
The Difference and the Norm — Characterising
Similarities and Differences Between Databases

Kailash Budhathoki and Jilles Vreeken(B)

Max Planck Institute for Informatics and Saarland University, Saarbrücken, Germany
{kbudhath,jilles}@mpi-inf.mpg.de

Abstract. Suppose we are given a set of databases, such as sales records
over different branches. How can we characterise the differences and the
norm between these datasets? That is, what are the patterns that charac-
terise the general distribution, and what are those that are important to
describe the individual datasets? We study how to discover these pattern
sets simultaneously and without redundancy – automatically identify-
ing those patterns that aid describing the overall distribution, as well as
those pointing out those that are characteristic for specific databases. We
define the problem in terms of the Minimum Description Length prin-
ciple, and propose the DiffNorm algorithm to approximate the MDL-
optimal summary directly from data. Empirical evaluation on synthetic
and real-world data shows that DiffNorm efficiently discovers descrip-
tions that accurately characterise the difference and the norm in easily
understandable terms.

1 Introduction

Suppose we are given a set of databases, such as the sales records over differ-
ent branches of a chain. How can we characterise the differences and the norm
between these datasets? That is, what are the patterns that are common to all
databases, and what are those that are important to characterise the individual
databases? For example, whereas bread and butter may be an important pattern
in all stores, pasta and ketchup may only be descriptive for the store on campus.
When we mine only the complete data we risk missing the locally important pat-
terns, and when we mine the databases individually we risk missing the bigger
picture. We want to discover all important patterns, without redundancy, and
such that it is clear which databases they are characteristic for.

More in particular, given a set of databases, we want to discover a set of
patterns per database or combination of databases that the user is interested in.
These pattern sets should only include patterns that are descriptive for the
databases associated with the set, and overall these sets should be as non-
redundant as possible. That is, together these pattern sets should succinctly
summarise the given data.

We formalise this goal in terms of the Minimum Description Length prin-
ciple [5,13]. That is, we define the best model as the set of pattern sets that
describes the data most succinctly without loss. By this objective, a pattern
c© Springer International Publishing Switzerland 2015
A. Appice et al. (Eds.): ECML PKDD 2015, Part II, LNAI 9285, pp. 206–223, 2015.
DOI: 10.1007/978-3-319-23525-7 13

The Difference and the Norm Characterising Similarities and Differences 207

will only be included in the model if it simplifies the description – if it aids
compression. This means our model will not be redundant, nor will it include
noise.

To describe an individual database we only have to consider those patterns
that are associated with that database. This allows us to associate patterns
with the databases they are most characteristic for. As characteristic does not
necessarily mean ‘same frequency’, we do not want to punish patterns for having
different frequencies in the different databases they are associated with. To avoid
such undue bias we carefully construct a score for this setup using prequential
coding, a form of Refined MDL [5].

To discover good model directly from data we introduce the DiffNorm algo-
rithm. DiffNorm iteratively searches for that pattern that maximally simplifies
the current description. To this end it searches for those itemsets X and Y in its
model that are most frequently co-used to describe the same transaction, and
considers their union as a candidate pattern. The intuition is that these codes
for X and Y are redundant, and that by introducing that X ∪ Y to the model
the description will become more succinct.

Empirical evaluation on synthetic and real-world data shows that DiffNorm

efficiently discovers descriptions that in easily understandable terms accurately
characterise the difference and the norm. On synthetic data it recovers the
ground truth of both local and global patterns, without picking up on noise.
On real world data it discovers succinct and interpretable pattern sets that
characterise the split over the data well.

The remainder of this paper is organised as usual. For readability we postpone
details on selected derivations to the online Appendix.1

2 Related Work

Comparing two or more transaction databases is a common task, yet there exist
surprisingly few techniques that can characterise similarities and differences of
databases in easily understandable terms. Traditional frequent pattern [1] as
well as supervised pattern mining approaches [10] for example, discover far too
many patterns for the result to be interpretable. Pattern set mining circumvents
the pattern explosion [17]. Existing unsupervised methods such as Tiling [4],
Slim [14], and mtv [8] only characterise one database at a time, while supervised
methods only describe what sets databases apart. Running these algorithms on
multiple (combinations of) databases and comparing the results does not work
in practice – small differences in the data distribution can lead to very different
pattern sets which are difficult to compare.

Earlier, Vreeken et al. [16] proposed a dissimilarity measure for transaction
data based on Krimp [17]. The main idea is to infer a pattern set per database,
and then measure how many bits more we need to describe the other databases
with these patterns – the more similar the data, the small the difference. Here,

1 http://eda.mmci.uni-saarland/diffnorm/

http://eda.mmci.uni-saarland/diffnorm/

208 K. Budhathoki and J. Vreeken

on the other hand, we are interested in characterising all databases at the same
time, without redundancy.

