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Abstract  About 20 years ago the concepts of phylogenetic diversity and phylogenetic 
split networks were separately introduced in conservation biology and evolutionary 
biology, respectively. While it has been widely recognized that biodiversity assess-
ment should better take into account the phylogenetic tree of life, it has also been 
widely acknowledged that phylogenetic networks are more appropriate for phyloge-
netic analysis in the presence of hybridization, horizontal gene transfer, or contra-
dicting trees among genomic loci. Here, we aim to combine phylogenetic diversity 
and networks into one concept, split diversity (SD), which properly measures biodi-
versity for conflicting phylogenetic signals. Moreover, we reformulate well-known 
conservation questions under the SD framework and present computational methods 
to solve these, in general, computationally intractable questions. Notably, integer 
programming, a technique widely used to solve many real-life problems, serves as 
a general and efficient strategy that delivers optimal solutions to many biodiversity 
optimization problems. We finally discuss future directions for the new concept.
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�Introduction

The previous book chapters show that in the presence of phylogenetic information 
it is more appropriate to assess biodiversity based on phylogenetic trees than on the 
concept of species richness (see also May 1990; Vane-Wright et al. 1991). 
Phylogenetic diversity (PD; Faith 1992) is a popular measure of the amount of evo-
lutionary history encompassed by the species under consideration. Given a phylo-
genetic tree for a set of taxa, PD of a taxon subset is defined as the sum of the branch
lengths of the minimal subtree connecting those taxa. The definition of PD per se
requires “a reliable estimate of phylogenetic relationships among the taxa” 
(Faith 1992). However, such a reliable estimate is sometimes hard to obtain due to, 
for example, model misspecification (Jermiin et al. 2008) or even intrinsically non-
treelike evolutionary patterns. More recently, phylogenomic studies often revealed 
conflicting phylogenetic signals among genomic loci, adding the complication how 
to compute PD from multiple trees.

Figure 1 illustrates the problem. Here, phylogenetic trees are reconstructed for 
ten pheasant species from the mitochondrial cytochrome b gene (CYB) and the 
intron 3 of the dimerization cofactor of hepatocyte nuclear factor 1 (DCoH3) (data 
from Kimball and Braun 2008). The two resulting trees, denoted by TCYB and TDCoH3, 
clearly separate the two genera Gallus (junglefowl) and Polyplectron (peacock-
pheasant). However, they strongly contradict within the Gallus clade. For example,
G. sonneratii (grey junglefowl) and G. varius (green junglefowl) are the basal 
Gallus species in TCYB and TDCoH3, respectively. The trees also disagree on the phylo-
genetic positions of P. emphanum (Palawan peacock-phesant) and P. malacense 
(Malayan peacock-pheasant). Moreover, edge lengths of the trees represented by 
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Fig. 1 Maximum likelihood phylogenetic trees inferred with IQ-TREE (Minh et al. 2013) from 
the mitochondrial CYB and the nuclear intron DCoH3 for four Gallus (junglefowl) and six
Polyplectron (peacock-pheasant) species. The scalebar represents the expected number of nucleo-
tide substitutions per site. Highlighted in boldface are the four species maximizing phylogenetic
diversity
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the expected numbers of substitutions per site substantially differ between the trees.
This particular example reflects the fact that the evolutionary relationships among
these birds are still controversial and more data is needed to elucidate the galliform 
tree of life (e.g., Wang et al. 2013).

If one is interested in selecting four species maximizing PD, then one indeed
ends up with two different sets of species (highlighted in bold-face, Fig. 1) and only 
P. emphanum occurs in both subsets.

To resolve this issue, we introduced the concept of Split Diversity (SD), which 
generalizes PD by combining information from multiple trees (Minh et al. 2009). 
For example, SD of a taxon set can be defined as the average PD of the two trees.
By maximizing SD one then simultaneously maximizes PDs over all trees, which
captures conflicting phylogenetic signals between the trees. Moreover, computing 
SD this way is equivalent to computing “phylogenetic diversity” from the so-called
phylogenetic split networks (Bandelt and Dress 1992a; Huson et al. 2010). SD has 
also been recently applied to prioritize populations for conservation (Volkmann
et al. 2014). In the following we formalize the concept of split networks and the
measure of split diversity. Further, we reformulate well-known biodiversity optimi-
zation problems under the framework of SD, present algorithmic solutions and 
computational tools to these problems. Finally conclude the chapter with future
perspectives.

