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Abstract. The Temporally Coherent Role-Topic Model (TCRTM) is a
probabilistic graphical model for analyzing overlapping, loosely tempo-
rally structured activities in heterogeneous populations. Such structure
appears in many domains where activities have temporal coherence, but
no strong ordering. For instance, editing a PowerPoint presentation may
involve opening files, typing text, and downloading images. These events
occur together in time, but without fixed ordering or duration. Further,
several different activities may overlap – the user might check email while
editing the presentation. Finally, the user population has subgroups; for
example, managers, salespeople and engineers have different activity dis-
tributions. TCRTM automatically infers an appropriate set of roles and
activity types, and segments users’ event streams into high-level activity
instance descriptions. On two real-world datasets involving computer user
monitoring and debit card transactions we show that TCRTM extracts
semantically meaningful structure and improves hold-out perplexity score
by a factor of five compared to standard models.

1 Introduction

Models of user activities can be used to improve productivity and enable new
services across a wide variety of domains such as finance, personal assistants,
health care, and many others. However, such modeling is very challenging due
to the complexity and variations in activities. We present a new generative model
whose structure uniquely exploits properties of user activity streams in order to
build better models of behavior in realistic contexts. Because these behavior
models are generative, they can be used for a variety of classification and predic-
tion tasks ranging from predicting future user needs, to detecting organizational
saboteurs, to connecting users with common interests.

Real-world event streams (such as financial transaction streams or computer
event logs) exhibit several forms of complexity. First, the latent structure is non-
obvious, because semantically meaningful activities often manifest via groups of
observed events that may be large, heterogeneous, and include significant varia-
tions in composition, order, and size. For example, editing a PowerPoint presen-
tation may involve opening files, typing text, downloading images, and saving
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Fig. 1. A given user on a given day typically engages in multiple, possibly overlap-
ping, activities. Each activity has a defined temporal extent. These activities in turn
generate a sequence of events at specific times. Events from multiple activities may be
interleaved.

files, but the exact order and frequency of these events varies significantly. Some
users prefer saving their presentation more often than others; some presentations
may involve a lot of text and not many images, while for others the opposite is
true; some users download content using Firefox, while others prefer Chrome or
Safari; and so on.

Second, the activities generating events can overlap in complex ways: a user
email activity, a user powerpoint development activity and a background operat-
ing system update activity could all be active simultaneously. In real-world data
streams, the events generated by these activities are intermixed in an extended
history and are not segmented out or distinguished in any way.

Third, users typically comprise multiple distinct subgroups with very differ-
ent behaviors. For instance, an office may include administrators, salespeople,
and engineers; these will have very different computer activity distributions.
Identifying these groups may be interesting in itself; in addition, attempting to
create one model for all groups may result in poor performance.

As an example, consider the events associated with a workstation user who
is coding and writing emails during the same interval (see Figure 1). These
two activities result in interleaved operating system events such as compiling,
opening of files and text entry. We note that while activities have temporal
extents, the events generated by the activities do not have strong sequential
orderings. Compiling, editing and file events are all part of coding, but the
specific ordering of these is not highly determined.

A desirable goal is abstracting these complex raw event streams into a concise,
high-level description of the user’s typical activities. In this paper, we explain
how our proposed model addresses the issues outlined above, and provide exam-
ples of its modeling capability on two challenging real-world datasets.

The remainder of this paper is organized as follows. In section 2, we summa-
rize relevant prior work and highlight the differences from our proposed model. In
section 3, we describe the proposed TCRTM model. The experiments in section 4
demonstrate that TCRTM successfully overcomes the challenges outlined above
and significantly outperforms previously available methods. We conclude with
some final remarks in section 5.
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2 Related Work

Although some existing methods could be applied to analyze overlapping, loosely
structured activities as described in this paper, none addresses all of the chal-
lenges outlined above. Below, we summarize the most relevant prior work, cate-
gorized by approach.

Handcrafted Models of Behavior. Behavior analysis has a long history in
psychology and organizational theory [11], but these theories do not provide a
formal computational model that can be used for prediction. The multi-agent
systems community has applied computational agents to modeling of organiza-
tions [3]. These approaches are based on simulation, which allows us to see the
implications of predefined behaviors. We find that our data changes too rapidly
to admit handcrafted rules. Existing models from psychology and organizational
behavior do not include an inferential component capable of directly extracting
new behavioral insights from observational data.

