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Abstract. Label ranking is a specific type of preference learning prob-
lem, namely the problem of learning a model that maps instances to
rankings over a finite set of predefined alternatives. These alternatives
are identified by their name or label while not being characterized in
terms of any properties or features that could be potentially useful for
learning. In this paper, we consider a generalization of the label rank-
ing problem that we call dyad ranking. In dyad ranking, not only the
instances but also the alternatives are represented in terms of attributes.
For learning in the setting of dyad ranking, we propose an extension of
an existing label ranking method based on the Plackett-Luce model, a
statistical model for rank data. Moreover, we present first experimental
results confirming the usefulness of the additional information provided
by the feature description of alternatives.
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1 Introduction

Preference learning is an emerging subfield of machine learning, which deals with
the induction of preference models from observed or revealed preference informa-
tion [7]. Such models are typically used for prediction purposes, for example, to
predict context-dependent preferences of individuals on various choice alterna-
tives. Depending on the representation of preferences, individuals, alternatives,
and contexts, a large variety of preference models are conceivable, and many
such models have already been studied in the literature.

A specific type of preference learning problem is the problem of label ranking,
namely the problem of learning a model that maps instances to rankings (total
orders) over a finite set of predefined alternatives [26]. An instance, which defines
the context of the preference relation, is typically characterized in terms of a set
of attributes or features; for example, an instance could be a person described by
properties such as sex, age, income, etc. As opposed to this, the alternatives to be
ranked, e.g., the political parties of a country, are only identified by their name
(label), while not being characterized in terms of any properties or features.
© Springer International Publishing Switzerland 2015
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In this paper, we introduce dyad ranking as a generalization of the label
ranking problem. In dyad ranking, not only the instances but also the alterna-
tives are represented in terms of attributes. For learning in the setting of dyad
ranking, we propose an extension of an existing label ranking method based on
the Plackett-Luce model, a statistical model for rank data.

The paper is organized as follows. In the next section, we introduce the
problem of dyad ranking. Following a discussion of related work in Section 3,
we then propose the aforementioned method for dyad ranking in Section 4. In
Section 5, we present first experimental results, both for synthetic data and a
case study in meta-learning, confirming the usefulness of the additional feature
information of alternatives. The paper ends with some concluding remarks in
Section 6.

2 Dyad Ranking

As will be explained in more detail later on (cf. Section 3), the learning problem
addressed in this paper has connections to several existing problems in the realm
of preference learning. In particular, it can be seen as a combination of dyadic
prediction [19-21] and label ranking [26], hence the term “dyad ranking”. Since
our method for tackling this problem is an extension of a label ranking method,
we will introduce dyad ranking here as an extension of label ranking.

2.1 Label Ranking

Let Y = {y1,...,yx } be a finite set of (choice) alternatives; adhering to the ter-
minology commonly used in supervised machine learning, and accounting for the
fact that label ranking can be seen as an extension of multi-class classification,
the y; are also called class labels or simply labels. We consider total order rela-
tions > on ), that is, complete, transitive, and antisymmetric relations, where
y; > y; indicates that y; precedes y; in the order. Since a ranking can be seen
as a special type of preference relation, we shall also say that y; > y; indicates
a preference for y; over y;. We interpret this order relation in a wide sense, so
that a > b can mean that the alternative a is more liked that alternative b by a
person, but also for example that an algorithm a outperforms algorithm b.

Formally, a total order > can be identified with a permutation 7 of the set
[K] = {1,..., K}, such that 7(¢) is the index of the label on position i. We
denote the class of permutations of [K] (the symmetric group of order K) by
Sk . By abuse of terminology, though justified in light of the above one-to-one
correspondence, we refer to elements m € Sk as both permutations and rankings.

