
Algorithms for Model Checking
HyperLTL and HyperCTL∗

Bernd Finkbeiner1, Markus N. Rabe1(B), and César Sánchez2

1 Saarland University, Saarbrücken, Germany
{finkbeiner,rabe}@cs.uni-saarland.de

2 IMDEA Software Institute, Madrid, Spain
cesar.sanchez@imdea.org

Abstract. We present an automata-based algorithm for checking finite
state systems for hyperproperties specified in HyperLTL and HyperCTL∗.
For the alternation-free fragments of HyperLTL and HyperCTL∗ the
automaton construction allows us to leverage existing model checking
technology. Along several case studies, we demonstrate that the approach
enables the verification of real hardware designs for properties that could
not be checked before. We study information flow properties of an I2C
bus master, the symmetric access to a shared resource in a mutual exclu-
sion protocol, and the functional correctness of encoders and decoders for
error resistant codes.

1 Introduction

HyperLTL and HyperCTL∗ are recent extensions to LTL and CTL∗ with the
ability to express a wide range of hyperproperties [14]. Hyperproperties general-
ize trace properties and include properties from information-flow security such as
noninterference [15]. Even though the complexity of model checking HyperLTL
and HyperCTL∗ has been determined, no efficient algorithms are known so far.
In this paper, we thus study the automatic verification of finite state systems
for hyperproperties specified in HyperLTL and HyperCTL∗.

HyperLTL and HyperCTL∗ allow us to specify relations over executions of
the same system [14]. They introduce path quantifiers so computation paths can
be referred to in the atomic propositions. For example, the following HyperLTL
formula expresses noninterference [22] between input h and output o by requiring
that all computation paths π and π′ that only differ in h, have the same output
o at all times:

∀π.∀π′. �
(∧

i∈I\h

iπ = iπ′
) ⇒ � (oπ = oπ′)

This work was partially supported by the Spanish Ministry of Economy under project
“TIN2012-39391-C04-01 STRONGSOFT,” the Madrid Regional Government under
the project “S2013/ICE-2731 N-Greens Software-CM,” the German Research Foun-
dation (DFG) under the project SpAGAT in the Priority Program 1496 “Reliably
Secure Software Systems - RS3,” and the Graduate School of Computer Science at
Saarland University.

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 30–48, 2015.
DOI: 10.1007/978-3-319-21690-4 3

Algorithms for Model Checking HyperLTL and HyperCTL 31

Quantifiers in CTL∗, in contrast, are of the form Aϕ and Eϕ where the
subformula ϕ can only (implicitly) refer to a single path—the path introduced
by A and E respectively. Hence, CTL∗ cannot express noninterference [1,20].

Noninterference between i and o implies that o contains no information
about i, and is therefore an important building block for properties in secu-
rity [22]. By embedding noninterference in a temporal context, HyperLTL and
HyperCTL∗ allow us to express a wide range of properties from information-
flow security, including variants of declassification and quantitative information
flow [3,5,16,41]. The use cases of HyperLTL and HyperCTL∗, however, extend
far beyond security, as we demonstrate in this paper.

The main result of this paper is an automata-theoretic algorithm for the
model checking problem of HyperLTL and HyperCTL∗. The automata app-
roach to model checking LTL properties [46] reduces the verification problem to
automata operations and decision problems, like automata product and check
for emptiness. Typically, the LTL specification is translated into a Büchi word
automaton that captures all violations of the specification. The product of the
system with this automaton reveals the system’s traces that violate the specifica-
tion. We extend the approach based on Büchi word automata with the ability to
quantify over new executions along the run, and thereby obtain an algorithm for
HyperCTL∗ (Sect. 3). The construction for a quantifier ∃π. ϕ corresponds to a
product of the system and the automaton for the subformula ϕ. As in the classical
approach, a final check of emptiness of the language of the automaton provides
the answer to the model checking problem. The construction of the automaton
involves the expensive nondeterminization of alternating automata [36] to handle
quantifier alternations. For the rich class of alternation-free formulas, however,
the algorithm is shown to be in NLOGSPACE in the size of the system. In
Sect. 4 we use the alternating automaton construction to derive an approach to
leverage existing model checking technology for model checking circuits for the
alternation-free fragment of HyperCTL∗.

We demonstrate the flexibility and the effectiveness of the proposed approach
for the alternation-free fragment of HyperCTL∗ along three case studies (Sect. 5).
The first case study concerns the information flow analysis of an I2C bus master.
The second case study concerns the analysis of the symmetries in a mutual exclu-
sion protocol. The typical fair-access properties against which mutual exclusion
protocols are usually analyzed, such as accessibility and bounded overtaking [30],
can be seen as abstractions of what is really expected from mutual exclusion pro-
tocols: symmetric access to the shared resource. HyperLTL enables a fine grained
analysis of the symmetry between the processes, for example by expressing the
property that switching the actions and roles between two components in a
trace results in another legal trace, in which the access to the shared resource is
switched accordingly. The third case study concerns the functional correctness
of encoders and decoders of error resistant codes. The error resistance of a code
is a property of its space of code words: all pairs of code words must have a
certain minimum Hamming distance. We show that Hamming distance can be

32 B. Finkbeiner et al.

expressed in HyperLTL and demonstrate that this leads to an effective approach
to the verification of encoders and decoders.

To summarize, our contributions are as follows:

– We develop the first direct automaton construction for model checking Hyper-
LTL and HyperCTL∗ based on alternating automata.

– We present the first practical approach for model checking hardware systems
for alternation-free HyperCTL∗ formulas.

Our evaluation shows that the approach enables the verification of industrial
size hardware modules for hyperproperties. That is, we extend the state of the
art in model checking hyperproperties from systems using only few (binary)
variables [14,34] to systems with over 20.000 variables.

Related Work. In this paper, we present an automata-theoretic model checking
algorithm for HyperLTL and HyperCTL∗, together with a practical approach
to the verification of hardware circuits against alternation-free formulas. Previ-
ous automata constructions for the problem [14] are based on nondeterministic
Büchi automata, whereas we present an algorithm based on alternating Büchi
automata, which allows us to leverage modern hardware verification techniques
like IC3 [10]/PDR [18], interpolation [32], and SAT [8]. Our model checker can
therefore be applied to significantly more complex systems than the proof-of-
concept model checker for the one-alternation fragment of HyperLTL [14], which
is limited to small explicitly given models.