In Joint Subspace Matrix Factorization (JSMF) the goal is to discover the
common subspace between the two datasets, as well as those that are represen-
tative of the specific datasets. Most relevant, as it considers binary databases, is
Joint Subspace Boolean Matrix Factorization (JSBMF) [9]. To avoid overfitting,
it requires the user to specify the number of patterns per pattern set. Our app-
roach is parameter free. Moreover, as JSMF is defined for pairs of databases, and
not trivially extendable to arbitrary combinations of databases, it cannot simul-
taneously and without redundancy find the patterns over multiple subspaces.

3 Preliminaries

In this section we discuss preliminaries and introduce notation.

3.1 Notation

We consider transaction data. Let I be a set of items, e.g. products for sale in
a store. A transaction t ∈ P(I) then corresponds to the set of items a customer
bought. A database D over I is a bag of transactions, e.g. the sales transactions
on a given day. We consider bags D of d such databases, e.g. the sales transactions
for different branches of store.

We assume this bag to be indexed such that by Di ∈ D we can access the
transactions sold at the i’th branch. Let J = {1, · · · , d} be the set of indexes.
An index set j ∈ P(J) then identifies a subset of databases {Di ∈ D | i ∈ j}.
Finally, U ⊆ P(J) identifies those subsets of databases the user specifies as
interesting.

We say that a transaction t ∈ D supports an itemset X ⊆ I, iff X ⊆ t. The
support suppD(X) of X in D is the number of transactions in the database where
X occurs. The relative support of X is its frequency, freqD(X) = suppD(X)/|D|,
with |D| for the number of transactions in D. Further, let ||D|| =

∑
t∈D |t| the

total number of items. For D, we write |D| =
∑

Di∈D |Di|, and define ||D||
analogue.

All logarithms are to base 2, and by convention we use 0 log 0 = 0.

3.2 MDL, a Brief Primer

The MDL (Minimum Description Length) [5,12] principle, like its close cousin
MML (Minimum Message Length) [18,19], is a practical version of Kolmogorov
complexity [6,7]. All three embrace the slogan Induction by Compression. For
MDL, this principle can be roughly described as follows.

Given a set of models M, the best model M ∈ M is the one that minimises

L(M) + L(D | M)

The Difference and the Norm Characterising Similarities and Differences 209

where L(M) is the length, in bits, of the description of model M , and L(D | M)
is the length, in bits, of the description of the data when encoded with M .

This is called two-part MDL, or crude MDL. As opposed to refined MDL,
where model and data are encoded together [5]. We use two-part MDL because
we are specifically interested in the model: the pattern sets that yield the best
compression. Although refined MDL has stronger theoretical foundations, it can
only be computed in special cases. From refined MDL we will use prequential
coding to encode the data without bias. Note that MDL requires the compression
to be lossless in order to allow for fair comparison between different M ∈ M.

To use MDL in practice we have to define our model class M, how to describe
a model M ∈ M, and how a model M describes the data D. In MDL we are only
interested in the length of the description, and never in the encoded data. That
is, we are only concerned with the length of the encoding, not with materialised
codes.

4 MDL for the Difference and the Norm

We first informally introduce our problem, and then formalise our objective.

4.1 The Problem, Informally

Suppose we are given a bag D of transaction databases. Loosely speaking, by
MDL we are after those patterns – itemsets – that together describe these
databases best. More in particular, we want to optimally jointly characterise
the database subsets U that the user specified as interesting. Our model S will
hence consist of a set of patterns Sj for every j ∈ U . Every individual database
Di ∈ D will be described – characterised – using the union of all Sj ∈ S associ-
ated with Di in the sense that i is an element of j. This allows us to associate
patterns with that database subset j they are most characteristic for. Not only
does this makes the overall description of the databases more efficient – no dupli-
cation is necessary – it also makes the model more insightful – if a pattern is
characteristic for all databases, it will be included in the pattern set that is asso-
ciated with all databases, when it is characteristic only for one database it will
only be included in the pattern set associated with that particular database, etc.

We will now formally introduce our objective.

4.2 Our Models

A model S is a set of pattern sets S ⊆ P(I), such that every Sj ∈ S is associated
with one of the database subsets j ∈ U the user identifies as interesting. To
describe an individual database Di ∈ D, we consider the union of all pattern
sets in S that are associated with Di, and to make sure every database over
I can be encoded without loss, we also add all singletons Formally, we write
πi(S) = {Sj ∈ S | i ∈ j} for the subset of S relevant to Di, and define the
coding set Ci for Di as Ci = I ∪ ⋃

πi(S).

210 K. Budhathoki and J. Vreeken

4.3 Encoded Length of the Data

Next, we discuss how we describe data D given a model S, and in particular how
to calculate the encoded length L(D | S). We do so bottom up, starting by how
to encode an individual transaction t ∈ D given an arbitrary coding set C . We
do so using a cover function cover(t,C) that returns a set of patterns from C
such that

⋃
cover(t,C) = t.