Hidden Markov Models. Automatically learning human activity from obser-
vational data is a more recent endeavor but widely studied by many researchers.
Many of these models employ variations on the Hidden Markov Model (HMM) [8].
Interestingly, in many transactional domains we find that the user activities have
temporal coherence but do not have a strong sequential regularity. As illustrated in
section 1, editing a PowerPoint presentation may involve events such as opening
files, typing text, downloading images, and saving files, but the exact order and
frequency of these events varies significantly from one case to another. Transitions
between different activities are often not very structured as well; for example, some
users may check email while working on a presentation, while others prefer to com-
plete the current task before doing so. If such loosely structured activities were to
be learned by an HMM, it would have to learn multiple different orderings of events
and activities separately to account for all possible variations. This would combi-
natorially increase model complexity and training data requirements, and result
in poor generalization.

Topic Models. Topic modeling is a key method for explaining discrete events
in terms of a mixture of shared latent distributions. LDA [2] is perhaps the best-
known example, although numerous generalizations exist (see below for some
examples). Originally designed to simultaneously extract a set of topic vectors
from a corpus of documents, and model the content of the documents as a
mixture of extracted topics, LDA has been used in a wide variety of applications
in which one wants to represent the content of the objects as a mixture of a
small number of shared profiles.

A significant drawback of LDA is that it doesn’t model time or temporal
coherence. As a result, the topics it discovers may correspond not to a coherent
user activity, but rather to a set of related events across multiple activities.
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This is illustrated in section 4 and in Figures (3) and (4) giving examples of
inferred activity types and LDA topics respectively. A detailed comparison of
the proposed model to LDA is given in section 4.

Dynamic Topic Models. such as DTM [1] ignore local ordering of events (such
as the order of words in a single document), and model how both the topics and
mixture priors change over time (across multiple documents, typically spanning
years). DTM could capture topic content changes such as the fact that articles
about football have recently begun to include material on head injuries as well
as capturing changes in preferences over topics such as a shift from football
discussion topic to a cell-phone apps discussion topic over time. Variations of
this model have been applied to to capture shopping behavior over time [5]
and industrial chlorine sensor network streams [14]. The problems addressed by
dynamic topic models are orthogonal to the problem discussed here; our focus is
on exploiting local temporal coherence of events (within a single document) to
improve the semantic meaning of extracted topics and achieve better fit to the
data. The drift of these topics over time is not addressed in this paper, although
that is certainly an interesting future direction. Returning to the example in
Figure 1, we’d like our model to understand, for example, that the ‘check email’
activity started later than the ‘coding’ activity, rather than determine how the
‘check email’ activity evolved over 5 years.

Dynamic Processes Treated as Stationary Distribution. Topic models
have been applied to activity recognition in video sequences [9]. Spatio-temporal
interest points (small patches in time that capture visual and motion texture)
are extracted from a short video segment. A topic model is used to find a small
set of topics that explains the features extracted from a set of short video clips
of various actions. The interpretability of the model can be increased by semi-
supervised training in which the classes (identified with latent topics) are known
and a subset of instances are labeled [15]. In cases where there are common
behaviors and rare behaviors, the model can be augmented to share features
between common and rare behaviors so that the model only has to model how
rare behaviors are different from common behaviors [13] – reminiscent of hier-
archical population model style inference when data is sparse. These models
treat an entire clip as features drawn from a stationary distribution, so they will
not work unless the data is already segmented into regions of coherent activity
(which is the goal of this paper).

Encoding Time in Vocabulary Words. Topic models have been extended
to include time by augmenting vocabulary words with time information [6]. In
this model, the user’s location behavior is categorized as being at home (H), work
(W) or other (O). The sequence of locations sampled at 1/2 hours resolution is
grouped into trigrams (e.g., HHH or WWO) which are then augmented with a
“coarse day segment” number (early morning 0-7am=1, morning 7-11am =2, etc.)
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to get segment-augmented trigrams such as HHH1 or HHH2. The augmented tri-
grams are fed into a generic author-topic model which learns that specific users
have certain patterns such as being home early in the afternoon or going out in
the evenings. This model does not have any notion of an activity independent
of time – the observation distributions are directly coupled to coarse time seg-
ments. So it is not possible to learn about shopping behavior in the morning and
use this to make inferences about a shopping trip planned in the afternoon.