In the setting of label ranking, preferences on ) are “contextualized” by
instances * € X, where X is an underlying instance space. Thus, each instance
x is associated with a ranking >, of the label set ) or, equivalently, a permuta-
tion m, € Sk. More specifically, since label rankings do not necessarily depend
on instances in a deterministic way, each instance « is associated with a prob-
ability distribution P(-|x) on Si. Thus, for each m € Sk, P(7 | ) denotes the
probability to observe the ranking 7 in the context specified by x.
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As an illustration, suppose X is the set of people characterized by attributes
such as sex, age, profession, and marital status, and labels are music genres:
Y = {Rock,Pop,Classic, Jazz}. Then, for x = (m, 30, teacher, married) and
m = (2,1,3,4), P(m|x) denotes the probability that a 30 years old married
man, who is a teacher, prefers Pop music to Rock to Classic to Jazz.

The goal in label ranking is to learn a “label ranker”, that is, a model

M:X—>SK

that predicts a ranking 7 for each instance x given as an input. More specifically,
seeking a model with optimal prediction performance, the goal is to find a risk
(expected loss) minimizer

M* € argmin LM(x),7)dP
MeM XXSg

where M is the underlying model class, P is the joint measure P(x,m) =
P(x)P(m|x) on X x Sk and L is a loss function on Sk.

As training data D, a label ranker uses a set of instances x, (n € [N]),
together with information about the associated rankings m,. Ideally, complete
rankings are given as training information, i.e., a single observation is a tuple
of the form (x,,m,) € X x Sk. From a practical point of view, however, it is
important to allow for incomplete information in the form of a ranking of some
but not all of the labels in Y:

Yn(l) = Yn(2) =@ - = Yr(J) > (1)

where J < K and {n(1),...,n(J)} C [K]. For example, for an instance x, it
might be known that ys > y1 > ys5, while no preference information is given
about the labels y3 or y4.

2.2 Dyad Ranking as an Extension of Label Ranking

In the setting of label ranking as introduced above, instances are supposed to
be characterized in terms of properties—typically, an instance is represented
as an r-dimensional feature vector € = (x1,...,2,). As opposed to this, the
alternatives to be ranked, the labels y;, are only identified by their name, just
like categories in classification.

Needless to say, a learner may benefit from knowledge about properties of
the alternatives, too. In fact, if the preferences of an instance are somehow
connected to such properties, then alternatives with similar properties should
also be ranked similarly. In particular, by sharing information via features, it
would in principle be possible to rank alternatives that have never be seen in
the training process so far.

Returning to our above example of ranking music genres, suppose we know
(or at least are quite sure) that Rock >, Classic >, Jazz for a person z.
We would then expect that Pop is ranked more likely close to the top than
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close to the bottom, simply because Pop music is more similar to Rock than to
Classic or Jazz. In contrast to a label ranker, for which the music genres are just
uninformative names, we are able to make a prediction of that kind thanks to
our knowledge about the different types of music.

Given that useful properties of alternatives are indeed often available in prac-
tice, we introduce dyad ranking as an extension of label ranking, in which alter-
natives are elements of a feature space:

y=(1,y2- %) EY =VY1 x ¥y x--- XY (2)
Then, a dyad is a pair
z=(z,y) €Z=XxY (3)

consisting of an instance x and an alternative y. We assume training information
to be given in the form of rankings

pi: z2W = 23 e (M) (4)

of a finite number of dyads, where M; is the length of the ranking. Typically,
though not necessarily, all dyads in (11) share the same context x, i.e., they are
all of the form 2() = (z,y)); in this case, (11) can also be written

pi y(l) - y(2) e y(M") . (5)

Likewise, a prediction problem will typically consist of ranking a subset

{ﬁ%ﬁ%nwﬁw}gv

in a given context x. Given a dyad ranker, i.e., a model that produces a ranking
of dyads as an output, this can be accomplished by applying that ranker to the

set of dyads
(@, "), (z,y?), ... (@,y")

and then projecting the result to the alternatives, i.e., transforming a ranking
of the form (11) into one of the form (5). This setting, which generalizes label
ranking in the sense that additional information in the form of feature vectors is
provided for the labels, is the main subject of this paper and will subsequently
be referred to as contertual dyad ranking.