HyperLTL and HyperCTL∗ are related to other logics for hyperproperties,
such as variations of the μ-calculus, like the polyadic μ-calculus by Andersen [2],
the higher-dimensional μ-calculus [38], and holistic hyperproperties [35]. The
model checking problem for these logics can be reduced to the model checking
problem of the modal μ-calculus [2,27] (or directly to parity games [34]) and
involves, similar to our construction, an analysis of the product of several copies
of the system. We are not aware, however, of any practical approaches that
would allow the verification of complex hardware designs against specifications
given in these logics. Another related class of logics are the epistemic temporal
logics [19], which reason about the knowledge of agents and how it changes
over time. While it has been shown that epistemic temporal logic can express
certain information flow policies [4], most practical work with epistemic logics has
focussed on applications from the area of multi-agent systems [21,28,29,33,39].

Lastly, in the area of information flow security, there are several verification
techniques that focus on specific information flow properties—rather than on a
general logic like HyperLTL and HyperCTL∗—but use techniques that relate to
our model checking algorithm. A construction based on the product of copies of a
system, self-composition [6,7], has been tailored for various trace-based security
definitions [17,23,44].

Algorithms for Model Checking HyperLTL and HyperCTL 33

2 Temporal Logics for Hyperproperties

We now introduce the temporal logics for hyperproperties, their semantics, and
their model checking problem.

A Kripke structure is a tuple K = (S, s0, δ,AP, L) consisting of a set of states
S, an initial state s0, a transition function δ : S → 2S , a set of atomic propositions
AP, and a labeling function L : S → 2AP decorating each state with a set of
atomic propositions. We require that each state has a successor, that is δ(s) �= ∅,
to ensure that every execution of a Kripke structure can always be extended
to an infinite execution. A path of a Kripke structure is an infinite sequence of
states s0s1 . . . ∈ Sω such that s0 is the initial state of K and si+1 ∈ δ(si) for
all i ∈ N. We denote by Paths(K, s) the set of all paths of K starting in state
s ∈ S and by Paths∗(K, s) the set of their suffixes. Given a path p and a number
i ≥ 0, p[i,∞] denotes the suffix path where the first i elements are removed.

HyperLTL and HyperCTL∗ extend the standard temporal logics LTL and
CTL∗ by quantification over path variables. Their formulas are generated by the
following grammar, where a ∈ AP and π ranges over path variables:

ϕ ::= true | aπ | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

| ϕ | ϕ U ϕ | ϕ R ϕ | ∃π. ϕ | ∀π. ϕ

Additionally, we define the derived operators ϕ = true U ϕ, ϕ = ¬ ¬ϕ,

and ϕ1 W ϕ2 = ϕ1 U ϕ2 ∨ �ϕ1.
For HyperLTL and HyperCTL∗ we require that temporal operators only

occur inside the scope of path quantifiers. HyperLTL is the sublogic of formulas
in prenex normal form. A formula is in prenex normal form, if it starts with
a sequence of quantifiers, and is quantifier-free in the rest of the formula. The
conceptual difference between HyperLTL and HyperCTL∗, is that HyperLTL,
like LTL, is a linear-time logic and that HyperCTL∗, like CTL and CTL∗, is a
branching-time logic [20]. A formula ϕ is in negation normal form if the only
occurrences of ¬ occur in front of propositions aπ.

Semantics. In the following we define the semantics for the operators aπ, ¬ϕ,
ϕ1 ∨ ϕ2, , ϕ1 U ϕ2, and ∃π. ϕ. The other operators are defined via the
following equalities: ∀π. ϕ = ¬∃π. ¬ϕ, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), and ϕ1Rϕ2 =
¬(¬ϕ1U¬ϕ1). These derived operators are kept in the syntax to guarantee the
existence of equivalent formulas in negation normal form.

Let K be a Kripke structure and let s0 be its initial state. The seman-
tics of HyperLTL and HyperCTL∗ is given in terms of assignments Π : N →
Paths∗(K, s0) of a set of path variables N to suffixes of paths. We use Π[i,∞] for
the map that assigns to each path variable π the suffix Π(π)[i,∞]. We use the
reserved path variable ε to denote the most recently quantified path and define
the validity of a formula as follows:

34 B. Finkbeiner et al.

Π |=K aπ whenever a ∈ L Π(π)(0)
)

Π |=K ¬ϕ whenever Π �|=K ϕ
Π |=K ϕ1 ∨ ϕ2 whenever Π |=K ϕ1 or Π |= ϕ2

Π |=K ϕ whenever Π[1,∞] |=K ϕ
Π |=K ϕ1 U ϕ2 whenever for some i ≥ 0 : Π[i,∞] |=K ϕ2 and

for all 0 ≤ j < i : Π[j,∞] |=K ϕ1

Π |=K ∃π. ϕ whenever for some p ∈ Paths(K, Π(ε)(0)) :
Π[π �→ p, ε �→ p] |=K ϕ

For the empty assignment Π = {}, we define Π(ε)(0) to yield the initial
state. Validity on states of a Kripke structure K, written s |=K ϕ, is defined as
{} |=K ϕ. A Kripke structure K = (S, s0, δ,AP, L) satisfies formula ϕ, denoted
with K |= ϕ whenever s0 |=K ϕ.

3 Automata-Theoretic Model Checking of HyperCTL∗

In this section, we present an automata-theoretic construction for the verification
of HyperCTL∗ formulas. In Sect. 4 we will then use this construction to build a
practical algorithm for the verification of circuits. We start with a brief review
of alternating automata. Given a finite set Q, B(Q) denotes the set of Boolean
formulas over Q and B

+(Q) the set of positive Boolean formulas, that is, formulas
that do not contain negation. The satisfaction of a formula θ ∈ B(Q) by a set
Q′ ⊆ Q is denoted by Q′ |= θ.

Definition 1 (Alternating Büchi Automata). An alternating Büchi auto
maton (on words) is a tuple A = (Q, q0, Σ, ρ, F), where Q is a finite set of
states, q0 ∈ Q is the initial state, Σ is a finite alphabet, ρ : Q × Σ → B

+(Q)
is a transition function that maps a state and a letter to a positive Boolean
combination of states, and F ⊆ Q are the accepting states.