Preprocessing via Topic Models for Dynamical Models. In some work,
topic models are used as a preprocessing step for later stages of activity recog-
nition [4]. Topic models can be used as part of a preprocessing step to compress
or project high-dimensional signals down to a vector over a small set of topics.
The topic indexes can then be fed to an HMM or classifier. These models com-
bine the drawbacks of LDA and HMM: for the preprocessing step to succeed,
LDA must extract relevant topics, which is difficult with loosely structured event
streams (see section 4); while HMM at the subsequent stage will only succeed if
the sequence of transitions between topics is highly structured.

Topic Models over Multiple Corpora. Practitioners have recognized that
there may be distinct subpopulations which need to be modeled in different ways.
Topic models have been extended to explicitly model the interests of authors [12].
Topic models have also be extended to cover multiple corpora over time [16] in
order to expose commonalities and differences of different media over time. While
these models capture subpopulations, they, like LDA, do not reflect temporal
coherence.

Non-negative Matrix Factorization. Mixture models can be applied to data
to pull out possibly overlapping subcomponents. Non-negative matrix factoriza-
tion [7] has been a popular approach for factorizing data. The technique has been
explicitly applied to signal separation [10]. While NNMF does utilize the idea of
events being generated by mixtures, it doesn’t exploit the temporal coherence
of activities. As a result (just like with LDA, see above), the clusters extracted
are not necessarily coherent activities, but just collections of events with similar
properties. In addition, NNMF typically requires very structured input that can
be organized in a matrix or a higher-dimensional tensor. This makes it difficult
to apply to our data, where different users have a different number of events at
different time points.

In summary, existing models do not handle the challenges of distinct subpop-
ulations with loosely structured, temporally coherent activities found in many
real-world datasets. In the next section, we develop a model that has elements
of a mixture model but incorporates temporal coherence, subpopulations and a
notion of activity instances to handle these challenges.
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3 Model

The observations that we are interested in modeling generally consist of streams
of discrete events. Each event description includes the user who performed it,
the timestamp, and an ‘event type’. This event type is a discrete category label
such as ‘file open’, ‘image download’, and so on.

Two key components of our model are activity type and activity instance.
Activity type is a general category of activity performed by users, such as ‘check-
ing email’ or ‘road trip’. Activity instance is a specific exemplar of that activity
being performed by a given user at a given time, such as ‘user 124 checking
email at 10 am’ or ‘customer 71 taking a road trip to Las Vegas on June 14th’.
In our model, activity types are modeled as multinomial parameter vectors ψ,
with ψt specifying the distribution over event types for the given activity type
t. For instance, ψemail might be a distribution favoring events such as ‘selecting
message’, ‘sending email’, ‘typing up a response’, etc. (cf. Figure 3(a)). Activity
instances are modeled by selecting an activity type, as well as the mean and
variance of event timestamps in the activity instance. The mean and variance
parameters define the temporal extent of the activity. So an ‘email’ activity
instance might be for ‘10:00 am ± 10 minutes’, and the email-related events
around this time (as determined by a Gaussian density) will be preferentially
associated with this activity instance. The smoothness of the Gaussian likelihood
will facilitate the sampler’s exploration of assignments of events to instances.

One additional component of the proposed model addresses the fact that
users can often be grouped into distinct subgroups based on their observed activ-
ity. For example, company employees have different job roles. These roles dictate
the types of activities users typically engage in. In our model, roles are modeled
as multinomial parameter vectors φ. Each parameter φr specifies the distribu-
tion over activity types that users in role r are likely to engage in. A software
engineer role might have a high probability for coding-related activities such as
code compilation, whereas a marketing role might have a high probability for
email and presentation activities.

The plate diagram for the TCRTM model incorporating user roles, activ-
ity types and activity instances is shown in Figure 2, where the corresponding
generative process is also summarized.