�Phylogenetic Split Networks

Rooted phylogenetic trees as shown in Fig. 1 are well understood. Here, both trees 
show that the common ancestor of the taxa considered has the ancestors of the two
genera as direct descendants. In general, interior nodes indicate ancestral taxa of the
leaf nodes, and the edge lengths give an estimate of the amount of change observed 
between nodes. However, if one wishes to combine the information in both trees, it 
becomes difficult to identify clear ancestors. For example, TCYB and TDCoH3 disagree 
whether G. sonneratii or G. varius is the basal Gallus species. In order to visualize
these conflicts phylogenetic split networks have been devised.

We start by describing splits. A split, denoted by A|B, is defined as a bipartition 
of the taxon set X into two disjoint subsets A and B, indicating that there is an 
observable amount of divergence between the two subsets. Every edge in a tree
generates a split. If one removes an edge, the tree decomposes into two subtrees,
each of which connects a unique set of leaves. TCYB has 17 splits (edges), while 
TDCoH3 has 15 splits (2 splits in TDCoH3 have zero length and are collapsed as they do 
not influence subsequent computations). Figure 2a shows the union set Σ of 20 dis-
tinct splits occurring in the pheasant trees (Fig. 1). TCYB and TDCoH3 share the ten 
trivial splits σ1, σ2, …, σ10 corresponding to external edges of the trees. The trees also
share two non-trivial splits σ13 and σ16, where σ16 corresponds to the internal edges 
separating Gallus from Polyplectron species. The remaining splits are unique to
each tree.

Split Diversity: Measuring and Optimizing Biodiversity Using Split Networks



176

G.gallus

G.lafayetii
G.varius

P.emphanum

P.germaini

P.inopinatum
P.bicalcaratum

P.chalcurum

P.malacense

G.sonneratii
0.01

a

b

Fig. 2  (a) Set of all splits extracted from the trees in Fig. 1. Each split σ is a bipartition A|B, where 
‘*’ and ‘.’ represent taxa in A and B, respectively. Conflicting splits are colored. (b) Visualization
of this split set as a phylogenetic split network. Conflicting splits are colored accordingly and 
depicted by parallelograms. Here, split weights are assigned as the mean of the weight of the cor-
responding edges in the two trees. Highlighted in boldface are the four species maximizing split
diversity
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This split set is visualized in a phylogenetic split network (Fig. 2b). The major 
difference to trees is that the interior nodes of a split network cannot be regarded as 
representing ancestral taxa. Instead, the weight of a split A|B indicates the amount 
of difference between the taxon set A and B. A split is visualized by a single edge or 
a set of parallel edges. The former indicates that the split does not conflict any other 
splits, while the latter indicates at least one conflict. Therefore, two conflicting splits 
are visualized by a parallelogram. For example, σ14 (in cyan, Fig. 2) and σ15 (in pink) 
contradict each other on the placement of P. emphanum and P. malacense. This 
disagreement generates a narrow parallelogram at the basal Polyplectron.

If more than two splits are in disagreement, the split network will show multiple
connected parallelograms. For example, σ17 (in red, Fig. 2) conflicts with σ19 (in 
green) and σ20 (in yellow). σ19 also contradicts σ18 (in blue). Therefore, σ17, σ18, σ19 
and σ20 are visualized by three red, two blue, three green, and two yellow parallel 
edges, respectively. This generates three parallelograms within Gallus (Fig. 2b).

Not every split set can be visualized in two dimensions. For example, assuming
that we had a third tree that places G. gallus at the basal Gallus lineage. This would 
introduce one split contradicting with both σ17 and σ19. These triple-wise conflicting 
splits are depicted by a three dimensional parallelepiped. The resulting split network 
is not easily visualized anymore. However, for the following it suffices to directly 
work on the split set (Fig. 2a).

�The Measure of Split Diversity

Given a split set Σ, the SD of a taxon subset Y is defined as the sum of the weights 
λ of all splits separating taxa in Y. Here, a split A B| ÎS separates Y if Y AÇ and 
Y BÇ  are both non-empty. Thus, we get

	

SD Y
Y

( )
:

= å
Îs S s

sl
separates 	

To illustrate, given Σ in Fig. 2, for Y={P. malacense, P. germaini, P. emphanum, 
G. lafayetii} we have SD Y( ) = + + + + + +¼+l l l l l l l3 4 6 8 13 14 19 , where l lsi i

=  
is defined as the average of the corresponding branch lengths in TCYB and TDCoH3. 
Here, contradicting splits such as σ17 and σ19 are considered in the SD 
computation.