3 Related Work

As already mentioned earlier, the problem of dyad ranking is not only connected
to label ranking, but also to several other types of ranking and preference learning
problems that have been discussed in the literature. Although a comprehensive
review of related work is beyond the scope of this paper, we shall give a brief
overview in this section.
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The term “dyad ranking” derives from the framework of dyadic prediction as
introduced by Menon and Elkan [20]. This framework can be seen as a general-
ization of the setting of collaborative filtering (CF), in which row-objects (e.g.,
clients) are distinguished from column-objects (e.g., products). Moreover, with
each combination of such objects, called a dyad by Menon and Elkan, a value
(e.g., a rating) is associated. While in CF, row-objects and column-objects are
only represented by their name (just like the alternatives in label ranking), they
are allowed to have a feature representation (called side-information) in dyadic
prediction. Menon and Elkan are trying to exploit this information to improve
performance in matrix completion, i.e., predicting the values for those object
combinations that have not been observed so far, in very much the same way as
we are trying to make use of feature information in the context of label ranking.

Methods for learning-to-rank or object ranking [6,13] have received a lot of
attention in the recent years, especially in the field of information retrieval. In
general, the goal is to learn a ranking function that accepts a subset O C O of
objects as input, where Q is a reference set of objects (e.g., the set of all books).
As output, the function produces a ranking (total order) > of the objects O.
The ranking function is commonly implemented by means of a scoring function
U: O — R,i.e., objects are first scored and then ranked according to their scores.
In order to induce a function of that kind, the learning algorithm is provided with
training information, which typically comes in the form of exemplary pairwise
preferences between objects. As opposed to label ranking, the alternatives to be
ranked are described in terms of properties (feature vectors), while preferences
are not contextualized. In principle, methods for object ranking could be applied
in the context of dyad ranking, too, namely by equating the object space O with
the “dyad space” Z in (3); in fact, dyads can be seen as a specific type of
object, i.e., as objects with a specific structure. Especially close in terms of the
underlying methodology is the so-called listwise approach in learning-to-rank [4].

Close to our setting is also the (kernel-based) framework of conditional rank-
ing [24]. Here, relational data is represented in terms of a graph structure, in
which nodes correspond to objects and (directed) edges are labeled with asso-
ciations between these objects. Conditional ranking then refers to the problem
of ranking a set of nodes relative to another (target) node, namely, of ranking
the former in decreasing order of association with the latter. Associations are
modeled in terms of a specific type of kernel function called preference kernel,
and an SVM-like training procedure (with quadratic instead of hinge loss) is
used for model induction. The framework is quite flexible and covers different
learning problems as special cases, depending on the type of graph (bipartite or
complete), the type of edge labels and the type of training information [23].

4 A Bilinear Plackett-Luce Model

4.1 The Plackett-Luce Model

The Plackett-Luce (PL) model is a parameterized probability distribution on
the set of all rankings over a set of alternatives yi,...,yx. It is specified by a
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parameter vector v = (v1,vs,...Vk) € Rf, in which v; accounts for the “skill” of
the option y;. The probability assigned by the PL model to a ranking represented
by a permutation 7 is given by

K .
P(r|v) = [] “n(d) (6)

i1 Un(i) T Un(it1) T+ Un(k)

This model is a generalization of the well-known Bradley-Terry model [18], a
model for the pairwise comparison of alternatives, which specifies the probability
that “a wins against b” in terms of

Uq

P(a>b) = o

Obviously, the larger v, in comparison to vp, the higher the probability that
a is chosen. Likewise, the larger the parameter v; in (6) in comparison to the
parameters v;, j # 4, the higher the probability that y; appears on a top rank.

As a nice feature of Plackett-Luce, we note that marginals (i.e., probabilities
of rankings of a subset of the alternatives) can be computed very easily for this
model: The probability of an incomplete ranking (1) is given by

U (i)
Ur () + U (i+1) +...+ U (J) ,

jamm|®

P(r|v) =
i=1

i.e., by an expression of exactly the same form as (6), except that the number
of factors is J instead of K.

4.2 Label Ranking Using the PL Model

A method for label ranking based on the PL model was proposed in [5]. The
main idea of this approach is to contextualize the skill parameters of the labels
1; by modeling them as functions of the context x. More precisely, to guarantee
the non-negativity of the parameters, they are modeled as log-linear functions:

v = vp(x) = exp (Z w(k) d) = exp (<w(k),m>) . (7)

The parameters of the label ranking model, namely the w((ik) (1<k<K 1<
d <), are estimated by maximum likelihood inference.