The proposed TCRTM model could be compared to standard LDA [2] as
follows. Consider treating users as documents, and individual events as words.
Then both LDA and TCRTM explain the observed event types in a document
via a set of topics ψt. The difference is that LDA has no concept of activity
instance; all events assigned to a topic t are treated equally, and their times-
tamps are ignored. In contrast, in TCRTM an event is assigned to a ‘topic’
via an intermediate Iuj variable that corresponds to a specific activity instance;
therefore, an activity type (such as ‘checking email’) may be repeated multiple
times by each user, and there is an explicit separation of these multiple instances.
The timestamps in TCRTM are not ignored, but rather are used to encourage
temporal coherence of individual instances.
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Fig. 2. (a): TCRTM plate diagram. Shaded nodes represent observable variables; vari-
ables not enclosed in circles represent hyperparameters. In the diagram, ru is the role
assigned to user u; φr is the distribution over activity types for role r; Tui is the activity
type for the i’th activity instance for user u; Iuj is the activity instance assigned to the
j’th event of user u; euj is the event type and tuj is the timestamp for the j’th event;
ψt is the distribution of event types for activity type t; and μui and σ2

ui represent the
time and duration of activity instance i. The conditional distributions are as follows:
φr ∼ Dir(α); ru ∼ Mult(1/R); Tui ∼ Mult(φru); Iuj ∼ Mult(1/I); euj ∼ Mult(ψTuIuj

);

tuj ∼ N(μuIuj , σ
2
uIuj

); μui, σ
2
ui ∼ NIχ2(μ0, κ0, ν0, σ

2
0); ψt ∼ Dir(γ). R: number of roles;

I: number of instances per user. (b): the corresponding generative process.

Compared to hidden Markov models (HMMs), the TCRTM allows mul-
tiple simultaneous activities to take place. Such multitasking is common in
many datasets; for example, workstation data exhibits considerable overlap-
ping activity due to both the user’s attempts at multi-tasking, as well as due
to the system executing background processes during the course of the user’s
normal work. These simultaneous activities are separated from each other in
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TCRTM (a process called ‘deinterlacing’), and are grouped into coherent activ-
ity instances. In contrast, in standard HMM implementations multiple simulta-
neous activities are usually modeled by augmenting the latent space to include
a cross-product of multiple activities – a process that increases the modeling
complexity significantly. The TCRTM also loosely models temporal coherence
without imposing ordering. Unlike an HMM, the TCRTM’s activity instances
prefer representations in which the events of an activity occur close together in
time without requiring any specific ordering of these events. To get the same
generalization power as a TCRTM, an HMM must be trained on enough data
to learn each possible ordering.

Finally, in addition to the differences discussed above, TCRTM also incorpo-
rates the concept of roles. These determine the activity types users can engage
in, but are otherwise not constrained by official job titles. As a result, informal,
but significant subgroups of people will be allocated distinct roles; these could
correspond to different job types when modeling an organization’s computer
logs, or to customer groups when modeling debit card transaction data. The
advantages of the TCRTM are summarized below:

– Compared to HMM, TCRTM can deinterlace overlapping activities.
This is important for many practical datasets.

– Compared to LDA, TCRTM can deal with observable events that are
temporally coherent (as opposed to activity that occurs throughout
an interval of time)

– Compared to HMM, TCRTM can deal with observable events that
are not strictly ordered.

– Compared to both LDA and HMM, TCRTM models user roles. This
allows finding coherent groups of people with similar behavior.

3.1 Inference

The goal of inference is to estimate the parameters of the model given a collection
of observed events and the hyperparameters (α, γ, κ0, etc.). The parameters
of interest describe the inferred domain structure (for example, ψt describes
activity types in terms of event types that are likely under that activity), as well
as specific assignments of objects to clusters (for example, Iuj represents the
activity instance to which the j’th event of user u is assigned).

Our overall approach is to use Gibbs sampling, which allows drawing sam-
ples from the posterior distribution of the model’s parameters given the data.
The parameters of interest can then be estimated from these samples. For effi-
ciency, we use a collapsed Gibbs sampler, where the variables φ, ψ, μ, and σ2

are integrated out, and the remaining discrete variables ru, Tui, and Iuj are
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sampled until convergence. Estimates for the integrated-out variables can then
be obtained in terms of the discrete variables.

The expressions below are derived using standard methodology for Gibbs
sampling; therefore, the derivations are omitted. The resulting conditional dis-
tributions are shown for completeness, as well as for intuition and for comparison
to standard models.

