite if and only if the square matrix
[

ρfIm Im ⊗ [
1
2Xγf + 1

2Xγg

]T

Im ⊗ [
1
2Xγf + 1

2Xγg

]
ρgIm2

]

is positive definite. According to Lemma 2 this square matrix is positive
definite if and only if

ρfρg >

[
1
2
Xγf +

1
2
Xγg

]T [
1
2
Xγf +

1
2
Xγg

]
.
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Note that the relation

1
2
Xγf +

1
2
Xγg

=
1
n

n∑

i=1

[
1
2

(
�′
f (wTxi + wTAxi, yi) + �′

g(w
Txi + wTAxi, yi)

)
xi

]
(12)

holds. Hence, according to Assumption 2(2a) the second summand in Equa-
tion 11 and therefore the pseudo-Jacobian Jrw,rA

(w,A) is positive definite at
every point (w,A) ∈ W × A, which completes the proof.

4 Finding the Unique Equilibrium Point Efficiently

In the previous section, we derived conditions for the existence of unique equi-
librium points. In this section, we will discuss algorithms that find this unique
solution and can be phrased as a single iteration of a parallel map step and a
reduce step that aggregates the results.

4.1 Inexact Line Search

Equilibrium points can be located by inexact line search [3,16]. In each iteration,
the procedure computes the response w̄ of the learner that minimizes θ̂f given the
previous transformation A, and response Ā of the data generator that minimizes
θ̂g given the previous prediction model w in nested optimization problems using
L-BFGS [3]. The descent directions are then given by:

df = w̄ − w,

dg = Ā − A.

Inexact line search tries increasingly large values of the step size t and perform an
update by adding tdf to the learner’s prediction model w and by adding tdg to
the data generator’s transformation matrix A. This procedure converges to the
unique Nash equilibrium—von Heusinger and Kanzow discuss its convergence
properties [16].

4.2 Arrow-Hurwicz-Uzawa Method

Inexact line search is computationally expensive because it solves nested
optimization problems in each iteration. In this section, we derive an alterna-
tive approach without nested optimization problems; it is based on the Arrow-
Hurwicz-Uzawa saddle-point method. Equations 5 and 6 define equilibrium
points. We start our derivation introducing the Nikaido-Isoda function [21]:

θ̂([w1,A1] , [w2,A2])

=
[
θ̂f (w1,A1) − θ̂f (w2,A1)

]
+

[
θ̂g(w1,A1) − θ̂g(w1,A2)

]
. (13)



Solving Prediction Games with Parallel BGD 161

This function quantifies the cost savings that the learner could achieve by
unilaterally changing the model from w1 to w2 plus the cost savings that the
data generator could achieve by unilaterally changing the transformation from
A1 to A2. Nikaido-Isoda function θ̂ is concave in (w2,A2) because θ̂f and θ̂g

are convex, and the cost functions for (w2,A2) enter the function as negatives.
For convex-concave Nikaido-Isoda functions, parameters [w∗,A∗] are an equi-

librium point if and only if the Nikaido-Isoda function has a saddle point at
([w∗,A∗], [w∗,A∗]) [9]. The intuition behind this result is the following. An equi-
librium point (w∗,A∗) satisfies Equations 5 and 6 by definition. By Equation 13,
θ̂([w∗,A∗], [w∗,A∗]) = 0. Equations 5 and 6 imply that θ̂([w,A], [w∗,A∗]) is
positive and θ̂([w∗,A∗], [w,A]) is negative for [w,A] 	= [w∗,A∗]. When θ̂ is
convex in [w1,A1] and concave in [w2,A2], this means that (w∗,A∗) is an equi-
librium point if and only if θ̂ has a saddle point at position [w∗,A∗], [w∗,A∗].

Saddle points of convex-concave functions can be located with the Arrow-
Hurwicz-Uzawa method [1]. We implement the method as an iterative procedure
with a constant stepsize t [20]. In each iteration j, the method computes the
gradient of θ̂ with respect to w1, w2, A1 and A2, and performs a descent by
updating previous estimates:

(w1,A1)
(j+1) = (w1,A1)

(j) − t∇(w1,A1)θ̂([w1,A1]
(j)

, [w2,A2]
(j))

(w2,A2)
(j+1) = (w2,A2)

(j) + t∇(w2,A2)θ̂([w1,A1]
(j)

, [w2,A2]
(j)).

The final estimator of the equilibrium point after T iterations is the average
of all iterates: (ŵ∗, Â∗) =

∑T
j=1(w1,A1)(j). For any convex-concave θ̂, this

method converges towards a saddle-point.

