
On Automation of CTL* Verification
for Infinite-State Systems

Byron Cook1, Heidy Khlaaf1(B), and Nir Piterman2

1 University College London, London, UK
h.khlaaf@ucl.ac.uk

2 University of Leicester, Leicester, UK

Abstract. In this paper we introduce the first known fully automated
tool for symbolically proving CTL∗ properties of (infinite-state) integer
programs. The method uses an internal encoding which facilitates rea-
soning about the subtle interplay between the nesting of path and state
temporal operators that occurs within CTL∗ proofs. A precondition syn-
thesis strategy is then used over a program transformation which trades
nondeterminism in the transition relation for nondeterminism explicit
in variables predicting future outcomes when necessary. We show the
viability of our approach in practice using examples drawn from device
drivers and various industrial examples.

1 Introduction

In recent years, a number of systems have been proposed to automate the verifi-
cation of either branching-time properties (e.g. expressed in CTL) or linear-time
properties (e.g. LTL) of general integer manipulating programs [3,8,10–12].
Branching-time property verification requires reasoning about sets of stateswithin
a transition system that satisfy a particular temporal formula. Contrarily, linear-
time property verification requires reasoning about sets of paths that satisfy a
formula. However, these logics have significantly reduced expressiveness as they
restrict or disallow the interplay between linear-time and branching-time opera-
tors. For example, a property involving the assertion “along some future an event
occurs infinitely often” cannot be expressed in either LTL or CTL, yet is crucial
when expressing the existence of fair paths spawning from every reachable state
in an infinite-state system. Contrarily, CTL∗ is capable of expressing CTL, LTL,
and properties necessitating their interplay, as demonstrated by examples further
below.

Unfortunately, no fully automatic CTL∗ proving methods for infinite-state
systems are known. Despite the existence of automated verification tools for
branching-time and linear-time temporal logic, these tools do not allow for the
verification of CTL∗. A key problem is that CTL∗ formulae cannot merely be par-
titioned into isolated CTL and LTL sub-formulae, as such a partition fails to treat
the intricate dependence between state-based and path-based reasoning. In this
paper we introduce the first known automatic method capable of proving CTL∗

c© Springer International Publishing Switzerland 2015
D. Kroening and C.S. Păsăreanu (Eds.): CAV 2015, Part I, LNCS 9206, pp. 13–29, 2015.
DOI: 10.1007/978-3-319-21690-4 2

14 B. Cook et al.

properties of infinite-state programs. Our contribution is a method that allows
for the arbitrary nesting of state-based reasoning within path-based reasoning,
and vice versa. Towards this purpose we recursively deconstruct a CTL∗ formula
in a way that allows us to determine where the subtle interplay between the arbi-
trary nesting of path and state formulae occurs. To reason about the path sub-
formulae, we find a sufficient set of branching nondeterministic decisions within
a program’s transition relation. We then devise a method of temporarily sub-
stituting said nondeterministic decisions with a partially symbolic determinized
form. That is, nondeterministic decisions regarding which paths are taken are
determined by variables that summarize the future of the program execution.
When interchanging between path and state formulae, these determinized rela-
tions must then be collapsed to incorporate path quantifiers. Preconditions for
the given CTL∗ property can then be acquired via existing CTL model checkers.

Based on our approach, we have developed a tool capable of automatically
proving properties of programs that no tool could previously fully automate.
The paper closes with a description of our experimental results using the devel-
oped tool on various programs drawn from industrial examples. Our tool is avail-
able under the MIT open-source license at https://github.com/hkhlaaf/T2/tree/
T2Star.

Expressiveness of CTL∗.CTL∗ allows us to express properties involving exis-
tential system stabilization, stating that an event can eventually become true and
stay true from every reachable state. Additionally, it can express “possibility”
properties, such as the viability of a system, stating that every reachable state
can spawn a fair computation. Below are properties that can only be afforded by
the extra expressive power of CTL∗. These liveness properties are often imper-
ative to verifying systems such as Windows kernel APIs that acquire resources
and APIs that release resources, as later shown by our experiments.

For example, the property EFG(¬x ∧ (EGF x)) conveys the divergence of
paths. That is, there is a path in which a system stabilizes to ¬x, but every
point on said path has a diverging path in which x holds infinitely often. This
property is not expressible in CTL or in LTL, yet is crucial when expressing the
existence of fair paths spawning from every reachable state in a system. In CTL,
one can only examine sets of states, disallowing us to convey properties regarding
paths. In LTL, one cannot approximate a solution by trying to disprove either
FG ¬x or GF x, as one cannot characterize these proofs within a path quantifier.

Another CTL∗ property AG
[
(EG ¬x) ∨ (EFG y)

]
dictates that from every

state of a program, there exists either a computation in which x never holds
or a computation in which y eventually always holds. The linear time property
G(Fx → FG y) is significantly stricter as it requires that on every computa-
tion either the first disjunct or the second disjunct hold. Finally, the property
EFG

[
(x∨ (AF ¬y))

]
asserts that there exists a computation in which whenever x

does not hold, all possible futures of a system lead to the falsification of y. This
assertion is impossible to express in LTL.

Related Work. Proof systems for the verification of CTL∗, first introduced
by [14,21], have been well-studied. It is known that CTL∗ model checking for

https://github.com/hkhlaaf/T2/tree/T2Star
https://github.com/hkhlaaf/T2/tree/T2Star

On Automation of CTL* Verification for Infinite-State Systems 15

infinite-state systems generalizes termination and co-termination and is unde-
cidable. A decision procedure exploring the structure of finite-state ω-automata
was first introduced to determine the satisfaction of a CTL∗ formula over binary
relations in [17], and later extended in [15]. A complete and sound axiomatiza-
tion of propositional CTL∗ then followed in [26], which inspired the first sound
and relatively complete deductive proof system for the verification of CTL∗ prop-
erties over possibly infinite-state reactive systems [20]. Proof rules for verifying
CTL∗ properties of infinite-state systems were implemented in STeP [4]. However,
the STeP system is only semi-automated, as it still requires users to construct
auxiliary assertions and participate in the search for a proof.