A run of an alternating automaton is a Q-labeled tree. A tree T is a subset
of N∗

>0 such that for every node τ ∈ N
∗
>0 and every positive integer n ∈ N>0, (i)

if τ · n ∈ T then τ ∈ T (i.e., T is prefix-closed), and (ii) for every 0 < m < n,
τ ·m ∈ T . The root of T is the empty sequence ε and for a node τ ∈ T , |τ | is the
length of the sequence τ , in other words, its distance from the root. A run of A
on an infinite word π ∈ Σω is a Q-labeled tree (T, r) such that r(ε) = q0 and
for every node τ in T with children τ1, . . . , τk the following holds: 1 ≤ k ≤ |Q|
and {r(τ1), . . . , r(τk)} |= ρ(q, π[i]), where q = r(τ) and i = |τ |. A run r of A
on π ∈ Σω is accepting whenever for every infinite path τ0τ1 . . . in T , there are
infinitely many i with r(τi) ∈ F . We say that π is accepted by A whenever there
is an accepting run of A on π, and denote with Lω(A) the set of infinite words
accepted by A.

If the transition function of an alternating automaton does not contain any
conjunctions, we call the automaton nondeterministic. The transition function
ρ of a nondeterministic automaton thus identifies a disjunction over a set of

Algorithms for Model Checking HyperLTL and HyperCTL 35

successor states. Such a transition function can also be stated as a function
ρ : Q × Σ → 2Q identifying the successors. Our model checking algorithm relies
on the standard translation for alternation removal due to Miyano and Hayashi:

Theorem 1 ([36]). Let A be an alternating Büchi automaton with n states.
There is a nondeterministic Büchi automaton MH(A) with 2O(n) states that
accepts the same language.

3.1 The Alternation-Free Fragment

We present a model checking algorithm for the alternation-free fragment of
HyperCTL∗. This fragment is expressive enough to capture a broad range
of other information-flow properties, like declassification mechanisms, quan-
titative noninterference, and information-flow requirements that change over
time [14,16]. The case studies in Sect. 5 illustrate that this fragment also captures
properties in application domains beyond information-flow security.

Definition 2 (Alternation-Free HyperCTL∗). A HyperCTL∗ formula ϕ
in negation normal form is alternation-free, if ϕ contains only quantifiers of
one type. Additionally, we require that no existential quantifier occurs in the left
subformula of an until operator or in the right subformula of a release operator,
and, symmetrically, that no universal quantifier occurs in the right subformula
of an until operator or in the left subformula of a release operator.

Similar to the automata-theoretic approach to LTL properties [37,45], we
construct an alternating automaton bottom up from the formula, but handling
multiple path quantifiers. For alternation-free HyperCTL∗, the quantifiers may
occur inside temporal operators (with the restrictions in Definition 2) as long as
there is no quantifier alternation.

Let K be a Kripke structure K = (S, s0, δ,AP, L). To check the satisfaction
of a HyperCTL∗ formula ϕ by K, we translate ϕ into a K-equivalent alter-
nating automaton Aϕ. The construction of Aϕ proceeds inductively following
the structure of ϕ, as follows. Assume that ϕ is in negation normal form and
starts with an existential quantifier, and consider a subformula ψ of ϕ. Let n
be the number of path quantifiers occurring on the path from the root of the
syntax tree of ϕ to ψ, and let these path quantifiers bind the variables π1, . . . , πn.
The alphabet Σ of Aψ is Sn, the set of n-tuples of states of K. We say that
a language L ⊆ (Sn)ω is K-equivalent to ψ, if all sequences of state tuples
(s00, . . . , s

0
n)(s10, . . . , s

1
n) . . . in L correspond to a path assignment Π satisfying ψ.

That is, for all (s00, . . . , s
0
n)(s10, . . . , s

1
n) . . . ∈ L it holds Π |=K ψ for the path

assignment Π(πi) = s0i s
1
i . . . (for all i ≤ n). An automaton is K-equivalent to ψ

if its language is K-equivalent to ψ.
For atomic propositions, Boolean connectives, and temporal operators, our

construction follows the standard translation from LTL to alternating automata
[37,45]. Let Aψ1 = (Q1, q0,1, Σ1, ρ1, F1) and Aψ2 = (Q2, q0,2, Σ2, ρ2, F2) be the
alternating automata for the subformulas ψ1 and ψ2:

36 B. Finkbeiner et al.

ψ = aπk
Aψ = ({q0}, q0, Σ, ρ, ∅), where ρ(q0, s) = (a ∈ L(s |k))

ψ = ¬aπk
Aψ = ({q0}, q0, Σ, ρ, ∅), where ρ(q0, s) = (a �∈ L(s |k))

ψ = ψ1∨ψ2 Aψ = (Q1 ·∪Q2 ·∪{q0}, q0, Σ, ρ, F1 ·∪F2)
where ρ(q0, s) = ρ1(q0,1, s) ∨ ρ2(q0,2, s)
and ρ(q, s) = ρi(q, s) for q ∈ Qi, i ∈ {1, 2}

ψ = ψ1 ∧ ψ2 Aψ = (Q1 ·∪Q2 ·∪{q0}, q0, Σ, ρ, F1 ·

·

∪F2)
where ρ(q0, s) = ρ1(q0,1, s) ∧ ρ2(q0,2, s)
and ρ(q, s) = ρi(q, s) for q ∈ Qi, i ∈ {1, 2}

ψ = ψ1 Aψ = (Q1 ·∪{q0}, q0, Σ, ρ, F1)

·, Σ, ρ, F1∪F2)

, Σ, ρ, F1∪F2

where ρ(q0, s) = q0,1

and ρ(q, s) = ρ1(q, s) for q ∈ Q1

ψ = ψ1 U ψ2 Aψ = (Q1 ·∪Q2 ·∪{q0}, q0
where ρ(q0, s) = ρ2(q0,2, s) ∨ (ρ1(q0,1, s) ∧ q0)
and ρ(q, s) = ρi(q, s) for q ∈ Qi, i ∈ {1, 2}

ψ = ψ1 R ψ2 Aψ = (Q1 ·∪Q2 ·∪{q0}, q0 ·∪{q0})
where ρ(q0, s) = ρ2(q0,2, s) ∧ (ρ1(q0,1, s) ∨ q0)
and ρ(q, s) = ρi(q, s) for q ∈ Qi, i ∈ {1, 2}

For a quantified subformula ψ = ∃π.ψ1, we have to reduce the alphabet
Σψ1 = Sn+1 to Σ = Sn. The language for formula ψ contains exactly those
sequences σ of state tuples, such that there is a path p through the Kripke
structure K for which σ extended by p is in L(Aψ1). Let N ′

ψ1
= (Q′, q′

0, Σ, ρ′, F ′)
be the nondeterministic automaton N ′

ψ1
= MH(Aψ1) constructed from Aψ1 by

the construction in Theorem 1, and let Aψ = (Q′′, q′′
0 , Σψ, ρ′′, F ′′) be constructed

from N ′
ψ1

and the Kripke structure K = (S, s0, δ,AP, L) as follows:

ψ = ∃π.ψ1 Aψ = (Q′ × S ·∪ {q′′
0 }, q′′

0 , Σψ, ρ′′, F ′ × S)

where ρ′′(q′′
0 , s) = {(q′, s′) | q′ ∈ ρ′(q′

0, s + s |n), s′ ∈ δ(s |n)}
and ρ′′((q, s), s) = {(q′, s′) | q′ ∈ ρ′(q, s + s), s′ ∈ δ(s)}

For the case that n = 0 we define that s |n is the initial state s0 of K.
Since we consider the alternation-free fragment, there are no negated quan-

tified subformulas and the construction is finished.
The correctness of the construction can be shown by structural induction.