To encode the patterns in the cover of t, we will use optimal prefix codes. The
length of an optimal prefix code is given by Shannon entropy [2], − log Pr(X).
To compute these lengths, we hence need the probability of a pattern X in the
cover of the data. Let usgD(X,C) = |{t ∈ D | X ∈ cover(t,C)}| be the number
of times a pattern X ∈ C is used in the cover of D. Wherever clear from context
we simply write usg(X), and slightly abusing notation, we say usg(C) for the
sum of usages of coding set C , i.e. usg(C) =

∑

X∈C

usg(X). The probability

of X is then Pr(X) = usg(X)∑
Y ∈C usg(Y) , and the length of its optimal prefix code

L(code(X) | C) = − log Pr(X).
More in particular, we will use a prequential coding scheme [5]. Prequential

codes are Universal codes [13], which means they are asymptotically optimal
without having to know the usages in advance. That is, unlike for Krimp [17]
we do not have to make arbitrary choices for how to encode the usages in the
model – choices that may incur undue bias. The idea behind prequential coding
is simple: after every received code we re-calculate all probabilities over the data
received so far, initialising the usages to ε. This means that at any stage we
have a valid probability distribution and hence can send optimal prefix codes.
Surprisingly, the order in which we transmit codes does not affect the encoded
length – a sum of logarithms is the logarithm of a product, of which we can move
its terms around at will.

For the encoded length of a transaction t ∈ D we have

L(t | C) = LN(|t|) +
∑

X∈cover(t,C)

L(code(X) | C) , (0)

where we first encode the cardinality of the transaction, and then the patterns
in its cover. For the cardinality, we use LN, the Universal code for integers [13]
which for n ≥ 1 is defined as LN(n) = log∗(n) + log(c0) with log∗ = log(n) +
log log(n) + To make it a valid code it has to satisfy the Kraft inequality,
and hence we set c0 = 2.865064.

For the encoded length of a database D given a coding set C we then have

L(D | C) = LN(|D|) +
∑

t∈D

L(t | C) , (0)

where we encode the number of transactions in D using LN and then each of the
transactions in turn. Aggregating the lengths of all prequential prefix codes, we
have

The Difference and the Norm Characterising Similarities and Differences 211

L(D | C) =

[

LN(|D|) +
∑

t∈D

LN(|t|)
]

+

⎡

⎢
⎢
⎢
⎣

log

usg(C)−1∏

j=0

(j + ε|C |)

∏

X∈C

usg(X)−1∏

j=0

(j + ε)

⎤

⎥
⎥
⎥
⎦

. (0)

Note that the first two terms are constant for all models for the same data, and
can hence be ignored during optimisation. The right hand term is the length of
the data when encoded using prequential coding. By common convention, for
ε = 0.5 we have

L(D | C) = LN(|D|) +
∑

t∈D

LN(|t|) + log Γ (usg(C) + 0.5|C |)−

log Γ (0.5|C |) −
∑

X∈C

log ((2usg(X) − 1)!!) − usg(X) ,

where !! denotes the double factorial defined as (2k − 1)!! =
∏k

i=1(2i − 1), and
Γ is the Gamma function, which is an extension of the factorial function to the
complex plane. That is, Γ (x + 1) = xΓ (x), with relevant base cases Γ (1) = 1
and Γ (0.5) =

√
π. We refer the interested reader to the online appendix for

more details on prequential coding and its computation. Finally, by encoding the
number of databases in D, and then simply encoding every individual database
in order, we have

L(D | S) = LN(|J |) +
∑

Di∈D
L(Di | Ci) ,

for the encoded size of D given a model S. This leaves discussing the encoding
of S.

4.4 Encoded Length of the Model

Let us first discuss L(Sj), the encoded length of a pattern set Sj ∈ S. We define

L(Sj) = LN(|Sj |) +
∑

X∈Sj

(

LN(|X|) −
∑

x∈X

log freqD(x)

)

in which we first encode the number of patterns, then their cardinalities. Third,
we transmit the elements of X using optimal prefix codes – allowing us to recon-
struct patterns up to the names of the items – and do so using the marginal item
probabilities over D. By this choice a pattern X is equally expensive regardless
of the datasets for which Sj is relevant. Note that we do not have to encode the
pattern usages as we encode the data prequentially.

Finally, for the encoded length of a model S we have

L(S) = LN(|I|) + LN(||D||) + log
(||D|| − 1

|I| − 1

)

+
∑

Sj∈S
L(Sj) ,

212 K. Budhathoki and J. Vreeken

where we encode the length of the alphabet, the number of items in the data, and
then the support per item using an index over a canonically ordered enumeration
of all possibilities of distributing ||D|| events over |I| labels. This cost is constant
for the same data and can hence be ignored when optimising the model. It is
necessary, however, if we want to compare different encodings or model classes.

4.5 The Problem, Formally

Combining the above, the total encoded length of data D and a model S is
defined as

L(D,S) = L(S) + L(D | S) .

By MDL we are after the model that minimises the total encoded length. For-
mally, our problem definition is as follows.

Minimal Pattern Sets Problem. Let I be a set of items, D a bag of transac-
tion databases over I, U a set of index sets for D, cover a cover algorithm, and
F the space of all admissible models, F = P(P(I))|U |. Find the set of pattern
sets S ∈ F with the smallest

⋃ S such that the corresponding total compressed
size L(D,S) is minimal.