As usual, the sampling distributions are expressed using count data. In our
notation, N represents a count variable. Its superscript indicates what entities
are being counted (for example, N I is a count of activity instances and Ne is a
count of individual events). The subscripts are indices of the relevant entities. A
dot in place of an index indicates summation over that index. The current entity
being sampled is omitted from the counts.

In the conditional sampling distributions below, N I
rt is the number of activity

instances that belong to users with role r that have activity type t, excluding
the current instance. Similarly, N I

ut is the number of instances of user u that
have activity type t, and T is the total number of activity types.

The conditional sampling distribution for the role of user u is:

p(ru = r0|rest) ∝
∏

t Γ (α + N I
r0t + N I

ut)
Γ (αT + N I

r0· + N I
u·)

· Γ (αT + N I
r0·)∏

t Γ (α + N I
r0t)

. (1)

The conditional sampling distribution for the activity type of the ith activity
instance of user u is given next. Here, Ne

te is the number of events of type e
assigned to activity type t, Ne

uie is the number of events of type e for user u
assigned to activity instance i, and E is the total number of event types:

p(Tui = t0|rest) ∝ α + N I
rut0

αT + N I
ru·

·
∏

e Γ (γ + Ne
t0e + Ne

uie)
Γ (γE + Ne

t0· + Ne
ui·)

· Γ (γE + Ne
t0·)∏

e Γ (γ + Ne
t0e)

(2)

The conditional sampler for the user u’s jth activity is given below. Here,
tν is the Student’s t distribution, and its parameters are νui0 = ν0 + Ne

ui0·,

κui0 = κ0 + Ne
ui0·, μui0 = κ0

κui0
μ0 +

Ne
ui0·

κui0
tui0 , and

σ2
ui0 =

1
νui0

[

ν0σ
2
0 + SSui0 − Ne

ui0·t
2
ui0 +

κ0N
e
ui0·

κ0 + Ne
ui0·

(tui0 − μ0)2
]

, (3)

where tui0 is the empirical mean and SSui0 is the empirical sum of squares of
timestamps for user u, activity instance i0.

p(Iuj = i0|rest) ∝
γ + Ne

Tui0euj

γE + Ne
Tui0 ·

tνui0

(

tuj | μui0 ,
1 + κui0

κui0

σ2
ui0

)

. (4)

It is interesting to compare these expressions with the corresponding sam-
pling equation for regular LDA. In LDA, the probability of assigning an event
euj to a topic z0 is

p(zuj = z0|rest) ∝ γ + Ne
z0euj

γE + Ne
z0·

· α + Ne
uz0

αT + Ne
u·

. (5)
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In TCRTM, the equivalent of topics is activity types. Events, however, are
not assigned to activity types directly; rather, events are assigned to activity
instances via eq. (4), and the activity instance i is associated with an activity
type given by Tui. Comparing eq. (5) to eq. (4), we note that the first term for
LDA is similar to the first term for TCRTM, except z0 is replaced with Tui0

(since the activity instance i0 has activity type Tui0 , which is equivalent to the
topic z0 in LDA). The second term in LDA is absent from eq. (4), but appears
instead as the first term in eq. (2), except that individual users u are replaced
with user roles r that combine multiple users, and the fact that in TCRTM,
activity instances are counted instead of individual events. Finally, the last term
in eq. (4) is absent from the LDA sampling because LDA doesn’t model event
time stamps. This term simply encourages individual events from a particular
activity instance to be clustered in time.

4 Experiments

We have experimented with two datasets. The first dataset includes debit card
transactions from over 300,000 users over a period of approximately 7 month.
The users are the beneficiaries of various state government programs; once a
month each card is loaded with an allotment of money which the users can
subsequently spend. The total number of transactions is about 50 million. Each
transaction includes a timestamp and a merchant code. This merchant code is
a description of the general type of products sold or services provided, such as
“Veterinary services” or “Hardware stores”. This merchant code was used as the
‘event type’ in our model.

The second dataset includes data from monitoring user workstations at a
large defense contractor. In this domain, the observables correspond to operat-
ing system primitives such as opening a file, executing a utility, or initiating a
network connection. Each such primitive consists of two parts: the application
that was used to perform the action (e. g., ‘firefox.exe’) and the action itself
(e.g., ‘ImageDownloadEvent’). About 5000 employees were monitored over one
month, resulting in over 100 million individual events.