Proposition 1. Let ϕ be a HyperCTL∗ formula and Aϕ the alternating automa-
ton obtained by the previous construction. Then, ϕ and Aϕ are K-equivalent.

So far, we only considered alternation-free formulas that start with existential
quantifiers. To decide K |= ϕ for an arbitrary ϕ, we first transform ϕ in a Boolean
combination over a set X of quantified subformulas. Each element ψ′ of X is
now in the form ∃π.ϕ for which we apply the construction above. Since ψ′ is of
the form ∃π.ψ1, Aψ′ is a nondeterministic Büchi automaton, for which we apply
a standard nonemptiness test [47].

Algorithms for Model Checking HyperLTL and HyperCTL 37

Theorem 2. The model checking problem for the alternation-free fragment of
HyperCTL∗ is PSPACE-complete in the size of the formula and NLOGSPACE-
complete in the size of the Kripke structure.

Proof. The alternating automaton Aψ1 is a tree with self-loops, when we consider
automata created for quantified subformulas as leafs of the tree. By structural
induction, we show that the size of Aψ′ for an alternation-free formula ψ′ is
polynomial in |ψ′| and in |K| and that sub-automata for quantified subformulas
are not reachable via actions that are self-loops with conjunctions.

Base Case: for atomic propositions and negated atomic propositions, the induc-
tion hypothesis is fulfilled.

Induction Step: Let ψ = ∃π. ψ1. Only Until operators and Release operators in
the formula lead to nodes that have two transitions, one with a self-loop and
one without self-loops. By the restrictions in the definition of the alternation-
free fragment, we guarantee that automata of quantified subformulas are not
reachable via transitions with self-loops that contain conjunctions.

Conjunctive transitions that are not part of loops or self-loops only lead to
a polynomial increase in size during nondeterminization. Emptiness of nonde-
terministic Büchi automata is in NLOGSPACE [47], so the upper bound of the
theorem follows.

Since HyperCTL∗ subsumes LTL, the lower bound for LTL model check-
ing [42] implies the lower bound for HyperCTL∗. ��

3.2 The Full Logic

The construction from the previous subsection can be extended to full HyperCTL∗

by adding a construction for negated quantified subformulas. We compute an
automaton for the complement language, based on the following theorem:

Theorem 3 ([25]). For every alternating Büchi automaton A = (Q, q0, Σ, ρ, F),
there is an alternating Büchi automaton A with O(|Q|)2 states that accepts the
complemented language: Lω(A) = Lω(A).

We extend the previous construction with the following case:

ϕ = ¬∃π.ψ1 N ′
ψ1

, where N ′
ψ1

= MH(Aψ1) via Theorem 1

We capture the complexity of the resulting model checking algorithm in
terms of the alternation depth of the HyperCTL∗ formula. The formulas with
alternation depth 0 are exactly the alternation-free formulas.

Definition 3 (Alternation Depth). A HyperCTL∗ formula ϕ in negation
normal form has alternation depth 0 plus the highest number of alternations
from existential to universal and universal to existential quantifiers along any of

38 B. Finkbeiner et al.

the paths of the formula’s syntax tree. Existential quantifiers in the left subfor-
mula of an until operator or in the right subformula of a release operator, and,
symmetrically, universal quantifiers in the right subformula of an until operator
or in the left subformula of a release operator count as additional alternation.

For example, let ψ be a formula without additional quantifiers, then ∃π. ψ has
alternation depth 0, ∀π1.∃π. ψ has alternation depth 1, has alter-
nation depth 0, ∃π. �∃π′. ψ has alternation depth 1, and (∀π. ψ) ∧ (∃π. ψ) has
alternation depth 0.

Let gc(k, n) be a tower of exponentiations of height k, defined simply
as gc(0, n) = n and gc(k, n) = cgc(k−1,n). We define NSPACE(g(k, n)) to
be the languages that are accepted by a nondeterministic Turing machine
that runs in SPACE O(gc(k, n)) for some c > 1. For convenience, we define
NSPACE(g(−1, n)) to be NLOGSPACE.

Proposition 2. Let K be a Kripke structure and ϕ a HyperCTL∗ formula with
alternation depth k. The alternating automaton Aϕ resulting from the previous
construction has O(g(k + 1, |ϕ|)) and O(g(k, |K|)) states and can be constructed
in NSPACE(g(k, |ϕ|)) and NSPACE(g(k − 1, |K|)).
Theorem 4. Given a Kripke structure K and a HyperCTL∗ formula ϕ with
alternation depth k, we can decide whether K |= ϕ in NSPACE(g(k, |ϕ|)) and
NSPACE(g(k − 1, |K|)).

The proof of Proposition 2 is an induction over the alternation depth. The
proof of Theorem 4 uses that the nonemptiness problem for nondeterministic
Büchi automata is in NLOGSPACE [47]. Theorem 4 subsumes the result for the
alternation-free fragment:

Corollary 1. For alternation depth 0, the model-checking problem K |= ϕ is in
PSPACE in |ϕ| and in NLOGSPACE in |K|.

4 Symbolic Model Checking of Circuits

In this section we translate the automaton-based construction from Sect. 3 for
alternation-free formulas into a practical verification approach for circuits. Given
a circuit C and an alternation-free formula ϕ the algorithm produces a new
circuit Cϕ that is linear in the size of C and also linear in the size of ϕ. The
compactness of the encoding builds on the ability of circuits to describe systems
of exponential size with a linear number of binary variables. The circuit Cϕ

is then checked for fair reachability to determine the validity of C |= ϕ. This
check can be done with of-the-shelf model checkers leveraging modern hardware
verification technology [8,11,12].