Given estimates of these parameters, prediction for new query instances
can be done in a straightforward way: © = (01,...,0x) is computed based on
(7), and a ranking 7 is determined by sorting the labels y; in decreasing order
of their (predicted) skills 9. This ranking # is a reasonable prediction, as it
corresponds to the mode of the distribution P(-| ).
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4.3 Dyad Ranking Using the PL model

In (7), the skill of the label y; is modeled as a log-linear function of @, with a
label-specific weight vector w®. In the context of dyad ranking, this approach
can be generalized to the modeling of skills for dyads as follows:

’U(Z) :’U(w7y) :eXp(<wa¢($’y)>) ) (8)

where @ is a joint feature map [25]. A common choice for such a feature map is
the Kronecker product:

@(wvy) =rQyY= (1.1 *Y1, 21 'y27"'7xr'yc) :U€C($yT) ) (9)

which is a vector of length r - ¢ consisting of all pairwise products of the com-
ponents of  and y. Thus, the inner product (w, ®(x,y)) can be rewritten as a
bilinear form x "Wy with an r x ¢ matrix W = (w; ;); the entry w; ; can be con-
sidered as the weight of the interaction term x;y;. This choice of the joint-feature
map yields a bilinear version of the PL model:

v(z) =v(z,y) = exp (' Wy) (10)

Suppose training data D to be given in the form of a set of rankings (11), i.e.,
rankings p1, ..., pn of the following kind:

pn: (@), yD) = (@ yP) - o (@M y M) (11)

n

The likelihood of the parameter vector w is then given by

N M, exp (w (@ (m)®y(m)))
L(w):P(DIw):gm:1 Vo o (w = m@y(l))) :

and the log-likelihood by

S3 S el o) - 3 3 (S (w0 i) ).

n=1m=1 n=1m=1

Like in the case of the linear PL model, the learning problem can now be for-
malized as finding the maximum likelihood (ML) estimate, i.e., the parameter
w that maximizes the log-likelihood:

wyr = argmax £(w) (12)

To save the costly computations of the Hessian during ML estimation, a quasi-
Newton type algorithm (L-BFGS, [17]) is used in our implementation. Further
remarks on the identifiability of the model parameters are provided below.
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4.4 ldentifiability of the Bilinear PL Model

The bilinear PL model introduced above defines a probability distribution on
dyad rankings that is parameterized by the weight matrix W. An interesting
question concerns the identifiability of this model. Recall that, for a parameter-
ized class of models M, identifiability requires a bijective relationship between
models My € M and parameters 6, that is, models are uniquely identified by
their parameters. Or, stated differently, parameters 6 # 6* induce different mod-
els My # My-. Identifiability is a prerequisite for a meaningful interpretation
of parameters and, perhaps even more importantly, guarantees unique solutions
for optimization procedures such as maximum likelihood estimation.
Obviously, the original PL model (6) with constant skill parameters v =

(v1,...,vK) is not identifiable, since the model is invariant against multiplication
of the parameter by a constant factor ¢ > 0: The models parameterized by v
and v* = (cvy,...,cvk) represent exactly the same probability distribution,

ie., P(m|v) = P(n|v*) for all rankings m. The PL model is, however, indeed
identifiable up to this kind of multiplicative scaling. Thus, by fixing one of the
weights to the value 1, the remaining K — 1 weights can be uniquely identified.

Now, what about the identifiability of our bilinear PL model, i.e., to what
extent is such a model uniquely identified by the parameter W? We can show
the following result.

Proposition 1: Suppose the feature representation of labels does not include
a constant feature, i.e., |Y;| > 1 for each of the domains in (2), and that the
feature representation of instances includes at most one such feature (accounting
for a bias, i.e., an intercept of the bilinear model). Then, the bilinear PL model
with skill values defined according to (10) is identifiable.