TCRTM is not very sensitive to the choice of hyperparameters. For our exper-
iments, the following settings were used: α = 1, γ = 1. These were selected using
simple logarithmic grid search. In addition, μ0 was set to the empirical mean of
all the timestamps in each dataset, and κ0 = 0.0001 was used to reduce influ-
ence of the prior mean on timestamp variance (eq. (3)). Further, σ2

0 was set to
(D/I)2, where D is the duration of the modeled time period and I is the number
of activity instances within that time period. This prior simply splits the entire
time period into I intervals of roughly equal length (note that the posterior dis-
tribution will adjust this prior based on the actual observed data). Finally, ν0
was set to 5.0, again, chosen using simple logarithmic grid search.

TCRTM was initialized at random, and then Gibbs sampling was run for
200 iterations. Examining the marginal likelihood revealed that the sampler
converged typically after about 30 iterations (not shown).
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Fig. 3. Example activity types learned automatically by TCRTM. For each activity
type, top event types and corresponding probabilities are shown; the numbers are
rounded to nearest integer. The captions are not part of the model and were given by
the authors for illustration. (a)-(c): workstation dataset. (d)-(f): debit card dataset. As
can be seen, TCRTM successfully identifies semantically related groups of events.

The remaining parameters of interest in TCRTM are the number of roles R,
the number of activity types T , and the number of activity instances per user
I. For the debit card dataset, we’ve used R = 25, T = 25, and I = 14. R was
chosen by trial and error, T was chosen by observing that for settings of T > 25
duplicate activity types started appearing, and I was chosen so that there would
be roughly two activity instances per month (so that beginning-of-the-month and
end-of-the-month spending patterns could be separated).

For the workstation dataset, we’ve used R = 10 and T = 100. Since activity
types in this dataset (such as ‘checking email’ or ‘creating a presentation’) are
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Fig. 4. Example topic learned by LDA on the workstation dataset. As can be seen,
LDA grouped together a variety of events related to the MS Office suite. Although this
grouping is understandable (as users who have Office installed typically use multiple
applications within the suite), it is unlikely that they use all three applications simul-
taneously. Thus, the grouping reflects an artefact of software bundling rather than a
semantically meaningful, coherent user activity.

of inherently much shorter average duration, we’ve used a setting of 10 activity
instances per day, or 300 activity instances per month (which is our modeling
period). While TCRTM could run with these settings as is, an additional obser-
vation is that activities are short and rarely span across day boundaries because
of the way most people’s work days are scheduled. Therefore, we modified the
model in Figure 2 to treat each day separately, with the corresponding obvious
modifications to the sampling equations. The effect of this change is that instead
of selecting one of 300 global activity instances for each event (most of the 300
with very low probability), the model only needs to select one of 10 activity
instances for a particular day. This makes the sampler computationally more
efficient.

TCRTM was compared to standard LDA [2]. LDA was chosen as a basis
for comparison because it is naturally suited to modeling observations that
are generated by several distinct latent processes, as the observations in our
datasets are. Alternative methods, such as HMM, are unlikely to perform well
on our datasets because there are no natural fixed transitions between events
and between activities.

4.1 Activity Types

Several activity types discovered automatically by TCRTM are shown in
Figure 3. As can be seen, the model organizes event types into semantically
meaningful groups. Note that these groups encompass events that occur together
when a user performs a natural task; they are not limited to grouping together
all events from a single executable file or all events that co-occur in temporal
proximity. For example, in Figure 3(a), all event types that occur when working
with email are identified, even though they are performed by separate executable
files. Note that the executable names themselves were not available to TCRTM;
the events in question were encoded as ‘1733077456:98’, ‘2341822329:303’, and
‘1733077456:96’, providing no text similarity clues to the appropriate event
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Table 1. Perplexity of LDA and TCRTM on the two datasets used. Lower values are
better (note that perplexity measures the degree of surprise or confusion). Note that
the values are on logarithmic scale. As can be seen, TCRTM significantly outperforms
LDA on both datasets.

��������
Dataset

Method LDA TCRTM

Debit cards 11.44 2.56

Workstation data 10.12 5.91

groupings. Similarly, multiple executable files pertaining to using the Dropbox
service were grouped together (Figure 3(b)), and preference of several users to
listen to music while editing notes with OneNote was identified (Figure 3(c)).