Algorithms for Model Checking HyperLTL and HyperCTL 39

A circuit1 C = (X, init , I, O, T) consists of a set X of binary variables
(latches with unit delay), a condition init ∈ B(X) characterizing a non-empty
set of initial states of X, a set of input variables I, a set of output variables O,
and a transition relation T ∈ B(X × I × O × X). We require that T is input-
enabled and input-deterministic, that is, for all x ⊆ X, i ⊆ I, there is exactly
one o ⊆ O and one x′ ⊆ X such that T (x, i, o, x′) holds. We denote a subset of
X as a state of circuit C, indicating exactly those latches that are set to 1. The
size of a circuit C, denoted |C|, is defined as the number of latches |X|.

A circuit C can be interpreted as a finite Kripke structure KC of potentially
exponential size. The state space of KC is S = s0 ∪ 2X × 2I × 2O × 2X , where
s0 is a fresh initial state. The transition relation distinguishes the initial step
of the computation: s′ ∈ δ(s0) iff there is a circuit state x ⊆ X with init(x)
and x = s′|X such that T (x, s′|I , s′|O, s′|X), where s′|I , s′|O, s′|X , and s′|X′ are
the projections to variables I, O, the first copy of X, and the second copy of X
respectively. For subsequent steps of computation we define s′ ∈ δ(s) whenever
T (s|X , s′|I , s′|O, s′|X′) and s|X′ = s′|X . That is, the first copy X denotes the
previous state, whereas X ′ denotes the current state. The labelling function of
KC maps each state s to the set s|I ·∪ s|O ·∪ s|X . That is, the alphabet APKC

is I ·∪ O ·∪ X. The semantics of HyperCTL∗ on a circuit C is defined using the
associated Kripke structure KC . We write C |= ϕ whenever KC |= ϕ′, where
ϕ′ is obtained by replacing all atomic propositions . This leads to a
natural semantics on circuits: the atomic propositions always refer to the current
value of the latches, the next input, and the next output.

Given a circuit C and an alternation-free HyperCTL∗ formula ϕ, we reduce
the model checking problem C |= ϕ to finding a computation path in a circuit
Cϕ that does not visit a bad state and satisfies a conjunction of strong fairness
(or compassion) constraints F = {f1, . . . , fk}. A strong fairness constraint f of
a circuit consists of a tuple (a1, a2) of atomic propositions and a path p satisfies
f , if a1 holds only finitely often or a2 holds infinitely often on p. We build
Cϕ bottom up following the formula structure. Without loss of generality, we
assume that ϕ contains only existential quantifiers and is in negation normal
form. Let ψ be a subformula of ϕ that occurs under n quantifiers. Let Cψ1 =
(Xψ1 , initψ1 , Iψ1 , Oψ1 , Tψ1), Cψ2 = (Xψ2 , initψ2 , Iψ2 , Oψ2 , Tψ2) be the circuits,
and let Fψ1 and Fψ2 be the fairness constraints for the subformulas ψ1 and ψ2.
For LTL operators, the construction resembles the standard translation from
LTL to circuits [13,24]. We construct Cψ and Fψ as follows:

1 Our definition of circuits can be considered as a model of and-inverter graphs in the
Aiger standard [9], where the gate list is abstracted to a transition relation.

40 B. Finkbeiner et al.

ψ = aπk
Cψ = (∅, true, Iψ, {oψ}, oψ ↔ aπk

), Fψ = ∅
ψ = ¬aπk

Cψ = (∅, true, Iψ, {oψ}, oψ xor aπk
), Fψ = ∅

ψ = ψ1∨ψ2 Cψ = (Xψ1
·∪Xψ2 , initψ1 ∧ initψ2 ,

Iψ1 ∪ Iψ2
·∪{iψ}, Oψ1

·∪Oψ2
·∪{oψ},

(oψ ↔ (iψ ⇒ oψ1) ∧ (¬iψ ⇒ oψ2)) ∧ Tψ1 ∧ Tψ2),
Fψ = Fψ1 ∪ Fψ2

ψ = ψ1 Cψ = (Xψ1
·∪{xψ}, initψ1 , Iψ1

·∪{iψ}, Oψ1
·∪{oψ, bψ},

Tψ1 ∧ (oψ ↔ iψ) ∧ (x′
ψ ↔ iψ) ∧ (¬bψ ↔ (oψ1 ↔ xψ))),

Fψ = Fψ1

ψ = ψ1 U ψ2 Cψ = (Xψ1
·∪Xψ2

·∪{xψ}, initψ1 ∧ initψ2 ,
Iψ1

·∪Iψ2
·∪{iψ, i′ψ}, Oψ1

·∪Oψ2
·∪{oψ, bψ},

Tψ1 ∧ Tψ2 ∧ (oψ ↔ xψ) ∧ (x′
ψ ↔ iψ) ∧

(¬bψ ↔ (((i′ψ ⇒ oψ2) ∧ (¬i′ψ ⇒ oψ1 ∧ x′
ψ)) ↔ xψ))),

Fψ = Fψ1 ∪ Fψ2 ∪ {(xψ, oψ2)}
ψ = ∃π. ψ1 Cψ = (Xψ1

·∪Xn, initψ1 ∧ (n = 1 ⇒ init(Xn)),
Iψ1 \ Xn, (Oψ1 \ On) ·∪{oψ},
Tψ1 ∧ T (Xn) ∧ (¬bψ ↔ (oψ ↔ oψ1 ∧ (Xn = Xn−1)))),

Fψ = Fψ1

Here Iψ =
⋃

i≤n Ii ·∪Oi ·∪Xi; init(Xn) is the initial condition applied to copy Xn

of the latches; and likewise T (Xn) is the transition relation of C applied to the
copy Xn. We use Xn = Xn−1 to denote the expression that all latches in Xn

are equal to their counterparts in Xn−1. We omitted the construction for the
conjunction and the Release operator due to the space limits. It is easy to verify
that the transition relation is input-enabled and input-deterministic.

Proposition 3. Given a circuit C and an alternation-free formula ϕ with k
quantifiers, the size of the circuit Cϕ is at most |C| · k + |ϕ|.

For each subformula ψ of ϕ, the output oψ in the circuit Cϕ indicates that
ψ must hold for the current computation path, and the latch xψ represent the
requirements on the future of the computation that arise from the output oψ.
The output bψ indicates that the requirements for subformula ψ are violated and
a bad state is entered.