Model checking CTL∗ [16] for finite-state programs and other decidable set-
tings has been implemented in [18]. Their approach reduces a CTL∗ formula to
μ-calculus using a system of fixed-point equations on relations with first-order
quantifiers and equalities. They then invoke a μ-calculus model checker. Con-
trarily, we seek to verify the undecidable general class of infinite-state programs
supporting both control-sensitive and integer properties. Given that μ-calculus
model checking is polynomial-time equivalent to the solution of parity games [15],
one can conceive that the approach in [2] could potentially solve CTL∗ model
checking if the latter were reduced to solving parity games by combining [18]
and [15]. However, we note that the resulting infinite-state game would integrate
the (first-order μ-calculus) property within the program making it difficult to
extract invariants pertaining to the program. For this reason, it is often the
case that such a series of reductions inhibits tool performance. Furthermore, [2]
requires a manual instantiation of the structure of assertions, characterizing sub-
sets of the infinite-state game, that are to be found by their tool.

Existing automated tools for verification of infinite-state programs support
either branching-time only or linear-time only reasoning, e.g., [3,5,8,10–12,27].
The important distinction however is that these tools do not allow for the inter-
action between linear-time and branching-time formulae.

Finally, we have adopted and repurposed a similar symbolic determinization
technique introduced in [12] for the verification of LTL formulae in the infinite-
state setting. Their symbolic determinization is based on the counterexample-
guided refinement of generated tree counterexamples, or counterexamples with
branching paths. That is, [8] produce a semantics-preserving transformation that
encodes the structure of the nested CTL formulae within the state space, allowing
for the generation of tree counterexamples. This causes precondition generation
for syntactically partitioned formulae to be no longer possible, limiting the inter-
play between linear-time operators and path quantifiers allowed by our strategy.

Limitations. Our tool does not support programs with heap, nor do we sup-
port recursion or concurrency. The heap-based programs we consider during our
experimental evaluation have been abstracted using an over-approximation tech-
nique introduced by [22]. Effective techniques for proving temporal properties
of programs with heap remains an open research question. Our technique relies
on the availability of CTL model checking and non-termination procedures. It
is, in principle, applicable to every class of infinite-state systems for which such

16 B. Cook et al.

procedures are available (provided that integer variables are allowed). Addition-
ally, our procedure is not complete as we use a series of techniques for safety [24],
termination [9,25], nontermination [19], and CTL [3,11] that are not complete.
Furthermore, our determinization procedure is not complete. We will further
address this issue in later sections.

2 Preliminaries

Programs. As is standard [23], we treat programs as control-flow graphs, where
edges are annotated by the updates they perform to variables. A program is a
triple P = (L, E,Vars), where L is a set of locations, E is a set of edges/transitions,
and Vars is a set of variables. Each edge τ = (�, ρ, �′) in E, where �, �′ ∈ L and ρ
is a condition, specifies possible transitions in the program. The condition ρ is an
assertion in terms of Vars and Vars′, a primed copy of Vars, where constants range
over Vals. That is, Vars refers to the values of variables before an update and Vars′

refers to the values of variables after an update.
The set of locations includes the first location �

I
, which has no incoming

transitions from other program locations. That is, for every τ = (�, ρ, �′) ∈ E
we have �′ �= �

I
. Transitions exiting �

I
have their conditions expressed in terms

of Vars′. Locations with incoming transitions from �
I

are initial locations. This
allows us to encode more complex initial conditions. In figures, we omit �

I
and

merely display the edges to locations with incoming transitions from �
I
.

A program gives rise to a transition system T = (S,R), where S is the set
of program states of the form S = (L − {�

I
}) × (Vars → Vals) and R ⊆ S × S.

That is, a program state is a pair (�, f) where � �= �
I

and f is a valuation,
i.e., a function from program variables to values. A program can transition from
(�, f1) to (�′, f2) if there exists a transition (�, ρ, �′) ∈ E such that (f1, f2) |= ρ.
The valuation (f1, f2) is a function from Vars ∪ Vars′ to Vals such that for every
v ∈ Vars, (f1, f2)(v) = f1(v) and (f1, f2)(v′) = f2(v). A state (�, f) is considered
initial if there is a transition (�

I
, ρ, �) such that (f−1, f) |= ρ, where f−1 is some

arbitrary valuation. Notice that ρ is expressed in terms of Vars′ and hence the
valuation f−1 does not affect the satisfaction of ρ.

Given V ⊆ Vars, the valuation obtained from f by restricting the valuation
to variables in V is denoted by f⇓V . The restriction of states of the form (�, f)
and paths in the program is defined similarly, e.g., π⇓V .

Paths. A path or a trace π in P is an infinite sequence of states (�0, f0), (�1, f1),
. . ., where for every i ≥ 0, there exists some (�i, ρi, �i+1) ∈ E where (fi, fi+1) |=
ρi. We say that π is an (�, f)-path if �0 = � and f0 = f . Given a program
P , a location �, and a valuation f , we denote the set of (�, f)-paths in P by
Path(P, �, f). We say that π is a computation in P if (�, f) is initial. Note that we
restrict our attention to infinite paths and computations. In practice, we modify
programs, transition systems, and temporal logic formulae to ensure that all
paths are infinite, as is done, e.g., in [6].

CTL∗. We are interested in verifying full computation tree logic (CTL∗) [14,21].
The syntax of CTL∗ (written in negation normal form) includes state formulae ϕ,

On Automation of CTL* Verification for Infinite-State Systems 17

that are interpreted over states, and path formulae ψ, that are interpreted over
paths. We assume that atomic propositions (ranged over by α) are expressed in
some underlying theory over variables and constants (e.g. x < y). State formulas
(ϕ) and path formulas (ψ) are co-defined:

ϕ ::= α | ¬α | ϕ ∧ ϕ | ϕ ∨ ϕ | Aψ | Eψ

ψ ::= ϕ | ψ ∧ ψ | ψ ∨ ψ | Gψ | Fψ | [ψWψ] | [ψUψ]

For a program P and a CTL∗ state formula ϕ, we say that ϕ holds at a state
s in P , denoted by P, s |= ϕ if:

– If ϕ = α, then P, s |= α iff s |= α
– If ϕ = ¬α, then P, s |= ¬α iff s �|= α
– If ϕ = ϕ1 ∨ ϕ2, then P, s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2

– If ϕ = ϕ1 ∧ ϕ2, then P, s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

– If ϕ = Aψ, then P, s |= Aψ iff ∀π = (s, ...). P, π |= ψ
– If ϕ = Eψ, then P, s |= Eψ iff ∃π = (s, ...). P, π |= ψ