Proof (sketch): Recall that the standard PL model is invariant against multipli-
cation with a positive constant, and that this is the only invariance of the model.
Since the bilinear PL model defined by (10) is log-linear in W, invariance on
the level of this parameter can only be additive. Now, suppose there are two
parameters W # W* that both induce the same distribution on the set of all
potential dyad subsets, which means that

x Wy =z Wry+~ (13)

for all dyads (x, y), where  is a constant that may depend on the parameters W
and W* but not on the dyads (x, y). More specifically, for the case of contextual
dyad ranking, v is also allowed to depend on x, but again, must not depend on
y. Under our assumptions, however, this independence cannot hold. In fact,
denoting the elements of W and W* by w; ; and wy ;, respectively, (13) means
that

T (& T C
SO (wiy—wiay; =YY Awijriy; =
i=1 j=1 i=1j=1
Then, exploiting the fact that not all Aw;; can vanish at the same time, it is
not difficult to show that a variation of some values y;, which will also have an
influence on the difference vy, is always possible.
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4.5 Comparison Between the Linear and Bilinear PL Model

It is not difficult to see that the linear model (7), subsequently referred to as
LinPL, is indeed a special case of the bilinear model (10), called BilinPL. In fact,
the former is recovered from the latter by means of a (1-of-K) dummy encoding
of the alternatives: The label y; is encoded by a K-dimensional vector with a
1 in position k& and 0 in all other positions. The columns of the matrix W are
then given by the weight vectors w*) in (7).

The other way around, LinPL can also be applied in the setting of dyad rank-
ing, provided the domain Y of the alternatives is finite. To this end, one would
simply introduce one “meta-label” Y} for each feature combination (y1,...,y.)
in (2) and apply a standard label ranking method to the set of these meta-labels.
Therefore, both approaches are in principle equally expressive. Still, an obvious
problem of this transformation is the potential size

K:|Y‘:‘Y1|X|Y2|X...X‘YC|

of the label set thus produced, which might be huge. In fact, the number of
parameters that need to be learned for the model (7) is r - |Y], i.e., r - a° under
the assumptions that each feature has a values. For comparison, the number of
parameters is only 7 - ¢ in the bilinear model. Moreover, all information about
relationships between the alternatives (such as shared features or similarities)
are lost, since a standard label ranker will only use the name of a meta-label
while ignoring its properties.

Against the background of these consideration, one should expect dyad rank-
ing to be advantageous to standard label ranking provided the assumptions
underlying the bilinear model (10) are indeed valid, at least approximately. In
that case, learning with (meta-)labels and disregarding properties of the alterna-
tives would come with an unnecessary loss of information (that would need to be
compensated by additional training data). In particular, using the standard label
ranking approach is supposedly problematic in the case of many meta-labels and
comparatively small amounts of training data.

Having said that, dyad ranking could be problematic if the model (10) is in
fact a misspecification: If the features are not meaningful, or the bilinear model
is not properly reflecting their interaction, then learning on the basis of (10)
cannot be successful.

In this regard, it is also interesting to mention that both approaches can
be combined. To this end, the feature vectors y are extended by a (1-of-K)
dummy-encoding, i.e., dyad ranking is used with feature vectors of the following
form:

y=(v1,92,---,%0,...,0,1,0,...,0 ) (14)
length K

! This is an upper bound, since in practice, not all feature combinations are necessarily
realized.
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Using this representation, subsequently called LinSidePL, the learner is in prin-
ciple free to exploit the side-information y; or to ignore it and only use the
dummy-labels.

In summary, the main observations can be summarized as follows:

— The linear PL model, like standard label ranking in general, assumes all
alternatives to be known beforehand and to be included in the training
process. If generalization beyond alternatives encountered in the training
process is needed, then BilinPL can be used while LinPL cannot.

— If the assumption (10) of the bilinear model is correct, then BilinPL should
learn faster than LinPL, as it needs to estimate fewer parameters. Yet, since
LinPL can represent all dependencies that can be represented by BilinPL,
the learning curve of the former should reach the one of latter with growing
sample size.

— If the bilinear model (10) is actually a misspecification, then LinPL is likely
to perform better than BilinPL, at least with enough training data being
available (for small training sets, BilinPL could still be better).