The search space we have to consider for this problem is rather large – even
if we take into account that only patterns that occur in the data can be used
to describe the data. Moreover, it does not exhibit structure we can exploit
to efficiently find the optimal pattern sets, such as submodularity or (weak)
monotonicity.

Hence, we resort to heuristics.

5 Algorithm

To discover good models directly from data, we propose the DiffNorm algo-
rithm.

5.1 The Cover Algorithm

First, however, we need a cover function cover(t,C) to determine which pat-
terns from C will be used to describe transaction t. Ideally cover minimises
L(D,S). However, as there exists a complex non-linear relation between the
total encoded length and the individual usages of patterns, optimising the cover
is non-trivial [15]. We therefore adopt the greedy heuristic successfully used
in Krimp [17]. That is, we greedily cover transaction t with non-overlapping
patterns from C . We do so in Standard Cover Order, i.e. we consider the
patterns in C sorted descending on cardinality, on support, and lexicographi-
cally. The intuition is that by doing so we need as few as possible, as frequent
as possible patterns to cover t. Algorithm 1 gives the pseudo-code.

The Difference and the Norm Characterising Similarities and Differences 213

Algorithm 1. GreedyCover

Input: A transaction t over items I and a coding set C
Output: A cover(t,C) ⊆ C

1 for X ∈ C in Standard Cover Order do
2 if X ⊆ t then return{X} ∪ cover(t \ X,C) ;

3 return ∅

5.2 The DIFFNORM Algorithm

Next we discuss the DiffNorm algorithm. We give the pseudo code as Algo-
rithm 2. The main intuition is that we iteratively reduce redundancy in the cur-
rent description of the data by adding combinations of existing patterns. That
is, we take a Slim-like approach [14]. We start with empty pattern sets (line 1).
We iteratively generate candidates in the form of X ∪ Y with X,Y ∈ S ∪ I. We
consider these in order of estimated gain (2). (We postpone the details of ΔL to
Sec. 5.4.) Note that we can easily impose additional constraints (e.g. minimum
support) to accommodate user preferences.

Per candidate, we calculate the difference in bits when adding it to the coding
set for each database (line 3–4). We use these gains to determine to which pattern
set(s) Sj ∈ S we will add the candidate (5–7). We do so greedily (6). We first
sort the user specified index sets U descending on gain, cardinality, and last
lexicographically. We iteratively pick the top-most index set, and updating the
gain scores of the remaining sets by removing the gain for data sets already
covered by the chosen index sets, and stop when we cannot select an index set
with positive gain.

As the new pattern may have superseded the use of older ones, we have to
Prune the model [17]. We give the pseudo-code as Algorithm 3. In a nutshell,
we simply iteratively re-consider every pattern in S for which the usage has
decreased – as these are now more expensive to encode – ordered by how much
the usage has decreased. After pruning we iterate until we cannot find any pat-
terns that improve the total encoded length. Before we return the patterns, we
order them by their relative importance – the number of bits we would have to
spend extra if the pattern would not be included.

5.3 Candidate Generation and Evaluation

The naive approach to optimising a model is to first mine all frequent patterns
F in D, and then iteratively consider these as candidates. Kramp [14] is the
locally optimal strategy of iteratively adding that Z ∈ F to the model that
maximises compression. Being quadratic in the size of the candidate set, this
approach is prohibitively costly. Krimp considers these candidates in a fixed
order, greedily selecting those that improve compression [17]. Considering every
candidate only once and in a static order Krimp is linear in the number of
candidates, but quality suffers and as all candidates need to be pre-mined and
ordered materialised the approach remains costly.

214 K. Budhathoki and J. Vreeken

Algorithm 2. DiffNorm

Input: A bag D of transaction databases over items I, and a database index
set U including at least the individual indices over D

Output: An approximation of the MDL-optimal model S for D
1 S ← {∅ | j ∈ U};

2 for Z ∈ {X ∪ Y | X, Y ∈ S ∪ I} descending on Δ̂L(D, S ⊕ Z) do
3 for Di ∈ D do
4 gaini ← ΔL(Di | Ci ⊕ Z);

5 w ← {ΔL(D, S ⊕j Z) | j ∈ U};
6 U ′ ← WeightedGreedyCover(J , U, w);
7 S ′ ← S with Z added to every Sj with j ∈ U ′;
8 S ←Prune(D, S, S ′);

9 Order every Sj ∈ S descending on ΔL(D, S �j Z);
10 return S;

Algorithm 3. Prune
Input: A bag D of databases over I, a previous model S and a current model T
Output: A pruned model T

1 Cands ← all patterns X ∈ T for which usg(X, T) < usg(X, S);
2 for X ∈ Cands in Standard Pruning Order do
3 if L(D, T � X) < L(D, T) then
4 T ← T � X;
5 Add all patterns Y ∈ T for which usg reduced to Cands;

6 return T ;

Instead, we can iteratively refine the current model by searching for redun-
dancies. Translated to our setting, Slam [14] is the locally optimal approach. It
iteratively evaluates all pairwise combinations X,Y ∈ S∪I, accepting that X∪Y
which maximises compression. Slim [14] considers the same candidates, but eval-
uates these in order of estimated quality, accepting the first that improves com-
pression. This leads to much improved run time and overall description length
close to Slam.