Path formulae are interpreted over paths. For a program P and a CTL∗ path
formula ψ, we say that ψ holds on a path π = (s0, s1, . . .) in P for location i,
denoted by P, π, i |= ψ if:

– If ψ = ϕ is a state formula, then P, π, i |= ϕ iff P, si |= ϕ.
– If ψ = ψ1 ∨ ψ2, then P, π, i |= ψ1 ∨ ψ2 iff P, π, i |= ψ1 or P, π, i |= ψ2

– If ψ = ψ1 ∧ ψ2, then P, π, i |= ψ1 ∧ ψ2 iff P, π, i |= ψ1 and P, π, i |= ψ2

– If ψ = Fψ1, then P, π, i |= Fψ1 iff ∃j ≥ i. P, π, j |= ψ1

– If ψ = Gψ1, then P, π, i |= Gψ1 iff ∀j ≥ i. P, π, j |= ψ1

– If ψ = ψ1Wψ2, then P, π, i |= ψ1Wψ2 iff either ∃k ≥ i. P, π, k |= ψ2 and
∀i ≤ j < k. P, π, j |= ψ1 or ∀j ≥ i. P, π, j |= ψ1

– If ψ = ψ1Uψ2, then P, π, i |= ψ1Uψ2 iff ∃k ≥ i. P, π, k |= ψ2 and ∀i ≤ j <
k. P, π, j |= ψ1

A path formula ψ holds in a path π, denoted by P, π |= ψ, if P, π, 0 |= ψ.
For a state formula ϕ, ϕ holds on P , denoted by P |= ϕ, if for every initial state
s we have P, s |= ϕ. When the program P is is clear from the context, we may
write s |= ϕ for a state formula ϕ or π, i |= ψ for a path formula ψ.

The branching-time logic CTL is a restricted subset of CTL∗ in which tempo-
ral operators cannot be nested. That is, the only path formulas allowed are Gϕ1,
Fϕ1, ϕ1Uϕ2, and ϕ1Wϕ2 for state formulas ϕ1 and ϕ2. The linear-time logic
LTL is a fragment of CTL∗ that only allows formulae of the form Aψ, where A is
the only occurrence of a path quantifier within ψ. When taking LTL as subset of
CTL∗, LTL formulae are implicitly prefixed with the universal path quantifier A.

Strongly Connected Subgraphs. We provide some notation regarding
strongly-connected subgraphs followed by the definition of relation pairs below.
For a program P , we denote an ordered sequence of locations �0, ..., �n as a cycle c
if �n = �0 and for every i ≥ 0 there exists some (�i, ρi, �i+1) ∈ E. Let C be the set of

18 B. Cook et al.

program locations such that � ∈ L appears in a cycle c. That is, C = {� | ∃c. � ∈ c}.
For a program P and the set of locations C, we identify SCS(P,C) as some max-
imal set of non-trivial strongly-connected subgraphs (SCSs) of P such that every
two subgraphs G1, G2 ∈ SCS(P,C) are either disjoint or one is contained in the
other and for every � ∈ C, there exists at least one G ∈ SCS(P,C) such that
� ∈ G. The details regarding the identification of C and SCS(P,C) are standard
and thus omitted here (see, e.g., [13]). We denote the minimal SCS in SCS(P,C)
that contains a location � ∈ L by MinSCS(P,C, �).

Identifying a program’s strongly-connected subgraphs allows us to sufficiently
find the set of relation pairs that characterize instances of branching nondeter-
ministic decisions within a program’s transition relation. A relation pair is thus
(ρ1, ρ2) such that for some location � we have (�, ρ1, �1) and (�, ρ2, �2) are tran-
sitions of P and �1 ∈ MinSCS(P,C, �) and �2 /∈ MinSCS(P,C, �). That is, ρ1
is the condition for remaining in the (minimal) SCS of � and ρ2 is the condition
for leaving the (minimal) SCS of �.

3 Overview

In this section, we present a quick overview of our CTL∗ verification procedure
ProveCTL∗, presented in Fig. 3 with an in-depth explanation provided later
in Sect. 4. The procedure is designed to recurse over the structure of a given
CTL∗ formula, and for each sub-formula θ we produce a precondition a that
ensures its satisfaction. That is, a is an assertion over program variables and
locations characterizing the states of the program that satisfy θ. We start by
finding the precondition of the innermost sub-formula, followed by searching for
the preconditions of the outer sub-formulae dependent on it.

A given CTL∗ formula is deconstructed to differentiate between state and
path sub-formulae, as the crux of verifying CTL∗ formulae lies within identifying
the interplay between the arbitrary nesting of path and state formulae. Precon-
ditions for branching-time logic state formulae can be acquired via existing CTL
model checking techniques which return an assertion characterizing the states in
which a sub-formula holds. The essence of our algorithm is thus within how we
acquire sufficient preconditions for path formulae that admit a sound interaction
with state formulae. The algorithm is based on the procedures below, which are
defined in later sections of the paper:

Approximate is a procedure that performs a syntactic conversion from a path
formula to its corresponding over-approximated universal CTL formula (ACTL)1.
The over-approximated formula can then be checked by an existing CTL model
checker over a partially symbolic determinized form of the program to reduce
path formula verification to state formula verification.

Determinize allows us to reason about path characterization through state
characterization, as the satisfaction of an ACTL over-approximated formula
1 ACTL is the universal subset of CTL where one can only address all possible paths

with the universal quantifier A (e.g. AG or AF), but not the existence of some paths
with E (e.g. EG or EF).

On Automation of CTL* Verification for Infinite-State Systems 19

�1 �2

ρ1 : x′ = 1

ρ2 : x′ = x

ρ3 : x′ = 0

ρ4 : x′ = x

�1 �2

ρ1 : x′ = 1

ρ2 : n�1 �= 0
n′

�1 = n�1 − 1
x′ = x

ρ3 : n�1 = 0
x′ = 0

ρ4 : x′ = x

(a) (b)

Fig. 1. (a) The control-flow graph of a program for which we wish to prove the CTL∗

property EFG x = 1. (b) The control-flow graph after calling Determinize, it includes
the prophecy variable n�1 corresponding to the nondeterministic relation pair (ρ2, ρ3).

implies the satisfaction of the path formula. However, the inverse does not hold.
The procedure thus constructs a form of a partially determinized program over
the symbolic representations of all characterized instances of branching nonde-
terminism (i.e. relation pairs), stemming from the same program location �. That
is, nondeterministic decisions regarding which paths are taken would be deter-
mined by prophecy variables, which determine future outcomes of the program
execution, and their values [1]. Recall that relation pairs are distinguished if they
are not part of the same strongly connected subgraph.