5 Experiments

In order to verify the expectations summarized above, we conducted experiments
with both synthetic and real data sets. In addition to LinPL (as implemented
in [5]), BilinPL and LinSidePL, we included Ranking by Pairwise Comparison
(RPC, [12]) and Constrained Classification (CC, [9,10]), which are both state-
of-the-art label ranking methods, as additional baselines.?

Predictive performance was measured in terms of Kendall’s tau coefficient
[15], a rank correlation measure commonly used for this purpose in the label
ranking literature [26,27]. It is defined as

_ C(m,7) — D(m,7)
TTTRE -2 (15)

with C and D the number of concordant (put in the same order) and discordant
(put in the reverse order) label pairs, respectively, and K the length of the
rankings 7 and 7 (number of labels). Kendall’s tau assumes values in [—1, +1],
with 7 = +1 for the perfect prediction # = 7 and 7 = —1 if 7 is the exact
reversal of .

5.1 Synthetic Data

Ideal synthetic ranking data is created by sampling from the Plackett-Luce dis-
tribution according to the BilinPL model specification under the setting (5) of
contextual dyad ranking. A realistic scenario is simulated in which labels can be
missing, i.e., observed rankings are incomplete [11]. To this end, a biased coin is

2 CC was used in its online variant as described in [12].
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flipped for every label, and it is decided with probability p € [0, 1] to keep or to
delete it. We choose a missing rate of p = 0.3, which means that on average 70%
of all labels of the training set are kept while the remaining labels are dismissed.
Feature vectors of length ¢ = 4 for labels and length r = 3 for instances were
generated by sampling the elements from a standard normal distribution (except
for one instance feature, which is a constant). The weight components were sam-
pled randomly from a normal distribution with mean 1 and standard deviation
9. The predictive performance is then determined on a sufficiently large number
of (complete) test examples and averaged over 10 repetitions.

5 Labels 10 Labels
1 T T T 1 T T T
— P -
s 081 >
& & ]
» w=edesn Ground truth » w+eedesss Ground truth
5 —@— BilinPL 3 —o— BilinPL
= =
& ooff e § e
==¥== LinPL =“¥~== LinPL
LinSidePL LinSidePL
= ®= RPC =@®'= RPC
5 10 20 40 80 200 400 5 10 20 40 80 200 400
Number of Training Instances Number of Training Instances
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1 T T T T
o e i |
0.9 J
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e P !
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Number of Training Instances Number of Training Instances

Fig. 1. Learning curves (generalization performance as a function of the number of
training examples) of the ranking methods for different numbers of labels.

The learning curves thus produced are shown in Figure 1 for different num-
bers of labels. Overall, all ranking methods are able to learn and predict correctly
if enough training data are available. In the limit, they all reach the performance
of the “ground truth”: given complete knowledge about the true PL model, the
optimal (Bayes) prediction is the mode of that distribution (note that the aver-
age performance of that predictor is still not perfect, since sampling from the
distribution will not always yield the mode). As expected, BilinPL and LinSid-
ePL both benefit from the additional label description compared to the other
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label ranking approaches over a wide range of different training set sizes and
numbers of labels.

Apart from predictive accuracy, it is worth mentioning that, in comparison
with the BilinPL model, standard label ranking methods also exhibit poor run-
time characteristics.

5.2 Case Study in Meta-Learning

As conjectured in Section 4.5 and confirmed in Section 5.1, BilinPL is poten-
tially advantageous to LinPL in cases where the number of alternatives (labels)
is large in comparison to the amount of training information being available
and, moreover, these alternatives can be described in terms of suitable features.
An interesting application for which these assumptions seem to hold is meta-
learning [2]. In this section, we therefore employ the framework of meta-learning
for algorithm recommendation as described in [2,3,14]. In particular, we aim at
predicting a ranking over several variants of a class of algorithms such as genetic
algorithms (GA), which can be obtained by instantiating the algorithm with
different parameter combinations.