Loosely speaking DiffNorm follows the same adage as Slim. However,
unlike Slim, we consider multiple pattern sets – each of which relevant to
different set of databases. When we extend Slim naively, we would generate
overly many candidates and evaluate them on by far too many pattern sets and
databases. To refine this process we make use of the fact that MDL punishes
redundancy – which means that patterns will only be included in pattern sets
they are most relevant for.

First we adapt the candidate generation process. We observe that it is very
unlikely that X∪Y will be used much when X and Y are drawn from pattern sets
that are not used to describe the same database. This observation allows us to
refine the Slim strategy as follows. Instead of considering all pairs X,Y ∈ S ∪I,

The Difference and the Norm Characterising Similarities and Differences 215

we consider only X ∪ Y if they co-occur in a coding set C for a database D.
Formally, we consider only X ∪ Y for X ∈ Sj and Y ∈ Sk with j ∩ k �= ∅ as
candidates.

Next, we take a closer look at the candidate evaluation process. When we
consider a pattern X ∪ Y with X from a pattern set Sj that is more ‘specific’
than the pattern set Sk that we draw Y from, that is, j ⊂ k, it will be very
unlikely that X ∪Y will be a good candidate to add to Sk – otherwise, X would
have resided in Sk. We use this intuition and in these cases only consider to add
this candidate to Sj , not to Sk. More in general, we evaluate the candidate in
all Sl ∈ S with l ⊆ j. When j and k overlap, but j is not a strict subset of k, we
evaluate the candidate in all Sl ∈ S with l ⊂ j or l ⊂ k.

5.4 Estimating Candidate Quality

As we aim to minimise the description length, the quality of a candidate Z is
the gain in total compressed size when we would add Z to pattern set Sj ∈ S,
i.e. ΔL(D,S ⊕j Z). Formally,

ΔL(D,S ⊕j Z) = L(D,S) − L(D,S ⊕j Z)

= ΔL(Sj ⊕ Z) +
∑

i∈j

ΔL(Di | Ci ⊕ Z))

= L(Sj) − L(Sj ⊕ Z) +
∑

i∈j

L(Di | Ci) − L(Di | Ci ⊕ Z))

Note that ΔL(Di | Ci ⊕ Z) is constant regardless to which pattern set Sj ∈ S
we add Z – as long as i is in the index set j. Calculating the actual gain for
every candidate is prohibitively costly, however – we need to cover all relevant
databases to re-determine the usages. Instead, we therefore estimate the gain in
bits when adding a pattern Z to pattern set Sj , i.e. ΔL̂(D,S ⊕j Z). We then use
WeightedGreedyCover to get the total estimated gain, ΔL̂(D,S ⊕Z), from
ΔL̂(D,S ⊕j Z) ∀ j ∈ U . To this end we assume that as candidate we consider
the union of patterns X,Y ∈ S ∪ I, and that adding X ∪ Y to pattern Sj will
affect only the usages of X and Y and not that of other patterns in S. Formally,
we have

ΔL̂(D,S ⊕j X ∪ Y) = ΔL̂(Sj ⊕ X ∪ Y) +
∑

i∈j

ΔL̂(Di | Ci ⊕ X ∪ Y) ,

where for the estimated difference in encoded length of Sj we have

ΔL̂(Sj ⊕ X ∪ Y) = L(Sj) − L(Sj ⊕ X ∪ Y)

= LN(|X ∪ Y |) −
∑

x∈X∪Y

log freqD(x) .

216 K. Budhathoki and J. Vreeken

Somewhat more intimidating, for the estimated encoded length of the data we
have

ΔL̂(Di | Ci ⊕ X ∪ Y) = log(Γ (usg(C) + ε|C |)) − log(Γ (ûsg(C ′) + ε|C ′|))+
log(Γ (ûsg(X,C ′) + ε)) − log(Γ (usg(X,C) + ε))+
log(Γ (ûsg(Y,C ′) + ε)) − log(Γ (usg(Y,C) + ε))+

log(Γ (ûsg(X ∪ Y,C ′) + ε)) − log(Γ (ε))+
log(Γ (ε|C ′|)) − log(Γ (ε|C |))

were C ′ = C ∪ {X ∪ Y }, and ûsg(Z,C ′) is the estimation of the usage of
pattern Z when covering the data using C ′. We estimate the usage of X ∪ Y
optimistically, assuming it will be used wherever X and Y were co-used. That
is, we say ûsg(X ∪Y,C ′) = |utids(X)∩utids(Y)|, where utids(X) = {tid(t) | t ∈
D,X ∈ cover(t,C)} are the ids of the transactions covered using X. Following
the same assumption, we have ûsg(X,C ′) = usg(X,C) − ûsg(X ∪ Y,C ′), and
analogue for Y .