QuantElim acquires the proper set of states that satisfy a formula which has
been verified over a determinized program. This allows for the path quantification
present within a CTL∗ formula, that is, whether all paths (or some paths) starting
from a state satisfy a path formula. When a CTL∗ formula of the form θ ::=Aψ |
Eψ is reached after acquiring a set of states satisfying ψ, θ is verified on the
same determinized program used for ψ. We then must use quantifier elimination
to acquire the proper set of states that satisfy θ, thus quantifying the assertions
over the values of the prophecy variables. If the formula is of the form Aψ,
we universally quantify the prophecy variables appearing in the set of states
that satisfy Aψ. If the formula is of the form Eψ, we existentially quantify the
prophecy variables.

Example. Consider the program in Fig. 1(a) and the property EFG x = 1 stating
that there exists a possible future where x = 1 will eventually become true and
stay true. This is a system stabilization property which can only be expressed
in CTL∗. We begin by identifying that G x = 1 is a path formula, and thus use
Approximate to return the over-approximated state formula AG x = 1. We
then initiate a CTL model checking task where we seek a set of states aG such
that EFaG holds, and for every state s such that s |= aG we have s |= AG x = 1.

Our formula would now only be valid if we can find a set of states that are
eventually reached in a possible future from the program’s initial states such that
AG x = 1 holds. However, no such set of states exists as the nondeterministic
choice from �1 to ρ2 and ρ3 does not allow us to determine if we will eventually
leave the loop or not. That is, there exists no set of states which can exemplify the

20 B. Cook et al.

infinite branching possibilities of leaving ρ2 to possibly reaching ρ3 or remaining
in ρ2 forever. In order to reason about the original sub-formula G x = 1, we
must be observing sets of paths, not states. Given that we over-approximated our
formula in a way that allows us to only reason about states, we thus symbolically
determinize the program to simultaneously simulate all possible related paths
through the control flow graph and try to separate them to originate from distinct
states in the program.

Our procedure Determinize would then return a new partially symbolically
determinized system in which a newly introduced prophecy variable, named n�1

in Fig. 1(b), is associated with the relation pair (ρ2, ρ3), and is used to make
predictions about the occurrences of relations ρ2 and ρ3. Recall that relation
pairs correspond to pairs of nondeterministic transitions, one remaining in a
SCS and the other leaving the same SCS. In this case, ρ3 is indeed disjoint from
the strongly connected subgraph of �1.

Given that we initialize n�1 to a nondeterministic value, for every path in the
program, a positive concrete number chosen at the nondeterministic assignment
predicts the number of instances that transition ρ2 is visited before transitioning
to ρ3. That is, we remain in ρ2 until n�1 = 0, with n�1 being decremented at each
passage through the loop. Once we terminate the loop, the prophecy variable
is nondeterministically reset (for the case that we return to the same loop again).
A negative assignment to n�1 denotes remaining in ρ2 forever, or non-termination.

We can now utilize an existing CTL model-checker to return an assertion
characterizing the states in which G x = 1 holds by verifying the determinized
program, denoted by PD, using the over-approximated CTL formula AG x = 1.
The assertion aG = (�1 ∧ n�1 < 0) is returned, and we proceed by replacing the
sub-formula with its assertion in the original CTL∗ formula, resulting in EFaG. To
verify the outermost CTL∗ formula, EF, note that syntactically this is a readily
acceptable CTL formula. However, we cannot simply use a CTL model checker
as the path quantifier E exists within a larger relation context reasoning about
paths given the inner formula FG. We thus must use the CTL model-checker to
verify EFaG over the same determinized program previously generated.

Our procedure returns with the same precondition (�1 ∧ n�1 < 0). We then
use quantifier elimination to existentially quantify out all introduced prophecy
variables. The existential quantification corresponds to searching for some path
(or paths) that satisfy the path formula. Thus, if there is a state s in the original
program, and some value of the prophecy variables v such that all paths from
the combined state (s, n�1 = v) in PD satisfy the path formula then clearly, these
paths give us a sufficient proof to conclude that EFG x = 1 holds from s in P .

4 Checking CTL∗ Formulae

In this section, we describe the details of our CTL∗ model checking procedure
ProveCTL∗. We first define the procedures utilized by ProveCTL∗, namely
Determinize and Approximate, followed by our model checking procedure
and its utilization of QuantElim.

On Automation of CTL* Verification for Infinite-State Systems 21

1 Let Determinize(P) : program =

2 PD = P

3 Synth = []

4 (LD, ED,VarsD) = PD

5 C = CyclePoints(P)

6 foreach (�, ρ, �′) ∈ ED do

7 G = MinSCS(P, C, �) ∈ SCS(P, C)

8 if G �= ∅ ∧ MinSCS(P, C, �′) �= G then

9 Synth = � :: Synth

10 done

11 foreach (�, ρ, �′) ∈ ED do

12 if � ∈ Synth then

13 VarsD = VarsD ∪ n� ∈ Z

14 if �′ ∈ MinSCS(P, C, �) then

15 ρ = ρ ∧ (n� �= 0) ∧ (n′
� = n� − 1)

16 else

17 ρ = ρ ∧ (n� = 0)

18 done

19 return PD

1 Let Approximate(ψ, aθ′
1
, aθ′

2
) :

ϕ =2 match (ψ) with

3 | Fθ′
1 → AFaθ′

1
4 | Gθ′

1 → AGaθ′
1

5 | Xθ′
1 → AXaθ′

1
6 | θ′

1Wθ′
2 → Aaθ′

1
Waθ′

2
7 | θ′

1Uθ′
2 → Aaθ′

1
Uaθ′

2
8 | θ′

1 ∧ θ′
2 → aθ′

1
∧ aθ′

2
9 | θ′

1 ∨ θ′
2 → aθ′

1
∨ aθ′

2

)b()a(

1 Let Verify(θ, P) : bool =

2 (L, E,Vars) = P

3 PD = Determinize(P)

4 (a,) = ProveCTL∗(θ, P, PD)

5 return ∀(�0, ρ, �) ∈ E ∀s . (s, s) |= ρ ⇒ a

1 Let QuantElim(a, ϕ) : AP =

2 a
EG

= CTL(PD, EG True)

3 match (ϕ) with

4 | Aψ → ¬QE(∃n�∈L.a
EG

∧ ¬a)

5 | Eψ → QE(∃n�∈L.a
EG

∧ a)

(c) (d)

Fig. 2. (a) Determinize identifies relation pairs and constructs a symbolically deter-
minized program over them. (b) Approximate produces a syntactic conversion from
a path formula to its corresponding over-approximation in ACTL. (c) Verify wraps
ProveCTL∗ and then checks all initial states. (d) QuantElim applies quantifier elim-
ination in order to convert path characterization to state characterization restricting
attention to states from which an infinite path exists.