Proposition 4. Let C be a circuit and let ϕ be an alternation-free HyperCTL∗

formula. C |= ϕ holds iff the circuit Cϕ admits a computation that shows output
oϕ in the first step, that never outputs bψ for any of the subformulas ψ of ϕ, and
that satisfies the fairness constraints.

The proof of correctness proceeds again by structural induction on the struc-
ture of the formula. The search for paths of the form above can be performed
by standard hardware model checkers.

Algorithms for Model Checking HyperLTL and HyperCTL 41

5 Case Studies and Experimental Results

We have implemented the symbolic model checking approach from Sect. 4 as
a transformation on Aiger circuits.2 We rely on standard hardware synthesis
tools to compile VHDL and Verilog files into a circuit to which we apply our
tool to obtain a new circuit. As the backend engine, we use the ABC model
checker [11], which provides many of the modern verification algorithms, includ-
ing IC3 [10]/PDR [18], interpolation (INT) [32], and SAT-based bounded model
checking (BMC) [8]. All experiments ran on an Intel Core i5 processor (4278U)
with 2.6 GHz. Table 1 shows the verification times for the circuits and properties
considered in our case studies. We used the default settings of ABC in all runs,
except the entry marked with ∗. The symbol � indicates that an invariant was
found, and × that a (counter)example was found.

The experiments show that our approach enables the verification of hyper-
properties for hardware modules with hundreds or even thousands of latches.
For finding counterexamples, bounded model checking was most effective, and
for cases where an invariant was needed, the relative performance of IC3/PDR vs.
interpolation was inconclusive. In addition to benchmarking, our goal for these
case studies has been to explore the versatility of alternation-free HyperCTL∗

model-checking and the potential of our prototype tool. In the following subsec-
tions, we report on the setup and results of the case studies, as well as on the
verification workflow from a user perspective. Our case studies come from three
different areas: information flow, symmetry, and error resistant codes.

5.1 Case Study 1: Information Flow Properties of I2C

Our first case study investigates the information flow properties of an I2C bus
master. I2C is a widely used bus protocol that connects multiple components
in a master-slave topology. Even though the I2C bus has no security features,
it has been used in security-critical applications, such as the smart cards of the
German public health insurance, which led to exploits [43]. We analyzed a I2C
bus master implementation from the open source repository http://opencores.
org. A typical setup consists of one master, one controller, and several slaves. The
master communicates to the slaves via two physical wires, the clock line (SCL)
and the data line (SDA). The interface of the master towards the controller
consists of 8 bit wide words for input and output of data, a 3-bit wide address
to encode slave numbers, a system clock input, and several reset and control
signals. We checked the I2C bus master implementation against the information
flow properties shown in Table 2.

From the Controller to the Bus. Property (NI1) states that there is no infor-
mation flow with respect to the address to which the I2C master intends to
send data, and (NI2) with respect to the data words themselves. Both informa-
tion flows are intended, and our tool reports the violation. We tried to bound
2 The tool and the experiments are available online [40].

http://opencores.org
http://opencores.org

42 B. Finkbeiner et al.

Table 1. Experimental results for the case studies.

the information flow between the first valuation of the 3 bit wide address input
and the bus data by encoding [14] the quantitative information-flow property.
While the information flow of 3 bit could be determined (QNI1), checking the
upper bound of log 9 ≈ 3.17 bit (QNI2) led to a timeout. Property (NI3) states
that when the write enable bit is not set, no information should flow from the
controller inputs to the bus. This property is satisfied by the implementation.

From the Bus to the Controller. Property (NI4) claims the absence of informa-
tion flow from the slaves to the controller, which is again legitimately violated

Algorithms for Model Checking HyperLTL and HyperCTL 43

Table 2. Information flow properties for the verification of the I2C bus master. In
this list of properties, Pπ = Pπ′ is defined as

∧
a∈P aπ = aπ′ . Pπ = Pπ′ is defined as

(I \ P)π = (I \ P)π′ where P ⊆ AP and I ⊆ AP are the inputs of the circuit.

(NI1) ∀π.∀π′. (ADDR Iπ =ADDR Iπ′) ⇒ (SDA Oπ =SDA Oπ′)

(NI2) ∀π.∀π′. DAT Iπ = DAT Iπ′ ⇒ (SDA Oπ =SDA Oπ′)

(NI3) ∀π.∀π′. (¬WEn ∧ DAT Iπ =DAT Iπ′) ⇒ (SDA Oπ =SDA Oπ′)

(NI4) ∀π.∀π′. ({SDA I,SCL I}π ={SDA I,SCL I}π′) ⇒ (DAT Oπ =DAT Oπ′)

(NI5) ∀π. (SDA Enable ⇒ H{SDA I,SCL I},{DAT O}false)

(NI6) ∀π.∀π′. (SDA Iπ = SDA Iπ′) ⇒ (SDA Oπ =SDA Oπ′)

(NI7) ∀π.∀π′. (DAT Iπ = DAT Iπ′) ⇒ ((Iπ =Iπ′) ⇒ (SDA Oπ =SDA Oπ′))

(NI8) ∀π.∀π′. ({SDA I,SCL I}π ={SDA I,SCL I}π′) ⇒ ((Iπ =Iπ′) ⇒
(DAT Oπ =DAT Oπ′))

by the implementation. Property (NI5) refines (NI4) to determine whether the
flow can still happen when we only consider information received on SDA while
the master sends data too. The branching time operator H in (NI5), called the
Hide operator HI,Oϕ, is borrowed from the logic SecLTL [16] and expresses that
information from the inputs I do not interfere with the outputs O. The Hide
operator is easily expressible in HyperCTL∗ [14]. Property (NI5) is violated by
the implementation, because the concurrent transmission of data on the bus by
multiple masters can bring I2C into arbitration mode and changes the interpre-
tation of information sent over the bus later.

Long-term Information Flow: Properties (NI7) and (NI8) claim that the infor-
mation flows from (NI1) and (NI4) cannot happen for an arbitrary delay. These
properties are violated, which indicates that information may not be eventually
forgotten by the I2C master.

All properties on the I2C Master were easily analyzed by the model checker.
In order to determine if our approach scales to even larger designs, we checked
an adapted version of property (NI2) on an Ethernet IP core with 21093 latches.
The counterexample was still found within seconds.

5.2 Case Study 2: Symmetry in Mutual Exclusion Protocols

In our second case study, we investigate symmetry properties of mutual exclusion
protocols. Mutual exclusion is a classical problem in distributed systems, for
which several solutions have been proposed and analyzed. Violation of symmetry
indicates that some clients have an unfair advantage over the other clients.