If the split set Σ corresponds to a tree (i.e. no conflicting splits exist in Σ), then 
SD is equivalent to PD. The definition of SD therefore generalizes PD. For this
reason we focus on SD for the remaining of the chapter.

�Biodiversity Optimization Problems

Conservation problems mainly fall into two categories: taxon selection and reserve
selection (Fig. 3), where the conservation targets are either taxa or geographical
areas, respectively. Under PD, the simplest taxon selection problem (Faith 1992) is 
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to identify a subset of k taxa that maximizes PD on a phylogenetic tree of n taxa 
(2 ≤ k < n). For reserve selection we define PD on a subset of areas as the PD of the
union taxon set of the areas. The simplest reserve selection problem is analogously
to identify a subset of k areas that maximizes PD over all subsets of k areas. In the
following, we reformulate these problems using SD and further integrate economi-
cal and ecological constraints into the extensions.

�Taxon Selection Problems

We start with the simplest taxon selection problem formally defined as:

As an illustration, given the split set for ten pheasants (Fig. 2) we want to select 
four taxa maximizing SD. By doing so we yield an optimal subset (highlighted in

Problem 1 (Taxon Selection)
Given a phylogenetic split set for n taxa, find a subset of k taxa that maximizes
SD over all subsets of k taxa.

Taxa Areas

Conservation targets

1. Taxon 

selection

Conservation Constraints

Ecology Economy

3. Viable 

taxon 

selection 

2. Budgeted 

taxon 

selection

4. Reserve 

selection

5. Budgeted 

reserve 

selection

Fig. 3 The “network” of biodiversity optimization problems
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bold-face; Fig. 2b), which shares three taxa (P. emphanum, P. malacense, and  
G. lafayetii) with the CYB-based subset (left panel of Fig. 1) and only two taxa 
(P. emphanum and P. germaini) with DCoH3-based subset (right panel of Fig. 1). 
The SD approach therefore provides a “consensus” solution over the two independent
PD analyses. Problem 1 is known to be NP-hard (Spillner et al. 2008), which means 
that to find an optimal set it may, in the worst case, necessary to compute the SD for 
the exponentially many subsets n.

Problem 1 implicitly assumes that each taxon requires the same amount of
resources for conservation. If we knew the preservation costs for each taxon and
were provided with a finite budget, then a more realistic scenario is to allocate this 
budget among the taxa so as to obtain the highest diversity. This process is known
as conservation triage (Bottrill et al. 2008) and formally defined as:

Problem 1 and 2 ignore ecological relationships between taxa. In real life species
interact with each other within a dependency network such as predator-prey rela-
tionships (Witting et  al. 2000; van der Heide et  al. 2005; Moulton et  al. 2007).  
In general, a dependency network is, typically, an acyclic directed graph, where
nodes in the graph represent taxa and edges represent dependencies between 
nodes. Figure 4 shows an artificial example of such a network for the pheasants.
Here, G. sonneratii depends on P.malacense and P.germaini, depicted by two edges 
connecting G.sonneratii with these two taxa. We note that this is a purely fictional
example, but it illustrates the major principles of including a dependency structure
in conservation decisions.

A taxon is called viable in a subset of taxa if this taxon does not depend on any
other taxon, or if it does depend on some taxa, then at least one of them is also pres-
ent in the subset. For example, G.sonneratii is viable in a subset if this subset also 
contains P.malacense or P.germaini. P.emphanum and G.gallus are viable in any 
(sub)set since they do not depend on any other species.

A subset is called viable if all its taxa are viable in this set. For example, 
{P. emphanum, P. bicalcaratum, P. germaini, G. sonneratii} is a viable subset, 
whereas {P.emphanum, P.bicalcaratum, G.lafayetii, G.sonneratii} is not viable.

We now formally define the viable taxon selection problem as

Problem 2 (Budgeted Taxon Selection)
Given a split set and conservation costs for each taxon, find a subset of taxa
whose total conservation costs do not exceed a predefined budget while maxi-
mizing SD.