Determinize. The procedure Determinize constructs a form of partially sym-
bolically determinized program over relation pairs that characterize instances of
branching nondeterminism. We present our procedure in Fig. 2(a), where a pro-
gram P is given and a partially determinized program PD, contingent upon non-
deterministic relation pairs, is returned. Ultimately, Determinize is designed
to allow proof tools for branching-time logic state formulae to be used to reason
about path formulae.

We begin by finding a sufficient set of relation pairs to symbolically deter-
minize the program to one which has the same set of paths as the original.
These relations are distinguished if there exist two nondeterministic relations
stemming from the same location and yet are not part of the same strongly-
connected subgraph. Our procedure thus begins by iterating over the set of a
program’s edges, (�, ρ, �′) ∈ E on line 6. We identify whether or not � ∈ C given
that G = MinSCS(P,C, �) and G �= ∅ on lines 7 and 8. If from some location �,
where G = MinSCS(P,C, �), there is an edge to �′ such that MinSCS(P,C, �′)

22 B. Cook et al.

1 Let rec ProveCTL∗(θ, P, PD) : (formula, bool) =

2 (L, E,Vars) = P

3 match (θ) with

4 | ϕ : stateformula →
5 match (ϕ) with

6 | α → aθ = α; Path = False

7 | θ′
1 ∧ θ′

2 | θ′
1 ∨ θ′

2 | Eθ′
1Uθ′

2 | Aθ′
1Wθ′

2

8 | Eθ′
1 ∧ θ′

2 | Eθ′
1 ∨ θ′

2 | Aθ′
1 ∧ θ′

2 | Aθ′
1 ∨ θ′

2 →
9 (aθ′

1
,Path1) = ProveCTL∗(θ′

1, P, PD)

10 (aθ′
2
,Path2) = ProveCTL∗(θ′

2, P, PD)

11 | AFθ′ | AGθ′ | AXθ′ | EFθ′ | EGθ′ | EXθ′ →
12 (aθ′

1
,Path1) = ProveCTL∗(θ′, P, PD)

13 Path2 = False

14 if ϕ �= α then

15 ϕ′ = Replace(ψ, aθ′
1
, aθ′

2
)

16 if Path1 ∨ Path2 then

17 aθ = QuantElim(CTL(PD, ϕ′), ϕ)

18 Path = false

19 else

20 aθ = CTL(P, ϕ′)
21 Path = False

22 | ψ : pathformula →
23 match (ψ) with

24 | θ′
1 ∧ θ′

2 | θ′
1 ∨ θ′

2 | θ′
1Uθ′

2 | θ′
1Wθ′

2 →
25 (aθ′

1
,) = ProveCTL∗(θ′

1, P, PD)

26 (aθ′
2
,) = ProveCTL∗(θ′

2, P, PD)

27 | Fθ′ | Gθ′ | Xθ′ →
28 (aθ′

1
,) = ProveCTL∗(θ′, P, PD)

29 ψ′ = Approximate(ψ, aθ′
1
, aθ′

2
)

30 aθ = CTL(PD, ψ′)
31 Path = true

32 (aθ,Path)

Fig. 3. Our recursive CTL∗ verification procedure employs an existing CTL model
checker and uses our procedures Approximate and QuantElim. It expects a CTL∗

property θ, a program P , and its determinized version PD as parameters. An asser-
tion characterizing the states in which θ holds is returned along with a boolean value
indicating whether the formula checked was a path formula (and hence approximated).

is not equivalent to G, we can conclude that the transition from � to �′ leaves
the SCS of �. We only desire that � and �′ be elements of the most minimal SCS
as such an edge eludes to the nondeterministic decision point where a transition
diverted from remaining within an SCS. This nondeterministic point is key to the
identification of where determinization must occur to facilitate the application
of state-based reasoning to path-based reasoning for given a program P.

If the strongly connected subgraphs of � and �′ do differ, we add � to Synth, a
list which tracks locations with nondeterministic points. For every such location,
we identify a relation pair corresponding to the decision of either remaining in
the same SCS, or leaving it. After finding all possible elements of Synth, on line
11 we iterate over the program edges, and for each relation pair encountered we
introduce a new prophecy variable to predict the future outcome of the decision.
Indeed, our motivation is to identify nondeterministic points so we can sym-
bolically simulate all possible branching paths through a program, yet decisions
regarding which paths are taken are determined by prophecy variables and their
values. Information regarding different paths is now stored in the state of the
modified program. This allows for a correspondence such that the verification
path formulae can be reduced to the verification of ACTL formulae.

When an edge (�, ρ, �′) ∈ E is reached containing � ∈ Synth, a prophecy
variable n� ∈ Z is added to the set of program variables Vars at line 13. If �′ is
contained within MinSCS(P,C, �), we constrain ρ by requiring that n� �= 0, and
then decrement n�. If �′ is not contained within MinSCS(P,C, �), we constrain ρ
by n� = 0, and n′

� remains unconstrained, entailing a reset to a nondeterministic
integer. The nondeterministic decision of the number of times a cycle is passed
through is thus now determined by the prophecy variable n�. In the case that

On Automation of CTL* Verification for Infinite-State Systems 23

n� < 0, this rule corresponds to behaviors where every visit to � is followed by
a successor in the same SCS (i.e., the computation always remains in the SCS
of �). The nondeterminism within a transition relation is thus either determined
at initialization by the initial choice of values for n� or else later in a path by
choosing new nondeterministic values for n�.