Since we only generate and evaluate the candidates against their relevant cod-
ing sets Ci, we do the same when estimating gain. Further, to avoid re-computing
all estimates at every iteration we cache the estimated gains of patterns. How-
ever, whenever a candidate Z is added to or pruned from S the usages of other
patterns X ∈ S may change – and hence so should the estimates of any candi-
dates that use X. We re-estimate the gains of these candidates, and maintain
those for the other candidates.

5.5 Complexity

Finally, we analyse the computational complexity of DiffNorm. In worst
case, a model S contains all the frequent patterns F . Let |S| be the total
number of patterns in model S. At worst, generating the candidates takes
O((|S| + |I|)2) ⊆ O(|F|2) steps. Calculating the gain takes O(|S|) ⊆ O(|F|)
steps. WeightedGreedyCover takes O(|U | × log |U |) steps for sorting U and
O(|U |2) steps for greedy selection and gain re-computation. Finally, Prune

takes O(|S|2 × |D|) steps. Altogether, the worst case computational complex-
ity is O(|F|3 × |D|). In practice, DiffNorm is fast. First, MDL restricts the
number of patterns in the model, pruning keeps the model non-redundant, and
model changes rarely affect many patterns. Second, we generate candidates not
naively from S but over coding sets C , and evaluate candidates only on the
relevant databases Di.

6 Experiments

We implemented our algorithm in C++ and provide the source code for the
research purposes, along with the used datasets, and synthetic dataset genera-
tor.2 All experiments were executed single-threaded on Intel Xeon E5-2643 v3
2 http://eda.mmci.uni-saarland/diffnorm/

http://eda.mmci.uni-saarland/diffnorm/

The Difference and the Norm Characterising Similarities and Differences 217

Table 1. Base statistics of the datasets used in the experiments. We report the num-
ber of rows, the size of the alphabet, the total number of items, and the number of
databases.

machines with 256 GB memory running Linux. We report the wall-clock running
times.

We consider both synthetic and real-world data. We give the basic statistics
of the real-world datasets in Table 1. For each dataset we give the number of
rows, size of the alphabet |I|, total number of items and number of databases.
For readability we use the shorthand notation L% = L(D,S)

L(D,S0)
% for the relative

compressed size of D with S0 the model consisting of only empty pattern sets –
lower is better.

In all experiments we consider U = {{1}, . . . , {|D|}, Ω} where Ω =
{1, . . . , |D|}. That is, we want a pattern set Si per individual Di ∈ D, and
in addition we want to have a pattern set SΩ that contains the patterns charac-
teristic to all databases in D.

6.1 Synthetic Data

First, we consider synthetic data to study the behaviour of DiffNorm on data
with known ground truth. We divide the possible data into four categories: data
with no patterns included, data where patterns are local to individual databases,
data where patterns occur globally in every database, and data where we mix
global and local patterns, i.e. data containing both local and global patterns.

For each setup we generate a D of two databases of 5 000 rows each over
120 items. We randomly plant non-overlapping patterns of cardinality uniformly
chosen over the range of 4 to 8, with random frequency over the range 10% to
30%. In addition, we add 5% uniform noise. We run DiffNorm with a minimum
support of 4.5%. Table 2 shows the result of DiffNorm per synthetic dataset,
i.e. number of planted patterns, the total encoded size given the simplest model
S0, relative compressed size L%. Further, following [20], we report the number
of exactly recovered patterns, the number of discovered patterns that are unions
or subsets of unions of planted patterns, the number of discovered patterns
that correspond to intersections between planted patterns, and the number of
patterns that are tainted with, or completely due to noise.

218 K. Budhathoki and J. Vreeken

Table 2. DIFFNORM recovers true patterns. Results on synthetic data. Per
dataset we give the number of planted patterns, the baseline description length, and
the relative compression L% we obtain. Further, we report the total number of pat-
terns DiffNorm discovers, and break this down into the number of exactly recovered
patterns (=), the number of discovered patterns that are (subsets of) unions of planted
patterns (∪), the number of discovered patterns that are intersections of planted pat-
terns (∩), the number of patterns unrelated to planted patterns (?).

We find that for Random, DiffNorm correctly infers that the data does not
contain any patterns. As for the other datasets, DiffNorm discovers exactly
all the planted patterns. In addition, DiffNorm discovers patterns that are
the union, or a subset thereof, of planted patterns X and Y – this is due to
generative process. As we allow multiple patterns on the same row, particularly
when X and Y are very frequent their combination can also become frequent,
and therewith descriptive for the data. Overall, DiffNorm identifies all the
interesting patterns from the synthetic datasets.

6.2 Real World Data

Next, we investigate the performance of DiffNorm on real-world data. In par-
ticular, we first consider seven datasets from Frequent Itemset Mining Implemen-
tations (FIMI) repository.3 For these experiments we set a minimum support of
2. The result on FIMI datasets is given in Table 3. We see that DiffNorm

is efficient, requiring only seconds for these datasets. Moreover, we find that it
achieves very good compression ratios (lower is better), and returns only modest
numbers of patterns.