Problem 3 (Viable Taxon Selection)
Given a split set and a dependency network, find a viable subset of k taxa,
which maximizes SD.

Split Diversity: Measuring and Optimizing Biodiversity Using Split Networks
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�Reserve Selection Problems

For reserve selection we define the SD of a subset of areas as the SD of the union
set of taxa present in these areas. The reserve selection is formalized as:

To illustrate the problem consider the geographical distribution of the ten pheas-
ants (Table 1). The data were obtained from the global biodiversity information 
facility (www.gbif.org; accessed on December 1st, 2013), where a country is listed 
as habitat only if there are at least three observations for the species. Table 1 shows 
that these pheasants occur in eight countries in South Asia. G. gallus and P. bical-
caratum occur in seven and two countries, respectively, whereas the remaining 
species are endemic to one country. Indonesia and Malaysia each host three species,
Sri Lanka only one species, and the remaining five countries are home to two
species each.

If one wants to select four countries with maximal diversity, then the decision
heavily depends on the trees or network (Figs. 1 and 2b). Table 2 shows that using 

Problem 4 (Reserve Selection)
Given a split set for n taxa distributed in m areas, find a subset of k areas that 
maximizes SD over all subsets of k areas.

P.malacense

P.emphanum

P.bicalcaratum

P.inopinatum

P.germainiP.chalcurum

G.sonneratii

G.gallus

G.lafayetii
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Fig. 4 Artificial example of dependency network for the pheasant data set
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the CYB and DCoH3 regions, the optimal sets only overlap in two countries: 
Malaysia and Philippines. If we now maximize SD instead, then the optimal set
includes these two countries, the third one preferred by the PD-DCoH3 set
(Indonesia), and the fourth one by the PD-CYB set (India). The union of the species
sets for the selected areas contains seven species.

If budget data is available, then we have a budgeted reserve selection problem.
Here, preserving these species in each country comes at a cost and we need to select 
those countries that maximize SD within an allocated budget.

�Computational Methods in Conservation Planning

The algorithms to solve the aforementioned Problems 1–5 are those that are guaran-
teed to produce an optimal solution, often referred to as exact algorithms, and those
that are not. The former includes algorithms that are based on integer programming 
and dynamic programming, whereas the latter comprise greedy algorithms, approx-
imation algorithms and algorithms based on simulated annealing. We will start with 
greedy algorithms, as they are simple and probably most widely applied in conser-
vation planning.

�Greedy Algorithms

Greedy algorithms are a simple and general heuristic strategy but, usually, do not 
guarantee optimal solutions. Kirkpatrick (1983) was probably the first to apply a 
greedy algorithm to find a solution to Problem 4, the simple reserve selection, but

Problem 5 (Budgeted Reserve Selection)
Given a split set for n taxa distributed on m areas and conservation costs for 
each area, find a subset of areas whose total conservation costs do not exceed
a predefined budget while maximizing SD.

Table 2 Four countries
maximizing PD on the CYB
tree (first column), PD on the
DCoH3 tree (second 
column), and SD on the split 
network (third column)

PD – CYB PD – DCoH3 SD

Malaysia (3) Indonesia (3) Malaysia (3)
Philippines (2) Malaysia (3) Philippines (2)
Sri Lanka (1) Philippines (2) Indonesia (3)
India (2) Vietnam (2) India (2)

Highlighted in boldface are the countries present in all 
optimal sets. The number of species present in the country 
is given in brackets

O. Chernomor et al.
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under the species richness concept. His greedy algorithm coined “complementarity 
principle” first identifies the most species-rich area. In the second step, it finds the
area, which “adds” the most numbers of new species to the firstly chosen area. This
is repeated until k areas are obtained. Such a complementarity principle has been 
applied to maximize PD (Faith 1992) and also applied elsewhere (e.g., Vane-Wright
et  al. 1991; Pressey et al. 1997). Recently, Bordewich and Semple (2008) have 
proven that the greedy algorithm applied to Problem 5 under PD will generate a
solution that has at least ~63 % of the PD of the optimal solution, which is the best
possible approximation ratio.

The only case, where a greedy algorithm delivers the optimal solution is the 
taxon selection (Problem 1) under PD on trees (Pardi and Goldman 2005; Steel 
2005). An efficient implementation of such a greedy algorithm (Minh et al. 2006) 
finds a solution for trees with millions of taxa within seconds on a standard PC.
Greedy algorithms have been further examined in conservation biology (Moulton
et al. 2007; Bordewich et al. 2008).