We show that the determinization maintains the set of paths in the original
program and the prophecy variables introduced merely trade nondeterminism in
the transition relation for a larger, nondeterministic state space.

Theorem 1. For every path π in P there is a path π′ in PD such that π′⇓Vars =
π. Furthermore, for every path π′ in PD it holds that π′⇓Vars is a path in P .

Proof. See TR [7], Appendix A.

Approximate. In Fig. 2(b), we present a syntactic conversion from pure linear-
time formulae in CTL∗, that is LTL, to a corresponding over-approximation in
ACTL. Our procedure is given a path formula ψ and two atomic preconditions,
aθ′

1
and aθ′

2
, corresponding to satisfaction of the nested CTL∗ formulae which

appear within ψ. The precondition aθ′
2

is a conditional parameter utilized only
when LTL formulae requiring two properties (e.g. W, U, ∧, ∨) are given. Due
to the recursive nature of ProveCTL∗, presented in the next section, these
preconditions would have already been priorly generated.

On lines 3–7, we instrument a universal path quantifier A preceding the
appropriate temporal operators. Not only so, but the sub-formulae θ′

1 and θ′
2 are

replaced with their corresponding preconditions aθ′
1

and aθ′
2
, respectively. This

aligns with how ProveCTL∗ will recursively iterate over each inner sub-formula
followed by search for the preconditions of the outer sub-formulae dependent on
it. Replacing a path formula by its CTL approximation indeed is sound in the
sense that if the modified formula holds then the original holds as well.

Theorem 2. For every program P , a state (�, f), and a path formula ψ, if
P, (�, f) |= Approximate(ψ) then P, (�, f) |= Aψ.

Proof. See TR [7], Appendix A.

Theorem 2 does not consider existential path quantification. Recall that in order
to conclude that the CTL∗ formula P, s |= Eψ for some path formula ψ, we require
that there is some value v of the prophecy variables such that PD, (s, v) |= Aψ.
This means that when restricting attention to a certain set of paths that start
in a state s (those that match the valuation v for prophecy variables), all paths
in the set satisfy the formula ψ. Clearly, this satisfies the requirement that there
is some path that satisfies the formula.

4.1 ProveCTL*

In this section, we present our main CTL∗ verification procedure. Fig. 2(c) depicts
Verify, which wraps the main procedure ProveCTL∗, shown in Fig. 3. We

24 B. Cook et al.

then generate a determinized copy of the program, PD, using the aforementioned
procedure Determinize. This program is then passed into ProveCTL∗ along
with the original program P and a CTL∗ property θ. ProveCTL∗ then returns
an assertion a, characterizing the states in which θ holds. The second argument
returned is disregarded, indicated by “ ”, as it is only used within the recursive
calls of ProveCTL∗. When ProveCTL∗ returns to Verify, it is only necessary
to check if the precondition a is satisfied by the initial states of the program.

In order to synthesize a precondition for a CTL∗ property θ, we first recur-
sively accumulate the preconditions generated when considering the sub-formulae
of θ at lines 9, 10, 12, 25, 26, and 28. That is, for each sub-formula θ, we produce
a precondition aθ that ensures its satisfaction. We note that the precondition
of an atomic proposition α is the proposition itself. A given CTL∗ formula is
then deconstructed to differentiate between state and path sub-formulae, as the
crux of verifying CTL∗ formulae lies within identifying the interplay between the
arbitrary nesting of path and state formulae. On line 3, if θ can be identified as
a state formula ϕ, we carry out the set of actions on lines 4 – 21. If θ is identified
as a path formula ψ, we then we carry set of actions on lines 22 – 31.

Verifying Path Formulae. When a path formula ψ is reached, we begin by
over-approximating the path formula by syntactically converting it to the univer-
sal subset of branching-time logic (ACTL) using the procedure Approximate.
Recall that the preconditions generated when considering the sub-formula(e) of
ψ at lines 25, 26, and 28 will be utilized by Approximate to replace θ′

1 and
θ′
2 with their corresponding preconditions aθ′

1
and aθ′

2
, respectively. On line 29,

Approximate would then return a corresponding state formula ψ′ where a uni-
versal path quantifier precedes every temporal operator within ψ.

A precondition for the newly attained ACTL formula ψ′ can now be acquired
via existing CTL model checkers which return an assertion characterizing the
states in which ψ′ holds. Existing tools which support this functionality include [3]
and [11]. In our tool prototype, we build upon the latter. Recall that a precon-
dition for a path formula requires more than a precondition for the correspond-
ing state formula, as ψ′ is merely an over-approximation. We thus must utilize
the provided determinized program PD when employing a CTL model checker
rather than the original program P, as shown on line 30. The assertion aθ is then
returned characterizing the sets of states in which θ holds.

Recall that PD leads to better correspondence between ψ and ψ′. That is, we
find a sufficient set of relation pairs which determinize the program to one which
has the same set of paths as the original, yet decisions regarding which paths
are taken are determined by introduced prophecy variables and their values,
allowing us to reduce path-based reasoning to state-based reasoning.

Finally, on line 31, we set the boolean flag Path to true. This flag is the
second argument to be returned by ProveCTL∗. It indicates to the caller that
the result aθ returned by the recursive call is approximated. The value of Path
is used for deciding whether to use aθ as is or modify it (in the case that the
verified sub-formula is a state or a path formula, respectively), admitting a sound
interaction between state and path formulae.

On Automation of CTL* Verification for Infinite-State Systems 25

Verifying State Formulae. In the case that a state formula ϕ is reached, we
partition the state sub-formulae by the syntax of CTL as shown on lines 6 – 8 and
11. This allows us to not only utilize existing CTL model checkers, but to also
eliminate the redundant verification of a temporal operator, when it is already
be preceded by a path quantifier. As a side effect of partitioning ϕ in such a way,
a path formula ψ will always be in the form of a pure linear-time path formula,
that is, LTL. This particular deconstruction of a CTL∗ formula is what allows us
to identify the intricate interplay between path and state formulae.