This leaves us to compare these numbers. This is more difficult than it may
seem. For starters, comparing description lengths only makes sense when we con-
sider the same model class and exactly the same data. Comparing on the number
of discovered patterns is not trivial either. Comparing to the number of (closed)
frequent itemsets [11] is not fair as it is not meant to give a summary of the data.
Supervised methods [21] only report patterns that set classes apart, and do not
describe the data awhole. Summarisation methods such as Slim [14] do give
succinct description per database, but lack a way to identify patterns common
between the databases. Considering the number of patterns discovered summed

3 http://fimi.ua.ac.be/data/

http://fimi.ua.ac.be/data/

The Difference and the Norm Characterising Similarities and Differences 219

Table 3. DIFFNORM discovers succinct descriptions. Results of DiffNorm on
the real data sets. For DiffNorm we give the baseline compression cost L(D, S0), the
relative compressed size L% (lower is better), the wall-clock time in seconds, and the
total number of discovered patterns. For comparison, in addition we report the number
of patterns DiffNorm and Slim [14] discover when we concatenate all databases into
D∪ =

⋃

D.

over all databases would be hugely inflated. Most fair, we find is to compare to
the number of patterns discovered over the whole data, i.e. over D∪ =

⋃D. We
run both DiffNorm and Slim on this database with minsup 2 and report the
number of discovered patterns. We see that DiffNorm discovers roughly the
same number of patterns as before, while Slim on the other hand generally finds
many more patterns. This is likely due to overfitting as its encoding scheme does
not encode pattern lengths and codes without loss.

Next, we investigate how the patterns that DiffNorm discovers are dis-
tributed over the different databases. That is, in Figure 1 we show the sizes of
the discovered pattern sets, starting with the size SΩ , the pattern set associated
with all databases, and then the sizes of each of the Si corresponding to Di ∈ D.
We see that the patterns are nicely distributed over S, it is not the case that all
patterns are in either the global, or just in the local pattern sets.

We proceed to evaluate how well DiffNorm optimises our objective. As
we do not know the true optimum, we look at how the relative compression
L% converges over the search iterations. An iteration here refers to the event
when a pattern is accepted by DiffNorm. As shown in Figure 2(a), for the
Adult dataset, the relative compression reduces very sharply in the beginning
and after a certain number of iterations it converges more slowly as it then needs
to refine the more general patterns discovered in the first iterations. Note that
as we Prune the number of iterations and the final number of patterns differ.

DiffNorm relies heavily on the quality of estimating ΔL. We evaluate the
quality of our estimate by checking how well ΔL̂(D,S ⊕ X ∪ Y) correlates to
the actual gain ΔL(D,S ⊕ X ∪ Y). We consider Adult and plot the estimated
and actual gain for all the candidates considered by DiffNorm in Figure 2(b).
We see that the two are strongly correlated, as most of the points lie along the

220 K. Budhathoki and J. Vreeken

Fig. 1. DIFFNORM discovers both local and global patterns. For FIMI datasets,
we show the number of patterns in each pattern set discovered by DiffNorm as indi-
cated by the width of each colored box. The leftmost purple colored box indicates the
global pattern set SΩ .

diagonal, particularly those for high gain candidates. This also explains the shape
of the convergence curve in Figure 2(a) – candidates with higher estimated gains
are tested during early stages of the algorithm. We find that for lower estimated
gains the correlation is weaker. This is explained by our assumption that all
usages of all patterns in S remain constant, except for X and Y .

In our final experiment, we evaluate DiffNorm qualitatively. For this, we
consider the ICDM dataset.4 This data consists of the abstracts – stemmed and
stop-word removed – of 859 papers published at ICDM. We divide the data
into two classes: one of the abstracts that do contain the word mining (359
rows) versus the remainder (500 rows). With the minimal support set to 5,
DiffNorm takes 71.5 seconds, and discovers 637 patterns in total, 35 for the
first class, 54 for the second, and 548 in SΩ . As expected, we find that the
patterns found in abstracts containing mining point more towards exploratory
analysis. The patterns discovered from abstracts not containing mining point
more towards machine learning. On the global patterns, we find commonly used
phrases in research papers like “state of the art”, “evaluation”, etc. We give 5
highly characteristic exemplars drawn from the top-10 of each pattern set in
Table 4.

7 Discussion

The experiments show that DiffNorm works well in practice. On synthetic data
we recover all planted patterns exactly, and returns these top-ranked in the out-
put. On the real world data DiffNorm discovers succinct descriptions, returning
on average less than half as many patterns as Slim [14]. Moreover, the ICDM
abstracts data show that the results are clean and easily interpretable. Finally,

4 Available from the authors of [3].

The Difference and the Norm Characterising Similarities and Differences 221

Fig. 2. DIFFNORM searches efficiently and estimates accurately. For Adult we
show (left) the convergence of the relative compression L% per search iteration, and
(right) the correlation between the estimated and actual gains of candidates. Candi-
dates marked as circles were accepted whereas those marked as crosses were rejected.

Table 4. DIFFNORM finds meaningful patterns. Results of DiffNorm on the
ICDM dataset when split on abstracts including the word ‘mining’ and those that do
not. Shown are five patterns per pattern set, where SΩ is the pattern set associated
with both databases.

we showed that DiffNorm efficiently optimises its objective score thanks to
effective quality estimation of candidates.