Obviously greedy algorithms can be applied for Problems 1–5 to maximize
SD. The general idea is to start with one target (either taxon or area) having the
highest SD. We then choose the second target “adding” the most SD while still sat-
isfying the constraints (budget or viability constraints). We repeat this step until no 
further target can be added (e.g., exceeding k targets for Problem 1, 3, and 4 or
exceeding the budget for Problem 2 and 5). As an illustration the greedy algorithm
is applied for Problem 4 to find four countries showing the highest pheasant SD for
the split network (Fig. 2b) and known geographical distribution (Table 1) as fol-
lows. Malaysia is first selected as it contains the highest SD. Philippines, Indonesia,
and India are selected in the next steps. In this particular example the greedy algo-
rithm happens to obtain the optimal set of four countries (Table 2).

�Integer Programming

Integer Programming (IP; Dantzig et al. 1954; Gomory 1958) is a widely used and 
powerful optimization technique to solve a variety of decision-making problems 
(Wolsey 1998; Jünger et al. 2010). IP methods maximize or minimize a linear objec-
tive function subject to linear constraints (equalities or inequalities) when one or 
more variables are restricted to be integers. Theoretically solving IP is NP-hard.
However, thanks to powerful solvers like CPLEX (2012) and GUROBI (Gurobi
Optimization Inc. 2013), problems with thousands of variables and constraints can 
be solved optimally within reasonable time (Jünger et al. 2010; and references 
therein).

The first application of IP in conservation problems goes back to (Cocks and
Baird 1989), who solved the reserve selection (Problem 4) under species richness.
Such IP formulations have been extended to more realistic scenarios (Underhill
1994; Church et al. 1996; Possingham et al. 2000), to maximize PD (Rodrigues and
Gaston 2002; Rodrigues et al. 2005), and to maximize SD (Minh et al. 2010).

Split Diversity: Measuring and Optimizing Biodiversity Using Split Networks
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Here, we show how to model biodiversity optimization problems 1–5 in IP par-
lance, which allows available IP software packages to solve the problem. We first
introduce some notations and definitions and further exemplify IP formulations for
Problems 1–5 using the pheasant data set.

�IP for Taxon Selection Problems

Given a set of n taxa, we encode a subset S by an n-element binary vector with 
entries of 0 and 1 indicating the absence and presence of the corresponding taxa in
S. The elements of this vector are called taxon variables. For the pheasant data set
there are ten taxon variables xPB, xPC, xPE, xPG, xPI, xPM, xGG, xGL, xGS, xGV (indices fol-
low initials of species names). We say that a split σ = A|B is preserved in S if A and 
B each contain at least one taxon from S. For each split σ we introduce a binary split 
variable yσ, where yσ = 1 if σ is preserved in S and 0 otherwise.

Each yσ is fully identified from taxon variables by two split constraints as fol-
lows. σ1 is a trivial split that separates P. bicalcaratum from the remaining taxa. σ1 
is preserved (i.e. y1 = 1) if P. bicalcaratum and at least another taxon are preserved
(see Fig. 2a for the definition of the splits). This condition is expressed by two
inequalities:

	 y x y x x x x x x x x xPB PC PE PG PI PM GG GL GS GV1 1£ £ + + + + + + + +, 	

In fact, the second inequality always holds because k ≥ 2 and thus is ignored. Now 
consider the non-trivial split σ17, which separates G. gallus, G. lafayetii, and G. 
varius from the remaining taxa. σ17 is preserved if at least one of G. gallus, G. lafay-
etii, and G. varius and one of the remaining taxa are preserved. Therefore,

	 y x x x y x x x x x x xGG GL GV PB PC PI PG PE PM GS17 17£ + + £ + + + + + +, 	

The remaining split constraints are listed in Table 3.
Based on split variables one can rewrite SD of S as:

	

SD S y( ) = å
s

s sl
	

(1)

where λσ is the weight of split σ. This is the objective function that we want to maxi-
mize for all problems (1–5).