We begin by recursively generating preconditions when considering the sub-
formula(e) of ϕ at lines 9, 10, and 12. These preconditions will then be utilized
by the procedure Replace on line 15. Replace substitutes θ′

1 and θ′
2 with

their corresponding preconditions aθ′
1

and aθ′
2
, respectively, and returns a new

state formula ϕ′. Preconditions for branching-time logic state formulae can be
acquired via existing CTL model checkers. However, in order to allow for the path
quantification present within a CTL∗ formula to range over path formulae, we
must consider whether all or some paths starting from a particular state satisfy a
path formula. This is required in the case that the immediate inner sub-formula
is a pure linear-time path formula, which is identified by the aforementioned
boolean flag Path given the partitioning of θ. The role of Path is to track if a
sub-formula of the current formula is a path formula. That is, Path indicates
that the path quantifier exists within the context of verifying a path formula,
and not a branching-time state formula. Thus, it must be verified using PD,
yet the set of states of PD that characterize it actually represents a set of paths.
This set of paths must be collapsed later to a characterization of the set of states
of P where the (state) formula holds. This is the key to allowing the interplay
between state and path formulae.

The procedure QuantElim, presented in Fig. 2(d), which converts path char-
acterization to state characterization, is thus executed at line 17. QuantElim
takes in the assertion a returned from calling a CTL model checker on the deter-
minized program PD and the partitioned CTL formula ϕ′, as well as the original
formula ϕ. We then quantify the assertions over the values of the prophecy vari-
ables. If ϕ is a universal CTL formula, we universally quantify the prophecy
variables appearing in the set of states that satisfy ϕ on line 4 in Fig. 2(d). If ϕ
is an existential CTL formula, we existentially quantify the prophecy variables on
line 5. Predictions of the prophecy variables may lead to finite paths to appear
in the program, thus quantification must be restricted to states for which there
does exist a prophecy value leading to infinite paths. Hence, on line 2 we acquire
the precondition aEG satisfying the CTL formula entailing nontermination, that
is EGTrue for PD. The precondition aEG is then conjuncted with a to ensure
that the quantification of prophecy variables does not include finite paths gener-
ated due to invalid predictions of the prophecy variables. This is done according
to the polarity of the quantification (universal or existential). The assertion aθ is
then returned by QuantElim characterizing the set of states in which θ holds.

In the case that Path is false, the most immediate inner sub-formula would
then be a state formula. This indicates that we can indeed use a CTL model

26 B. Cook et al.

checker using ϕ′ and the original program P , as demonstrated on line 20. Upon
the return of ProveCTL∗ to its caller Verify, aθ will contain the precondition
for the most outer temporal property of the original CTL∗ formula θ. Now it is
only necessary to check if the precondition aθ is satisfied by the initial states of
the program to complete the verification of our CTL∗ formula. Finally, Path is
set to false, in order to carry out the above procedure again when necessary.

Theorem 3. If Verify(θ, P) returns true then P |= θ.

Proof. See TR [7], Appendix A.

We note that the implication in Theorem 3 is only in one direction. That is, failing
to prove that a property holds does not implicate that its negation holds (though
this might be proved by negating the formula, converting it to negation normal
form, and running our procedure on it). This incompleteness stems from the over-
approximation of path formulae by a corresponding ACTL formulae, as although
this over-approximation is checked over PD, PD does not determinize all paths.
It is impossible to completely determinize a program as this requires uncountable
branching (in the choice of prophecy variables). Countable nondeterminism is not
a sufficient technique in the context of nondeterministic nested determinization
of programs. For example, suppose that the prophecy variable value entails that
an external loop does not terminate. Now consider all possible options for number
of repetitions of the internal loop. In order to have a completely deterministic
program, we must prophesize an infinite sequence of finite natural numbers. The
number of such possible infinite sequences is uncountable.

5 Evaluation

In this section we discuss the results of our experiments with an implementation
of the procedure from Fig. 2(c). Our implementation2 is built as an extension to
the open source project T2, which uses a safety prover similar to Impact [24]
alongside previously published techniques for discovering ranking functions, etc. [9,
25] to prove both liveness and safety properties. The tool was executed on an
Intel x64-based 2.8 GHz single-core processor. The format in which we interpret
and parse a program’s commands can be found in [11].

We have drawn out a set of CTL∗ problems from industrial code bases. Exam-
ples were taken from the I/O subsystems of the Windows OS kernel, the back-end
infrastructure of the PostgreSQL database server, and the Apache web server.
CTL∗ allows us to express “possibility” properties, such as the viability of a
system, stating that any reachable state can spawn a fair computation. Addi-
tionally, we demonstrate that we can now verify properties involving existential
system stabilization, stating that an event can eventually become true and stay
true from any reachable state. For example, “OS frag. 1”, “OS frag. 3”, “PgSQL
2 The source-code of our implementation and our benchmarks are available under the

MIT open-source license at https://github.com/hkhlaaf/T2/tree/T2Star.

https://github.com/hkhlaaf/T2/tree/T2Star

On Automation of CTL* Verification for Infinite-State Systems 27

Program LoC Property Time(s) Res.

OS frag. 1 393 AG((EG(phi io compl ≤ 0)) ∨ (EFG(phi nSUC ret > 0)))) 32.0 ×
OS frag. 1 393 EF((AF(phi io compl > 0)) ∧ (AGF(phi nSUC ret ≤ 0)))) 13.2 �
OS frag. 2 380 EFG((keA ≤ 0 ∧ (AG keR = 0))) 28.3 �
OS frag. 2 380 EFG((keA ≤ 0 ∨ (EF keR = 1))) 16.5 �
OS frag. 3 50 EF(PPBlockInits > 0 ∧ (((EFG IoCreateDevice = 0) 10.4 �

∨ (AGF status = 1)) ∧ (EG PPBunlockInits ≤ 0)))

PgSQL arch 1 106 EFG(tt > 0 ∨ (AF wakend = 0)) 1.5 ×
PgSQL arch 1 106 AGF(tt ≤ 0 ∧ (EG wakend �= 0)) 3.8 �
PgSQL arch 1 106 EFG(wakend = 1 ∧ (EGF wakend = 0)) 18.3 �
PgSQL arch 1 106 EGF(AG wakend = 1) 10.3 �
PgSQL arch 1 106 AFG(EF wakend = 0) 1.5 ×
PgSQL arch 2 100 AGF wakend = 1 1.4 �
PgSQL arch 2 100 EFG wakend = 0 0.5 ×
Bench 1 12 EFG(x = 1 ∧ (EG y = 0)) 1.0 �
Bench 2 12 EGF x > 0 0.1 �
Bench 3 12 AFG x = 1 0.1 �
Bench 4 10 AG((EFG y = 1) ∧ (EF x ≥ t)) 0.5 ×
Bench 5 10 AG(x = 0 U b = 0) T/O –

Bench 6 8 AG((EFG x = 0) ∧ (EF x = 20)) 0.1 �
Bench 7 6 (EFGx = 0) ∧ (EFGy = 1) 0.5 ×
Bench 8 6 AG((AFG x = 0) ∨ (AFGx = 1)) 0.5 �

Fig. 4. Experimental evaluations of infinite-state programs drawn from the Windows
OS, PgSQL, and 8 toy examples. There are no competing tools available for comparison.

arch 1”, and “Bench 2” are verified using said properties, described in detail
in Sect. 1. We also include a few toy examples to further demonstrate further
expressiveness of CTL∗ and its usefulness in verifying programs.