Several choices need to be made within the meta-learning framework, includ-
ing the way of how meta-data is acquired (see Figure 2). The meta-features as
part of the meta-data should be able to relate a data set to the relative per-
formance of the candidate algorithms. They are usually made up by a set of
numbers acquired by using descriptive statistics. Another possibility consists of
probing a few parameter settings of the algorithm under consideration. The per-
formance values of those landmarkers can then be used as instance-features for
the meta-learner. In addition to the meta-features, the meta-data consists of
rankings of the candidate algorithms, i.e., a sorting of the variants in decreasing
order of performance. Using the meta-learning terminology, these rankings cor-
respond to the so-called meta-target. The novel aspect in this paper is the use
of qualitative performance data in the form of rankings® in conjunction with the
consideration of side-information.

In analogy to the majority classifier typically used as a baseline in multi-class
classification, the meta-learning literature suggests a simple approach called the
Average Ranks (AR) method [2]. This approach corresponds to what is called
the Borda count in the ranking literature and produces a default prediction
by sorting the alternatives according to their average position in the observed
rankings.

Learning to Rank Genetic Algorithms. This case study aims at recom-
mending GA parameter settings for instances of the symmetric traveling sales-
man problem (TSP). The GA performance averages are taken to construct rank-
ings, in which a single performance value corresponds to the distance of the
shortest route found by a GA. The GAs share the properties of using the same

3 This also comprises partial rankings and pairwise preferences as special cases.
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Fig. 2. The components of the “meta-learning for algorithm recommendation” frame-
work shown above are based on [2]. The left box shows the meta-data acquisition
process which consists of learning problem (or data set) characterization and the eval-
uation of the algorithms on the problems (or data sets). The box on the right side, the
meta-level learning part, shows the meta-learning process and its outcome. In this case
study, the meta-learner must be able to deal with qualitative data in form of rankings
and is furthermore allowed to use additional knowledge (side-information) about the
algorithms if it is available.

selection criterion, which is “roulette-wheel”, the same mutation operator, which
is “exchange mutation” and “elitism” of 10 chromosomes [22]. We tested the
performance of three groups of GAs on a set of TSP instances. The groups are
determined by their choice of the crossover operator, which can be cycle (CX),
order (OX) or partially mapped crossover (PMX) [16].

The set of meta-features represent the instance vectors for the ranking mod-
els. They are composed of the number of cities and the performances of three
landmarkers.

In total, 246 problems are considered, with the number of cities ranging
between 10 and 255.% For each problem, the city locations (z,y) are drawn ran-
domly from the uniform distribution on [1,100]2. Moreover, 72 different GAs are
considered as alternatives with their parameters as optional label descriptions.
They share the number of generations, 500, and the population size of 100. The
combinations of all the other parameters, namely, crossover type, crossover rate
and mutation rate, are used for characterization:

— Crossover types: {CX, OX, PMX}
— Crossover rates: {0.5, 0.6, 0.7, 0.8, 0.9}
— Mutation rates: {0.08, 0.09, 0.1, 0.11, 0.12}.

The three landmarker GAs have a crossover rate of 0.6 and a mutation rate
of 0.12, combined with one of the three crossover types, respectively. They are
excluded from the set of alternatives to be ranked. The label and dyad rankers
are faced with rankings under different conditions (M, N), with N the number
of training instances and M the average length of the rankings (M of the 72
alternatives are chosen at random while the others are discarded).

The results in Table 1 are quite consistent with our first study and again
confirm that additional information about labels can principally be exploited
by a learner to achieve better predictive performances. In particular, BilinPL is

* The data set can be obtained from https://www.cs.uni-paderborn.de/fachgebiete/
intelligente-systeme/
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Table 1. Average performance in terms of Kendall’s tau and standard deviations of
different meta-learners and different conditions (average rankings lengths M and the
numbers of training instances N).