In the taxon selection Problem 1 the size of an optimal subset is constrained by a
predefined number k, meaning that:

	 x x x x x x x x x x kPB PC PE PG PI PM GG GL GS GV+ + + + + + + + + £ 	 (2)

We also require that taxon and split variables are binary

O. Chernomor et al.
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	 x ii Î{ , },0 1 " taxon 	 (3)

	 ys " sÎ{ , },0 1 split 	 (4)

Suppose we are given a total budget B. Let ci denote conservation costs for taxon
i. We can then substitute constraint (2) by the budget constraint

	
å £
i

i ic x B
	

(6)

Together with previous constraints we have the IP formulation of Problem 2 by:

We now model viability constraints that operate on taxon variables as follows. 
G. sonneratii depends on P.malacense and P.germaini (Fig. 4). Therefore, the viability 
constraint for G. sonneratii is simply

	 x x xPM PG GS+ ³ 	

This ensures that xGS is 1 (i.e., G. sonneratii is selected for conservation) only if at 
least one of xPM and xPG is also 1. Viability constraints for all the other taxa are listed
in Table 3. Now, the IP formulation for viable taxon selection can be obtained by
simply including viability constraints to Problem 1:

�IP for Reserve Selection Problems

For reserve selection we encode a subset W of m areas by a binary vector (z1,z2,…,zm), 
where zr is 1 if area r is present in W, and 0 otherwise. We call zr area variables. For
the pheasant habitat (Table 1) we have eight area variables zID, zLK, zBT, zIN, zPH, zMY, 

IP Formulation of Problem 1
Maximize objective function (1), subject to subset size constraint (2), binary
constraints (3, 4), split constraints (5) (see Table 3).

IP Formulation for Problem 2
Maximize objective function (1), subject to budget constraint (6), binary con-
straints (3, 4), and split constraints (5) (Table 3).

IP Formulation of Problem 3
Maximize objective function (1), subject to subset size constraint (2), binary
constraints (3, 4), split constraints (5), and viability constraints (7) (Table 3).

Split Diversity: Measuring and Optimizing Biodiversity Using Split Networks
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zTH, zVN (indices follow two-letter country codes). We now redefine split constraints 
in terms of area variables instead of taxon variables as follows.

Split σ18, which separates G. lafayetii and G. varius from the others, is preserved 
if (1) G. lafayetii or G. varius is preserved and (2) at least one of the remaining taxa
is preserved. Because G. lafayetii or G. varius occur in Indonesia and Sri Lanka,
condition 1 is equivalent to:

	 y z zID LK18 £ + 	

Similarly condition 2 is equivalent to:

	 y z z z z z z zBT ID IN PH MY TH VN18 £ + + + + + + 	

since the remaining taxa are found in all areas except Sri Lanka. Such area-split
constraints for all other splits are listed in Table 4.

The subset size constraint has to be rewritten for countries:

	 z z z z z z z z kID LK BT IN PH MY TH VN+ + + + + + + £ 	 (8)

We keep binary constraints for split variables and also include such for area 
variables

	 z rr Î{ , }0 1 " area 	 (9)

Reserve selection problem is then formulated as follows:

For budgeted reserve selection we are given a total budget B. Let cID, cLK, cBT, cIN, 
cPH, cMY, cTH, cVN denote conservation costs for each country. Then a budget con-
straint for areas is

	
å £
r

r rc z B
	

(11)

To obtain the IP formulation for Problem 5 we simply substitute subset size con-
straint (8) by the budget constraint (11).

IP Formulation of Problem 4
Maximize objective function (1), subject to subset size constraint (8), binary
constraints (4, 9), and area-split constraints (10) (Table 4).

IP Formulation of Problem 5
Maximize objective function (1), subject to budgetary constraint (11), binary
constraints (4, 9), and area-split constraints (10) (Table 4).
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�Other Algorithms

While greedy algorithms and IP are general strategies for all Problems 1–5, other
algorithms have been applied to solve special cases. For example, simulated anneal-
ing algorithms (Possingham et al. 2000) were introduced to solve the reserve selec-
tion Problems 4 and 5 under species richness with an opportunity to minimize the
connectivity between the areas such as the boundary lengths. Dynamic program-
ming algorithms (DPA) have been applied to solve Problem 2 under PD (Pardi and
Goldman 2007). DPA was further extended to maximize SD on circular split net-
works (Minh et al. 2009a, b). Other special types of split networks were exploited
to solve Problem 1 (Spillner et al. 2008; Bordewich et al. 2009).