Given that our benchmarks tackle infinite-state programs, the only existing
automated tool for verifying CTL∗ in the finite-state setting [18] is not applicable.
In Fig. 4 we display the results of our benchmarks. For each program and its
corresponding CTL∗ property to be verified, we display the number of lines of
code (LoC), and report the time it took to verify a CTL∗ property (Time column)
in seconds. We provide a “Res.” column which indicates the results of our tool.
A � indicates that the tool was able to verify the property. Likewise, an ×
indicates that the tool failed to prove the property. The symbol “–” in the result
column indicates that a result was not determined due to a timeout. A timeout
or memory exception is indicated by T/O. A timeout is triggered if verification
of an experiment exceeds 3000 seconds. Note that in various cases, we verify the
same program using a CTL∗ property and its negation. Our tool thus allows us
to prove each of the properties as well as disprove each of their negations.

Our experiments demonstrate the practical viability of our approach. Our
runtimes show that our tool runs well within the range of performance previ-
ously exhibited by specialized tools such as as [3,8,10–12], which can only verify
significantly less expressive properties over infinite-state programs. Our tool has
successfully both verified and invalidated CTL∗ properties corresponding to their

28 B. Cook et al.

expected results for all but one of the benchmarks. This is due to the afore-
mentioned limitation, that is, our countable nondeterministic determinization
technique is not complete.

6 Concluding Remarks

We have introduced the first-known fully automatic method capable of proving
CTL∗ of infinite-state (integer) programs. This allows us, for the first time ever,
to automatically verify properties of programs that mix branching-time and
linear-time temporal operators. We have developed an implementation capable
of automatically proving properties of programs that no tool could previously
prove. The method underlying our tool is one that uses a symbolic representation
capable of facilitating reasoning about the interaction between sets of states and
sets of paths.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoret. Comput.
Sci. 82, 253–284 (1991)

2. Beyene, T., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based app-
roach to solving games on infinite graphs. In: POPL 2014, pp. 221–233. ACM
(2014)

3. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn
clauses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 869–
882. Springer, Heidelberg (2013)

4. Bjørner, N.S., Browne, A., Colón, M.A., Finkbeiner, B., Manna, Z., Sipma, H.B.,
Uribe, T.E.: Verifying temporal properties of reactive systems: a STeP tutorial.
Form. Methods Syst. Des. 16(3), 227–270 (2000)

5. Bodden, E.: A lightweight LTL runtime verification tool for Java. In: OOPSLA
2004, pp. 306–307. ACM (2004)

6. Cook, B., Khlaaf, H., Piterman, N.: Fairness for infinite-state systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 384–398. Springer, Heidelberg
(2015)

7. Cook, B., Khlaaf, H., Piterman, N.: On automation of CTL* verification for
infinite-state systems. Technical report. University College London (2015). http://
heidyk.com/publications/CAV15.pdf

8. Cook, B., Koskinen, E.: Reasoning about nondeterminism in programs. In: PLDI
2013, pp. 219–230. ACM (2013)

9. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795,
pp. 47–61. Springer, Heidelberg (2013)

10. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that
programs eventually do something good. In: POPL 2007, pp. 265–276. ACM (2007)

11. Cook, B., Khlaaf, H., Piterman, N.: Faster temporal reasoning for infinite-state
programs. In: FMCAD 2014, pp. 16:75–16:82. FMCAD Inc. (2014)

12. Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: POPL
2011, pp. 399–410. ACM (2011)

http://heidyk.com/publications/CAV15.pdf
http://heidyk.com/publications/CAV15.pdf

On Automation of CTL* Verification for Infinite-State Systems 29

13. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, Boston (2001)

14. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never”; revisited: on branch-
ing versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

15. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of pro-
grams. SIAM J. Comput. 29(1), 132–158 (1999)

16. Emerson, E.A., Lei, C.-L.: Modalities for model checking: branching time logic
strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)

17. Emerson, E.A., Sistla, A.P.: Deciding branching time logic. In: STOC 1984, pp.
14–24. ACM (1984)

18. Griffault, A., Vincent, A.: The Mec 5 model-checker. In: Alur, R., Peled, D.A.
(eds.) CAV 2004. LNCS, vol. 3114, pp. 488–491. Springer, Heidelberg (2004)

19. Gupta, A., Henzinger, T.A., Majumdar, R., Rybalchenko, A., Xu, R.-G.: Proving
non-termination. SIGPLAN Not. 43, 147–158 (2008)

20. Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor.
Comput. Sci. 331(2–3), 397–428 (2005)

21. Lamport, L.: “Sometime” is sometimes “Not Never”: on the temporal logic of
programs. In: POPL 1980, pp. 174–185. ACM (1980)

22. Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic strengthening for shape
analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 419–
436. Springer, Heidelberg (2007)

23. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety, vol. 2.
Springer, Heidelberg (1995)

24. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

25. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE,
Turku, Finland (2004)

26. Reynolds, M.: An axiomatization of full computation tree logic. J. Symbolic Logic
66(3), 1011–1057 (2001)

27. Song, F., Touili, T.: Pushdown model checking for malware detection. In: Flana-
gan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 110–125. Springer,
Heidelberg (2012)

	On Automation of CTL* Verification for Infinite-State Systems
	1 Introduction
	2 Preliminaries
	3 Overview
	4 Checking CTL* Formulae
	4.1 ProveCTL*

	5 Evaluation
	6 Concluding Remarks
	References