Although these results are very encouraging, we see many possibilities to
further improve DiffNorm. A particular strong point is that our concept of
multiple pattern sets and prequential coding can be extended to other data and
pattern types, such as serial episodes [15]. Moreover, it will make for engaging
future work to extend DiffNorm such that it can automatically discover the
optimal U for a given set of databases, and/or simultaneously find the optimal
partitioning of a single given database.

Last, we have to note that MDL is not a magic wand. That is, even though
we use prequential coding our objective function involves choices, and so does
the optimisation. Currently we encode patterns in the pattern sets using the
global singleton frequencies. In certain settings it may more sense to use the

222 K. Budhathoki and J. Vreeken

frequencies over the relevant databases instead. Extending DiffNorm to allow
for overlap would likely lead to even more succinct descriptions.

8 Conclusion

We studied how we can characterise the differences and similarities between a set
of databases using pattern sets. We formalised the problem in terms of the Min-
imum Description Length principle [5], defining the best set of pattern sets as
the one that gives the most succinct description of the data. To find good mod-
els directly from data we introduced the parameter-free DiffNorm algorithm.
Empirical evaluation showed that DiffNorm discovers easily interpretable and
non-redundant summaries that clearly identify which patterns are globally, and
which ones are locally important. Future work includes refining the encoding
and extending towards other data and pattern types, as well as exploring how
well the patterns DiffNorm selects perform in classification.

Acknowledgments. The authors thank the anonymous reviewers for detailed com-
ments. Kailash Budhathoki and Jilles Vreeken are supported by the Cluster of Excel-
lence “Multimodal Computing and Interaction” within the Excellence Initiative of the
German Federal Government.

References

1. Aggarwal, C.C., Han, J. (eds.): Frequent Pattern Mining. Springer (2014)
2. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience

New York (2006)
3. De Bie, T.: Maximum entropy models and subjective interestingness: an application

to tiles in binary databases. Data Min. Knowl. Disc. 23(3), 407–446 (2011)
4. Geerts, Floris, Goethals, Bart, Mielikäinen, Taneli: Tiling databases. In: Suzuki,

Einoshin, Arikawa, Setsuo (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 278–289.
Springer, Heidelberg (2004)

5. Grünwald, P.: The Minimum Description Length Principle. MIT Press (2007)
6. Kolmogorov, A.N.: Three approaches to the quantitative definition of information.

Problemy Peredachi Informatsii 1(1), 3–11 (1965)
7. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applica-

tions. Springer (1993)
8. Mampaey, M., Vreeken, J., Tatti, N.: Summarizing data succinctly with the most

informative itemsets. ACM TKDD 6, 1–44 (2012)
9. Miettinen, P.: On finding joint subspace Boolean matrix factorizations. In: SDM,

pp. 954–965. SIAM (2012)
10. Nijssen, P., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a

constraint programming approach. In: KDD, pp. 647–656. Springer (2009)
11. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-

sets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

12. Rissanen, J.: Modeling by shortest data description. Automatica 14(1), 465–471
(1978)

The Difference and the Norm Characterising Similarities and Differences 223

13. Rissanen, J.: A universal prior for integers and estimation by minimum description
length. Annals Stat. 11(2), 416–431 (1983)

14. Smets, K., Vreeken, J.: Slim: Directly mining descriptive patterns. In: SDM,
pp. 236–247. SIAM (2012)

15. Nikolaj, T., Jilles, V.: The long and the short of it: Summarizing event sequences
with serial episodes. In: KDD. ACM (2012)

16. Vreeken, J., van Leeuwen, M., Siebes, A.: Characterising the difference. In: KDD,
pp. 765–774 (2007)

17. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: Mining itemsets that compress.
Data Min. Knowl. Disc. 23(1), 169–214 (2011)

18. Wallace, C.S.: Statistical and inductive inference by minimum message length.
Springer (2005)

19. Wallace, C.S., Boulton, D.M.: An information measure for classification. Comput.
J. 11(1), 185–194 (1968)

20. Webb, G., Vreeken, J.: Efficient discovery of the most interesting associations.
ACM TKDD 8(3), 1–31 (2014)

21. Zimmermann, A., Nijssen, S.: Supervised pattern mining and applications to classi-
fication. In: Aggarwal, C.C., Han, J. (eds.) Frequent Pattern Mining, pp. 425–442.
Springer (2014)

	The Difference and the Norm --- Characterising Similarities and Differences Between Databases
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 MDL, a Brief Primer

	4 MDL for the Difference and the Norm
	4.1 The Problem, Informally
	4.2 Our Models
	4.3 Encoded Length of the Data
	4.4 Encoded Length of the Model
	4.5 The Problem, Formally

	5 Algorithm
	5.1 The Cover Algorithm
	5.2 The DIFFNORM Algorithm
	5.3 Candidate Generation and Evaluation
	5.4 Estimating Candidate Quality
	5.5 Complexity

	6 Experiments
	6.1 Synthetic Data
	6.2 Real World Data

	7 Discussion
	8 Conclusion
	References