Our case study is based on a Verilog implementation of the Bakery proto-
col [26] from the VIS verification benchmark. The Bakery protocol works as
follows. When a process wants to access the critical section it draws a “ticket”,
i.e., it obtains a number that is incremented every time a ticket is drawn. If there
is more than one process who wishes to enter the critical section, the process with

44 B. Finkbeiner et al.

the smallest ticket number goes first. When two processes draw tickets concur-
rently, they may receive tickets with the same number, so ties among processes
with the same ticket must be resolved by a different mechanism, for example
by comparing process IDs. The Verilog implementation has an input select to
indicate the process ID that runs in the next step, and an input pause to indi-
cate whether the step is stuttering. Each process n has a program counter pc(n).
When process n is selected, the statement corresponding the program counter
pc(n) is executed. We are interested in the following HyperLTL property:

(S1) ∀π.∀π′. �(sym(selectπ, selectπ′) ∧ pauseπ =pauseπ′) ⇒
�(pc(0)π =pc(1)π′ ∧ pc(1)π =pc(0)π′)

where sym(selectπ, selectπ′) means that process 0 is selected on path π when
process 1 is selected on path π′ and vice versa. Property (S1) states that, for every
execution, there is another execution in which the select inputs corresponding to
processes 0 and 1 are swapped and the outcome (i.e., the sequence of program
counters of the processes) is also swapped. It is well known that it is impossible to
accomplish mutual exclusion in an entirely symmetric fashion [31]. It is therefore
not surprising that the implementation indeed violates Property (S1).

Inspecting the counterexample revealed, however, that the symmetry is bro-
ken even before the critical section is reached: if a non-existing process ID is
selected by the variable select, process 0 proceeds instead. Property (S2) excludes
paths on which a non-existing process ID is selected. The model-checker pro-
duced a counterexample in which processes 0 and 1 tried to access the critical
section, but were treated differently.

(S2) ∀π.∀π′. �(sym(selectπ, selectπ′) ∧ pauseπ =pauseπ′ ∧
selectπ < 3 ∧ selectπ′ < 3) ⇒

�(pc(0)π =pc(1)π′ ∧ pc(1)π =pc(0)π′)

Next, we parameterized the necessary symmetry breaking in the system. We
introduced additional inputs indicating which process may move, in case of a tie
of the tickets and extended the property by the assumption that the symmetry
is broken symmetrically.

(S3) ∀π.∀π′. �(sym(selectπ, selectπ′) ∧ pauseπ =pauseπ′ ∧
selectπ < 3 ∧ selectπ′ < 3 ∧ sym(sym breakπ, sym breakπ′)) ⇒

�(pc(0)π =pc(1)π′ ∧ pc(1)π =pc(0)π′)

Property (S3) is still violated by the implementation: the order in which the
processes were checked depends on the process IDs and causes delays in how the
program counters evolve. After contracting the comparison of process IDs into
a single step, property (S3) became satisfied.

In further experiments, we changed the structure of property from the form
(S3) ∀π.∀π′. �ϕ ⇒ �ψ to (S7) ∀π.∀π′. ψ W ¬ϕ, which removes the liveness part
of the property, while maintaining the semantics (for input-deterministic and
input-enabled systems). This change significantly reduced the verification times
and enabled the verification of the protocol for up to 7 participants.

Algorithms for Model Checking HyperLTL and HyperCTL 45

5.3 Case Study 3: Error Resistant Codes

Error resistant codes enable the transmission of data over noisy channels. While
the correct operation of encoder and decoders is crucial for communication sys-
tems, the formal verification of their functional correctness has received little
attention. A typical model of errors bounds the number of flipped bits that may
happen for a given code word length. Then, error correction coding schemes must
guarantee that all code words have a minimal Hamming distance. Alternation-
free HyperCTL∗ can specify that all code words produced by an encoder have a
minimal Hamming distance of d:

(HDd) ∀π.∀π′. (
∨

a∈I aπ �=aπ′) ⇒ ¬HamO(d − 1, π, π′)

where I are the inputs denoting the data, O denote the code words, and the
predicate HamO(d, π, π′) is defined as HamO(−1, π, π′) = false and:

HamO(d, π, π′) =
∧

a∈O aπ =aπ′
) W ∨

a∈O aπ �=aπ′ ∧ HamO(d−1, π, π′)
)
.

We started with two simple encoders that are not intended to provide error
resistance: a Huffman encoder from the VIS benchmarks, and an 8bit-10bit
encoder from http://opencores.org that guarantees that the difference between
the number of 1 s and the number of 0 s in the codeword is bounded by 2.
As expected, encoders provide a Hamming distance of 1 (Huff1and 8b10b 2),
but not more (Huff2and 8b10b 3). The experiments on these simple encoders
were useful to determine the configuration of the command signals that enable
the transmission of data. For example, checking the plain property as speci-
fied above for the 8bit-10bit encoder reveals that the reset signal must be set
to false before sending data (8b10b 1). Similarly, for the 8bit-10bit decoder, we
checked whether all codewords of Hamming distance 1 produce different outputs
(8b10b 4).

Next, we considered an encoder for the 7-4-Hamming code, which encodes
blocks of 4 bits into codewords of length 7, and guarantees a Hamming distance
of 3. We started with finding out in which configuration the encoder actually
sends encoded data (Hamm1to Hamm4). With Hamm3we discovered that the
implementation deviates from the specification because the reset signal for the
circuit is active high, instead of active low as specified. In Hamm3, we fixed
the usage of the reset bit. We then scaled the specification to Hamming distances
2 and 3 (Hamm5to Hamm7).

6 Conclusions

We presented a novel automata-based automatic technique to model-check
HyperLTL and HyperCTL∗ specifications, and an implementation integrated

http://opencores.org

46 B. Finkbeiner et al.

with a state-of-the-art hardware model checker. Our case studies show that
the implementation scales to realistic hardware designs; in one case we suc-
cessfully checked a design with more than 20.000 latches. The logics HyperLTL
and HyperCTL∗ proved to be versatile tools for the analysis of various kinds of
properties.

Acknowledgements. We thank Hans-Jörg Peter for valuable discussions and for syn-
thesizing models for the case studies, Heinrich Ody for joint work on an early prototype
of the tool, and Heidy Khlaaf for insightful comments on the paper.