In contrast, topics learned by LDA often reflected not a coherent activity, but
rather related events across multiple activities. This is illustrated in Figure 4.
As can be seen, LDA grouped together a variety of events related to the MS
Office suite. Although this grouping is understandable (as users who have Office
installed typically use multiple applications within the suite), it is unlikely that
they use all three applications simultaneously. Thus, the grouping reflects an
artefact of software bundling rather than a semantically meaningful, coherent
user activity.

For debit card data, several interesting patterns were identified as well. For
example, an activity type in Figure 3(d) groups together event types related to
cash aspects of the card (checking the balance, receiving the monthly allotment,
and withdrawing it as cash). Figure 3(e) shows an activity type related to buying
food and other everyday items (such as gas).

The conclusion is that TCRTM can successfully identify semantically mean-
ingful, coherent activity types.

4.2 Perplexity

Next, we compared TCRTM to LDA in terms of their ability to extract structure
from data and anticipate future events. To perform the comparison, we split each
dataset into a training and hold-out set (there was no overlap between the two
sets). TCRTM and LDA were both fitted to the training set, and the perplexity
of the corresponding models was then evaluated on the hold-out set. For this,
the log-probability of each hold-out event was evaluated for each model under
the parameters of an immediately preceding observed event. The results are
reported in Table 1. As can be seen, TCRTM significantly outperforms LDA on
both datasets.
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Fig. 5. Effect of TCRTM roles. (a): unordered histories; (b): histories ordered by
TCRTM roles. In the top half of subfigure (b) we see blue online grocery purchases
over the whole monthly cycle whereas in the bottom half of (b) we see a concentration
of bright green ATM cash withdrawls early in the monthly cycle (cf. Figure 3(d)) and
few online transactions of any type mid month. Thus TCRTM automatically infers
cash-based vs. online client types. (Best viewed on-screen, enlarged and in color.)
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4.3 Effect of Roles

To visualize the effect of modeling user roles, we performed an experiment on
a small subset of the debit card dataset that contained a randomly selected set
of 287 users and 50,000 transactions. The same settings as for the main dataset
were used, except we reduced the number of roles to 2 (this was done for easier
visualization, as well as due to the small size of the subset). The results are
shown in Figure 5 (the figure is best viewed on-screen, enlarged and in color).
In both images, each row corresponds to a different user. Time flows from left to
right. Each transaction type is color-coded according to the legend at the bot-
tom. Thus, each row shows a snapshot of user’s behavior over 3 months (note
that the full 7 months of data were used for modeling, but the display was trun-
cated to 3 months due to space considerations). In Figure 5(a), the users are
shown in the original, random order. In Figure 5(b), the same set of users was
rearranged by their role, as inferred automatically by TCRTM. Thus, the only
difference between sub-figures 5(a) and 5(b) is that in Figure 5(b), rows are shuf-
fled such that users with the same role are clustered together. As can be seen,
TCRTM groups users with similar behavior into the same role. There are notice-
able similarities in behavior between users with the same role, and significant
differences in behavior across roles. For example, the bottom part in Figure 5(b)
contains more bright green transactions, corresponding to cash-based activi-
ties (cf. Figure 3(d)), and is overall brighter, while the top part contains more
blue transactions and is overall darker. Examining the conditional distributions
inferred for the roles indeed confirms that for the ‘AUTOMATED CASH DIS-
BURSEMENT’ transactions (color-coded bright green), the probability under
role 2 (corresponding to the bottom part in Figure 5(b)) is 0.19, while for role
1 (corresponding to the top part) it is only 0.08. For the ‘GROCERY STORES
SUPERMARKETS’ transaction (color-coded dark blue), the probability under
role 1 (top part) is 0.12, while under role 2 (bottom part) it is only 0.06. The
conclusion is that the role modeling aspect of TCRTM identifies semantically
meaningful groups of users.

5 Conclusions

The experiments comparing temporally coherent role-topic model (TCRTM) to
conventional models such as LDA suggest that TCRTM can exploit the local
temporal coherence of events and population subgroup modeling to increase
the predictive power of the model. The significant increase in modeling power
makes us optimistic about the potential for TCRTM to improve a broad range
of applications related to activity analysis such as prediction, recommendation
and classification. As such, we argue that the TCRTM is an important milestone
that will stimulate more accurate algorithms for real-world transactional activity
analysis applications.
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