�Computer Software

Conservation planning software like Marxan (Ball et  al. 2009) and Zonation 
(Moilanen et al. 2009) mainly focus on species richness. However, both programs 
can indirectly account for phylogenetic diversity (see also Silvano, Valdujo and
Colli, chapter “Priorities for Conservation of the Evolutionary History ofAmphibians
in the Cerrado” and Arponen and Zupan, chapter “Representing Hotspots of
Evolutionary History in Systematic Conservation Planning for European
Mammals”). Only a few programs explicitly allow to compute phylogenetic diver-
sity (Webb et al. 2008; Kembel et al. 2010). In the following we describe two pro-
grams relevant for the SD analysis.

�SplitsTree

SplitsTree (Huson and Bryant 2006) is a user-friendly and leading software to 
reconstruct and visualize phylogenetic networks from multiple sequence alignments, 
distance matrices, or sets of trees. SplitsTree implements a wide range of split net-
work inference methods such as split decomposition (Bandelt and Dress 1992b) and 
neighbor-net (Bryant and Moulton 2004). SplisTree has a limited ability to compute 
PD and SD. It works for all major platforms including Windows, Mac OS X, and
Unix. More information about SplitsTree is available at http://www.splitstree.org.

�PDA: Phylogenetic Diversity Analyzer

PDA (Minh et al. 2009) is a software tool that computes and maximizes species
richness, PD, and SD given a variety of user-defined constraints including budget,
ecological, and geographical constraints. PDA can be used in conjunction with
SplitsTree to work with SD. It solves all Problems 1–5 by greedy algorithms,
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dynamic programming, and integer programming methods. Moreover, it supports 
weighted dependency networks for viable taxon selection and spatial reserve selec-
tion problems (Chernomor et al. 2015). Among other features is the computation of 
PD/SD endemism and complementarity (Faith et al. 2004). PDA is available as a
command-line program for Windows, Mac OS X, and Unix as well as an online web
service. More information about PDA is available at http://www.cibiv.at/software/pda.

�Conclusions and Perspectives

In this chapter we have presented the concept of split diversity, a generalization of
PD to account for contradicting phylogenetic information in biodiversity optimiza-
tion. We demonstrated the new concept with a small pheasant data set. We note that 
this example is not realistic because neither genera are vulnerable nor the selection
of entire countries is reasonable. Moreover, genetic data for galliforms are available 
for more genera and genomic loci (Wang et al. 2013) and the methodology devel-
oped here is well applicable to this new data.

We then presented computational tools to perform the analysis under the SD 
framework. Both greedy algorithms and IP can be generally applied to solve the
same conservation questions, where the former quickly computes a solution and the 
latter ensures optimal solutions. Moreover, IP works well for data set sizes usually
encountered in real data. For example, we have recently applied IP to solve the
viable taxon selection (Problem 3) for 242 marine species of Caribbean coral com-
munity and the budgeted reserve selection (Problem 5) for the Cape of South Africa
with 735 plant genera (Chernomor et al. 2015). IP always returned optimal sets of
taxa and areas within seconds to a few minutes.

SD can be extended to include species extinction risks as developed for PD
(Weitzman 1992; Witting and Loeschcke 1995). Such a “probabilistic” PD approach
(see chapters “The Value of Phylogenetic Diversity” and “Reconsidering the Loss of
Evolutionary History: How Does Non-random Extinction Prune the Tree-of-Life?”)
predicts future diversity given the fact that some species might become extinct in,
say, 20 years. The problem, previously coined the Noah’s Ark Problem (NAP;
Weitzman 1998), is then to maximize future PD given limited budgets. The same
concept can be applied to SD as follows. One first computes “survival probabilities”
for each split in split networks in the same fashion as for branches in phylogenetic 
trees. The future SD is then defined as the dot product of the split weights and split 
survival probabilities. This definition of future SD consistently generalizes that of 
future PD.
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From a computational view point, solving the extended NAP under future SD is
NP-hard as proven for PD (Hartmann and Steel 2006). Dynamic programming algo-
rithms (DPA) optimally solve the NAP under future PD in a special scenario, where
the species extinction probability becomes 0 if it is given enough resources (Pardi
and Goldman 2007). For general scenarios Hickey et al. (2008) devised such a DPA
that gives an approximation ratio of nearly 1 compared to the optimal solution.
More recently, Billionnet (2013) presented an IP approach for the NAP that runs
within a few minutes for simulated 4,000-taxon cases and provides near-optimal
solutions, which are only 1.2 % away from the optimal solution. It will be interest-
ing to investigate how such DPA and IP approaches can be adapted to solve the NAP
under the more general SD framework.
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�Appendix