M| N

AR

BilinPL

cC

LinPL

LinSidePL

RPC

30
60
90
120

0.192 + 0.063
0.358 + 0.046
0.404 + 0.030
0.430 + 0.020

0.727 + o.014
0.766
0.770
0.777

+ 0.014

+ 0.014

+ 0.009

0.290 + o.063
0.428 + 0.040
0.573 + 0.042
0.610 + 0.031

0.317 + o0.049
0.452 + 0.041
0.575 + 0.037
0.619 + 0.022

0.663 + 0.031
0.681 + o0.026
0.691 + o0.018
0.697 + o0.015

0.158 + 0.052
0.311 + o0.038
0.372 + 0.035
0.387 + 0.032

30
60
90
120

10

0.423 + 0.054
0.487 + 0.017
0.523 + 0.014
0.522 + 0.015

0.775
0.781
0.781
0.783

+ 0.007

+ 0.004

+ 0.007

+ 0.006

0.539 + 0.054
0.690 + 0.021
0.726 + 0.015
0.750 + o0.014

0.551 + 0.049
0.696 + o0.013
0.726 + o0.012
0.748 + 0.014

0.696 + o0.018
0.718 + o0.012
0.727 + o0.010
0.735 + 0.011

0.397 + 0.043
0.493 + 0.037
0.576 + o0.018
0620 + 0.020

30
60
90
120

20

0.516 + 0.037
0.549 + o0.014
0.561 + 0.014
0.571 + 0.022

0.781
0.784 + o.005
0.787 + o.006
0.787 + o.008

+ 0.005

0.722 + 0.010
0.763 + 0.013
0.779 + 0.010
0.786 + 0.010

0.722 + o0.015
0.758 + 0.014
0.774 + o0.013
0.782 + o0.010

0.728 + 0.014
0.741 + o0.015
0.750 + o0.015
0.758 + 0.013

0.622 + o0.018
0.714 + o0.022
0.751 + 0.021
0.772 + 0.014

30
60
90
120

30

0.554 + 0.028
0.567 + 0.008
0.578 + 0.008
0.580 + o.011

0.782 + o0.005
0.785 + o.003
0.787 =+ 0.004
0.786 + 0.006

0.753 + 0.013
0.782 + 0.007
0.791 + o.005
0.794 + o.005

0.746 + o0.018
0.775 + 0.009
0.786 =+ 0.005
0.789 + 0.007

0.734 + o.015
0.751 + o0.010
0.758 + o0.010
0.761 + 0.011

0.717 + o0.019
0.767 + o0.011
0781 + 0.006
0.787 + 0.005

able to take advantage of this information for small values of M and favorably
compares to the other label rankers (and, in addition, has of course the advantage
of being able to rank GA variants that have not been used in the training phase).
As expected, standard label rankers (in this case, CC) surpass BilinPL only for
a sufficiently large amount of training data.

6 Summary and Outlook

In this paper, we proposed dyad ranking as an extension of the label ranking
problem, a specific type of preference learning problem in which preferences on
a finite set of choice alternatives are represented in the form of a contextual-
ized ranking. While the context is described in terms of a feature vector, the
alternatives are merely identified by their label.

In practice, however, information about properties of the alternatives is often
available, too, and such information could obviously be useful from a learning
point of view. In dyad ranking, not only the context but also the alternatives
are therefore characterized as feature vectors.

The concrete method we developed, BilinPL, is a generalization of an existing
label ranking method based on the Plackett-Luce model. First experimental
results using synthetic data as well as a case study in meta-learning confirm
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that BilinPL tends to be superior to standard label ranking methods if feature
information about alternatives is available, at least if training data is scarce in
comparison to the number of alternatives to be ranked.

Since the PL approach is only one among several existing label ranking meth-
ods, one may wonder to what extent other methods are amenable to the incor-
poration of label features. This is a question we seek to address in future work.
Another interesting idea is to combine label ranking with (unsupervised) rep-
resentation learning for feature construction [1]: first, labels are embedded in a
feature space so as to reflect their similarity in a proper way, and the feature
representation thus produced is then used in dyad ranking. Last but not least,
there are several interesting applications of dyad ranking, notably those in which
standard label ranking has already been used, though without exploiting feature
information about choice alternatives. An example of that kind is preference-
based reinforcement learning, where label ranking is used to sort actions given
states [8]. Since actions do have a natural representation in terms of features or
parameters in many reinforcement learning problems, there is obviously scope
for enhancement through the incorporation of dyad ranking.
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