4.3 Parallelized Methods

Both the inexact line search method sketched in Section 4.1 and the Arrow-
Hurwicz-Uzawa method derived in Section 4.2 can be implemented in a batch-
parallel manner. To this end, the data is randomly partitioned into k batches
(Xi,yi), where i = 1, . . . , k. In practice, rather than splitting the data into k dis-
joint partitions, it is advisable to split the data into a larger number of portions
but have some overlap between the portions. In the map step, k parallel nodes
perform gradient descent on their respective batch of training examples; in the
final reduce step, the k parameter vectors are averaged [26]. The execution time
of averaging k parameter vectors wi ∈ R

m is vanishingly small in comparison to
the execution time of the parallel gradient descent.

When w1, . . . ,wk are equilibrium points of the games given by the respective
partitions of the sample, then the averaged vector w = 1

k

∑k
j=1 wj still cannot

be guaranteed to be an equilibrium point of the game given by the entire sample.
In fact, in the experimental study we will find example cases where this is not
the case.
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Fig. 1. Relative error (with respect to logistic regression, LR) of classification models
evaluated into future (left). Value of Nikaido-Isoda function over time for three differ-
ent optimization algorithms (center) and parallelized models (right). Error bars show
standard errors.

5 Experimental Results

The goal of this section is to explore the robustness and scalability of sequential
and parallelized methods that locate equilibrium points. We use a data set of
290,262 emails collected by an email service provider [3]. Each instance contains
the term frequency of 226,342 terms. We compute a PCA of the emails and
use the first 250 principal components as feature representation for most exper-
iments. The data set is sorted chronologically. Emails that have been received
over the final 12 months of the data collection period are held out for evaluation.
Emails received in the month before that are used for tuning of the regularization
parameters. Training emails are drawn from the remaining set of older emails.

5.1 Reference Methods

We use the logistic loss for all methods and for both learner and data generator.
This makes logistic regression (LR) our natural iid baseline learning method. In
the first experiment, we compare the transformation model derived in Section 2
(NashParam) that uses a parameterized function of individual instances to the
global transformation model [3] that allows arbitrary dependencies between per-
turbations of multiple instances (NashGlobal). Additionally, we use the following
simple game-theoretic reference method (BestResp): The data generator chooses
the perturbation that is the best response to the standard logistic regression, and
the learner chooses the model parameters that are the best response to this per-
turbation. That is, BestResp chooses parameters w∗ according to:

1. w′ = arg minw θ̂f (w,0m×m)
2. A′ = arg minA θ̂g(w′,A)
3. w∗ = arg minw θ̂f (w,A).

5.2 Performance of the Parameterized Transformation Model

We compare a standard logistic regression approach (LR), game-theoretic heuris-
tic BestResp, an equilibrium point with global transformation model (Nash-
Global), and the equilibrium point with the parameterized transformation model
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(NashParam). In each iteration, we sample 2500 training instances from the
training portion of the data. We tune the free parameters—the regularization
parameters of the learner and the data-generator—on the younger tuning portion
of the data. All models are then evaluated over the final 12 evaluation months.
We repeat this procedure 10 times and average the resulting error rates. For
all following experiments, we keep all regularization parameters fixed, using the
values that the parameters have been tuned to here.

Figure 1 (left) show the average relative error of all models with respect to
logistic regression (LR); error bars show the standard error. Both NashGlobal
and NashParam achieve significant improvements over LR. The parameterized
transformation model NashParam reduces the error rate over NashGlobal by up
to eight percent. The heuristic BestResp does not perform better than LR.

5.3 Optimization Algorithms

This section compares the convergence rates of the inexact line search (ILS )
and Arrow-Hurwicz-Uzawa (AHU ) approaches to finding equilibrium points,
discussed in Sections 4.1 and 4.2, respectively.

In each repetition of the experiment, we sample 10,000 instances from the
training portion of the data. Here, we use the 500 first principal components
as feature representation. In each iteration of the optimization procedures, we
measure he Nikaido-Isoda function of the current pair of parameters and the
best possible reactions to these parameters—this function reaches zero at an
equilibrium point. Figure 1 (center) shows that the ILS procedure converges
very quickly. By contrast, AHU requires several orders of magnitude more time
before the Nikaido-Isoda function drops noticably (not visible in the diagram);
we have not been able to observe convergence. Increasing the regularization
parameters by a factor of 100—which should make the optimization criterion
more convex—did not change these findings. We therefore excluded AHU from
further investigation.

5.4 Parallelized Models

In this section, we study parallel batch gradient descent, as discussed in
Section 4.3, based on ILS. In each repetition, we sample 3200 instances from the
training portion; we average 10 trials. The baseline model LR-1-Sgl is trained on
all training data. Each of 8 nodes then processes a batch of data and returns a
model LR-8-Sgl ; these parameter vectors are averaged into LR-8-Avg. Likewise,
ILS-1-Sgl is trained on all training data. Each node returns a model ILS-8-Sgl ;
these models are averaged into ILS-8-Avg.