Table 3 Objective function and constraints of taxon selection problems for the pheasant example

Maximize l l1 1 20 20y y+¼+ (1)

Subject to
Size constraint: x x x x x x x x x x kPB PC PE PG PI PM GG GL GS GV+ + + + + + + + + £ (2)

Binary constraints: x ii ∈{ , }0 1 ∀ taxon (3)

ys sÎ " ={ } ,..,0 1 1 20, (4)

Split constraints: y x ii i≤ ∀ taxon (5)

y x xPB PC11 £ +

y x x x x x x x xPE PG PI PM GG GL GS GV11 £ + + + + + + +

y x x xPB PC PI12 £ + +

y x x x x x x xPE PG PM GG GL GS GV12 £ + + + + + +

y x x x xPB PC PG PI13 £ + + +

y x x x x x xPE PM GG GL GS GV13 £ + + + + +

y x x x x xPB PC PG PI PM14 £ + + + +

y x x x x xPE GG GL GS GV14 £ + + + +

y x x x x xPB PC PE PG PI15 £ + + + +

y x x x x xPM GG GL GS GV15 £ + + + +

y x x x x x xPB PC PE PG PI PM16 £ + + + + +

y x x x xGG GL GS GV16 £ + + +

y x x x x x x xPB PC PE PG PI PM GS17 £ + + + + + +

y x x xGG GL GV17 £ + +

y x x x x x x x xPB PC PE PG PI PM GG GS18 £ + + + + + + +

y x xGL GV18 £ +

y x x x x x x xPB PC PE PG PI PM GV19 £ + + + + + +

y x x xGG GL GS19 £ + +

y x x x x x x x xPB PC PE PG PI PM GL GV20 £ + + + + + + +

y x xGG GS20 £ +

(continued)
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Table 3  (continued)

Budget constraint: c x c x c x BPB PB PC PC GV GV+ +¼+ £ (6)

Viability constraints: x xPB PE£ (7)

x x xPC GG GV£ +

x xPG PB£

x xPI GL£

x x xPM PC GL£ +

x xGL PB£

x x xGS PM PG£ +

x x xGV GG PE£ +
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Table 4  Objective function and constraints of reserve selection problems for the pheasant 
example. Due to the fact that G. gallus is contained in all but one area there are many area-split 
constraints of the form y z z z z z z z zBT ID IN LK PH MY TH VNs £ + + + + + + + . Such constraints are 
redundant since k ≥ 2, and thus omitted

Maximize l l1 1 20 20y y+¼+ (1)

Subject to
Size constraint: z z z z z z z z kID LK BT IN PH MY TH VN+ + + + + + + £ (8)

Binary constraints: z rr ∈{ , }0 1 ∀ area (9)

ys sÎ " ={ } ,..,0 1 1 20, (4)

Area-split constraints: y z zBT TH1 £ + (10)

y zID2 £

y zPH3 £

y zVN4 £

y zMY5 £

y zMY6 £

y z z z z z z zBT ID IN PH MY TH VN7 £ + + + + + +

y zLK8 £

y zIN9 £

y zID10 £

y z z zBT ID TH11 £ + +

y z z z zBT ID MY TH12 £ + + +

y z z z z zBT ID MY TH VN13 £ + + + +

y z z z z zBT ID MY TH VN14 £ + + + +

y z z z z z zBT ID PH MY TH VN15 £ + + + + +

y z z z z z zBT ID PH MY TH VN16 £ + + + + +

y z z z z z z zBT ID IN PH MY TH VN17 £ + + + + + +

y z z z z z z zBT ID IN PH MY TH VN18 £ + + + + + +

y z zID LK18 £ +

y z z z z z zBT ID PH MY TH VN19 £ + + + + +

y z z z z z z zBT ID LK PH MY TH VN20 £ + + + + + +

y z z z z z z zBT ID IN PH MY TH VN20 £ + + + + + +
Budget constraint: c z c z c z BID ID LK LK VN VN+ +¼+ £ (11)
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