References

1. Alur, R., Černý, P., Zdancewic, S.: Preserving secrecy under refinement. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 107–118. Springer, Heidelberg (2006)

2. Andersen, H.R.: A polyadic modal µ-calculus. Technical report (1994)
3. Askarov, A., Myers, A.: A semantic framework for declassification and endorse-

ment. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 64–84. Springer,
Heidelberg (2010)

4. Balliu, M., Dam, M., Le Guernic, G.: Epistemic temporal logic for information flow
security. In: Proceedings of PLAS, ACM (2011)

5. Banerjee, A., Naumann, D.A., Rosenberg, S.: Expressive declassification policies
and modular static enforcement. In: Proceedings of S & P, pp. 339–353, IEEE CS
Press (2008)

6. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.) LFCS
2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013)

7. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings CSFW, pp. 100–114, June 2004

8. Biere, A., Clarke, E., Raimi, R., Zhu, Y.: Verifying safety properties of a
PowerPCTM microprocessor using symbolic model checking without BDDs. In:
Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 60–71. Springer,
Heidelberg (1999)

9. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. http://fmv.jku.at/
hwmcc11/beyond1.pdf (2011). Accessed Feb 6 2015. Via website: http://fmv.jku.
at/aiger/

10. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011)

11. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010)

12. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L.: Sequential circuit verification
using symbolic model checking. In: Proceedings of DAC 1990, pp. 46–51, IEEE CS
Press (1990)

13. Claessen, K., Eén, N., Sterin, B.: A circuit approach to LTL model checking. In:
Proceedings of FMCAD, pp. 53–60 (2013)

http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/aiger/
http://fmv.jku.at/aiger/

Algorithms for Model Checking HyperLTL and HyperCTL 47

14. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014 (ETAPS 2014). LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014)

15. Clarkson, M.R., Schneider, F.B.: Hyperproperties.In: Proceedings IEEE Sympo-
sium on Computer Security Foundations, pp. 51–65, June 2008

16. Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M.N., Seidl, H.: Model check-
ing information flow in reactive systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 169–185. Springer, Heidelberg (2012)

17. D’Souza, D., Holla, R., Raghavendra, K.R., Sprick, B.: Model-checking trace-based
information flow properties. J. Comput. Secur. 19(1), 101–138 (2011)

18. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Proceedings of FMCAD, pp. 125–134 (2011)

19. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

20. Finkbeiner, B., Rabe, M.N.: The linear-hyper-branching spectrum of temporal log-
ics. IT Inf. Technol. 56, 273–279 (2014)

21. Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004)

22. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
IEEE Symposium on Security and Privacy, pp. 11–20, IEEE CS Press (1982)

23. Huisman, M., Worah, P., Sunesen, K.: A temporal logic characterisation of obser-
vational determinism. In: Proceedings of CSFW, IEEE CS Press (2006)

24. Kesten, Y., Pnueli, A., Raviv, L.: Algorithmic verification of linear temporal logic
specifications. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 1–16. Springer, Heidelberg (1998)

25. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
TOCL 2(3), 408–429 (2001)

26. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

27. Lange, M., Lozes, É.: Model-checking the higher-dimensional modal mu-calculus.
In: Proceedings of FICS, EPTCS, vol. 77, pp. 39–46 (2012)

28. Lomuscio, A., Pecheur, C., Raimondi, F.: Automatic verification of knowledge and
time with NuSMV. In: Proceedings of IJCAI, pp. 1384–1389 (2007)

29. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification
of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 682–688. Springer, Heidelberg (2009)

30. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992)

31. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer,
New York (1995)

32. McMillan, K.L.: Craig interpolation and reachability analysis. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, p. 336. Springer, Heidelberg (2003)

33. Meski, A., Penczek, W., Szreter, M., Wozna-Szczesniak, B., Zbrzezny, A.: Bounded
model checking for knowledge and linear time. In: Proceedings of AAMAS, pp.
1447–1448, IFAAMAS (2012)

34. Milushev, D.: Reasoning about hyperproperties. Ph.D thesis, Faculty of Engineer-
ing, Katholieke Universiteit Leuven, Celestijnenlaan 200A, box 2402, B3001 Hev-
erlee, Belgium, 6 (2013)

48 B. Finkbeiner et al.

35. Milushev, D., Clarke, D.: Towards incrementalization of holistic hyperproperties.
In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust. LNCS, vol.
7215, pp. 329–348. Springer, Heidelberg (2012)

36. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor. Com-
put. Sci. 32, 321–330 (1984)

37. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In: Proceedings of LICS, pp. 422–427, IEEE CS Press (1988)

38. Otto, M.: Bisimulation-invariant PTIME and higher-dimensional µ-calculus.
Theor. Comput. Sci. 224, 237–265 (1998)

39. Pencze, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. In: Proceedings of AAMAS, pp. 209–216, IFAAMAS
(2003)

40. Rabe, M.N.: MCHyper: a model checker for hyperproperties. http://www.react.
uni-saarland.de/tools/mchyper/ (2015). Accessed Feb 6 2015

41. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Futatsugi,
K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 174–191.
Springer, Heidelberg (2004)

42. Sistla, P.A., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

43. Thielke, W.: Code geknackt. Link to article in media archive: http://www.focus.de/
finanzen/news/krankenkassen-code-geknackt aid 148829.html (1994). Accessed
Feb 6 2015

44. van der Meyden, R., Zhang, C.: Algorithmic verification of noninterference prop-
erties. Electr. Notes Theor. Comput. Sci. 168, 61–75 (2007)

45. Vardi, M.Y.: Alternating automata and program verification. In: van Leeuwen, J.
(ed.) Computer Science Today. LNCS, vol. 1000, pp. 471–485. Springer, Heidelberg
(1995)

46. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of LICS 1986, pp. 332–344, IEEE CS Press (1986)

47. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

http://www.react.uni-saarland.de/tools/mchyper/
http://www.react.uni-saarland.de/tools/mchyper/
http://www.focus.de/finanzen/news/krankenkassen-code-geknackt_aid_148829.html
http://www.focus.de/finanzen/news/krankenkassen-code-geknackt_aid_148829.html

	Algorithms for Model Checking HyperLTL and HyperCTL*
	1 Introduction
	2 Temporal Logics for Hyperproperties
	3 Automata-Theoretic Model Checking of HyperCTL*
	3.1 The Alternation-Free Fragment
	3.2 The Full Logic

	4 Symbolic Model Checking of Circuits
	5 Case Studies and Experimental Results
	5.1 Case Study 1: Information Flow Properties of I2C
	5.2 Case Study 2: Symmetry in Mutual Exclusion Protocols
	5.3 Case Study 3: Error Resistant Codes

	6 Conclusions
	References