For logistic regression, Figures 2 (left diagram, each node processes 1
8 of the

data), 3 (left, each node processes 1
4 of the data), and 4 (left, each node processes

1√
8

of the data), the averaged models LR-8-Avg consistently outperform the
individual models LR-8-Sgl. Model LR-1-Sgl that has been trained sequentially
on all available data outperforms the averaged models—this is consistent with
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Fig. 2. Accuracy of logistic regression (left) and equilibrium points (center). Error
rate of the aggregated equilibrium point relative to the error rate of aggregated logistic
regression models (right). Each of 8 nodes processes 1

8
-th of the data. Error bars show

standard errors.
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Fig. 3. Accuracy of logistic regression (left) and equilibrium points (center). Error
rate of the aggregated equilibrium point relative to the error rate of aggregated logistic
regression models (right). Each of 8 nodes processes 1
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-th of the data. Error bars show

standard errors.
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Fig. 4. Accuracy of logistic regression (left) and equilibrium points (center). Error
rate of the aggregated equilibrium point relative to the error rate of aggregated logistic
regression models (right). Each of 8 nodes processes 1√

8
-th of the data. Error bars show

standard errors.

earlier results on parallel stochastic gradient descent [18,26]. The same is true
for the equilibrium models found by ILS : Figures 2 (center, 1

8 of the data per
node), 3 (center, 1

8 of the data per node), and 4 (center, 1√
8

of the data per
node) show that the averaged models ILS-8-Avg outperform the parallel models
ILS-8-Sgl. The sequentially trained model ILS-1-Sgl outperforms the averaged
models.
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Figures 2 (right, 1
4 of the data), and 3 (right, 1

8 of the data), and 4 (right, 1√
8

of the data) show the error rate of ILS-8-Avg relative to the error rate of LR-8-
Avg, in analogy to Figure 1 (left). While in Figure Figure 1 (left) the equilibrium
points have outperformed LR, the averaged model ILS-8-Avg tends to have a
similar error rate as LR-8-Avg. The averaged equilibrium parameters—while still
outperforming the equilibrium parameters trained on parallel batches—are no
longer more accurate than the averaged logistic regression models.

We investigate further why this is the case. Figure 1 (right) shows the value
of the Nikaido-Isoda function at the end of the batch optimization process for a
single model trained on 1

k of the data (ILS-Sgl), and the corresponding Nikaido-
Isoda function value for the average of k models trained on 1

k of the data each
(ILS-Avg). Surprisingly, the averaged parameter vectors have a higher function
value which means that they are further away from being equilibrium points
than the individual models.

We can conclude that for this application (a) equilibrium points tend to be
more accurate than standard logistic regression models; (b) averaging parameter
vectors that have been trained on different batches of the data always leads to
more accurate models; but (c) averaging equilibrium points tends to lead to
model parameters that are no longer equilibrium points, and are therefore not
generally more accurate than standard logistic regression models.

6 Conclusion

We have derived a model of adversarial learning in which the data generator
gets to choose a parametric perturbation function gA(x) = x + Ax which is
used to transform observations at application time. We have shown that the
game between learner and data generator has at least one equilibrium point
for convex and continuous loss functions. We have shown that the equilibrium
point is unique if the loss function of learner and data generator have identical
curvatures (as can be achieved with logistic loss functions) and the relationship
between the regularization coefficients of learner and data generator are balanced
as required by Assumption 2. Empirically, we observe that for the application
of email spam filtering, equilibrium points under the derived data generation
model maintain a higher accuracy over an evaluation period of 12 months after
training than iid learning and reference methods.

The MapReduce programming model offers an unrivaled speed-up potential
because it requires all synchronization to be limited to a final aggregation step.
We derived batch-parallel stochastic gradient methods that identify a unique
equilibrium point and can be implemented using the MapReduce model. Prior
work on parallel stochastic gradient descent has established that the aggregate of
models that have been trained in parallel on subsets of the data are more accu-
rate than the individual, aggregated models, and that the aggregate converges
toward to performance of a single model that has been trained sequentially on all
the data [18,26]. We observe that this is also true for the aggregates of equilib-
rium points that have been located in parallel on batches of the data. However,
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it turns out that aggregates of equilibrium points are not equilibrium points
themselves; the Nikaido-Isoda function increases its value during the aggrega-
tion step. Therefore, aggregated logistic regression models are about as accurate
as aggregated equilibrium points. From a practical point of view, this implies
that searching for equilibrium points is advisable for adversarial applications as
long as training data, and not computation time, is the limiting factor. As the
sample size increases, the computation time needed to locate equilibrium points
on a single node becomes the limiting factor. For intermediate sample sizes, it
may still be possible (and advisable) to train a model on a single node using iid
learning. For even larger sample sizes, this becomes impossible. At this point,
aggregated batch-parallel gradient descent outperforms sequential optimization
using a subset of the data. At this point, however, aggregated equilibrium points
offer no advantage over aggregated models trained under the iid assumption.
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