Verifying Linearizability of Intel® Software
Guard Extensions

Rebekah Leslie-Hurd' ™) Dror Caspi!, and Matthew Fernandez?

! Intel Corporation, Hillsboro, USA
{rebekah.leslie-hurd,dror.caspi}@intel.com
2 NICTA and UNSW, Sydney, Australia
matthew.fernandez@nicta.com.au

Abstract. Intel® Software Guard Extensions (SGX) is a collection of
CPU instructions that enable an application to create secure contain-
ers that are inaccessible to untrusted entities, including the operating
system and other low-level software. Establishing that the design of
these instructions provides security is critical to the success of the fea-
ture, however, SGX introduces complex concurrent interactions between
the instructions and the shared hardware state used to enforce secu-
rity, rendering traditional approaches to validation insufficient. In this
paper, we introduce Accordion, a domain specific language and compiler
for automatically verifying linearizability via model checking. The com-
piler determines an appropriate linearization point for each instruction,
computes the required linearizability assertions, and supports experi-
mentation with a variety of model configurations across multiple model
checking tools. We show that this approach to verifying linearizability
works well for validating SGX and that the compiler provides improved
usability over encoding the problem in a model checker directly.

1 Introduction

When a programmer writes code to manipulate a computer, they have a mental
model of the machine, involving a small set of registers with processors execut-
ing assembly instructions atomically. The reality of a modern multiprocessor is
significantly more complex. The exposed registers are a small component of the
internal processor state and execution of a single assembly instruction is not
necessarily atomic with respect to other processors. This internal concurrency is
particularly complex in the new Intel® Software Guard Extensions (SGX) [17],
which introduce security critical internal processor state that is shared between
privileged and user-mode instructions.

SGX is a collection of CPU instructions that enable an application to create
secure containers within the application address space. These secure containers,
called enclaves, provide strong integrity and confidentiality guarantees for the
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code and data pages that reside inside the enclave. Once placed in an enclave,
memory pages are inaccessible to untrusted entities, including the operating
system and other low-level software. SGX allows programmers to isolate the
security-critical portion of their application, for example, to harden applications
against vulnerabilities [15] or to protect their computation in an untrusted envi-
ronment like the cloud [1].

To maximize compatibility with the existing software ecosystem, the SGX
instructions work in tandem with the operating system (OS), trusting the OS
to manage the system resources associated with enclave pages, such as page
table mappings, but verifying that the OS never breaks the confidentiality and
integrity guarantees of SGX. To this end, SGX tracks metadata for each enclave
page to ensure that every access is secure. Accesses to this data structure, which
is shared across all logical processors, must be appropriately synchronized to
maintain security, while still maximizing parallelism for performance.

Finding the appropriate line between security and performance has been a
particularly difficult aspect of the SGX architecture design and was a source of
bugs that could have been devastating for the feature had they not been found
soon enough. Applying formal verification techniques early in the design process
enabled us to find pernicious concurrency bugs and to increase our confidence
that we were not overlooking a critical error in the design. Though formal verifi-
cation is commonly used at Intel® for arithmetic and protocol validation, SGX
has more in common with software algorithms where multiple threads access a
shared data structure and is not a natural fit for the hardware verification tools
and methodologies that are currently in place.

Identifying this similarity to software algorithms led us to linearizability as
a correctness condition. Linearizability [14] is a classic approach to reasoning
about concurrent accesses to a shared data structure. A system is linearizable
if each operation (in our case, instruction) appears to take effect atomically at
some moment in time between its invocation and response, called its lineariza-
tion point. In a linearizable system, we cannot observe the difference between a
sequentialized trace where each instruction executes atomically at its lineariza-
tion point and a real trace that arises in the concurrently executing system.

An important consequence of linearizability is that we can reason about
operations on linearizable concurrent data structures as if they were atomic. As
such, we can divide our verification challenge into two tasks: first, to prove that
the SGX instructions uphold the desired security guarantees in a sequential (or
single threaded) setting; and second, to prove that the system is linearizable. We
have verified the sequential correctness of the instructions using DVF [13], but
in this paper we focus on the second task, proving that SGX is linearizable.

We employ a standard technique for model checking linearizability [9,23]
using a domain-specific heuristic for placing linearization points. Scalability
presents a major challenge in our setting—there are 22 instructions that share
the concurrent data structure, some of which contain as many as 50 inter-
leaving points—and design changes during the early stages of development are
frequent. The primary contribution of this paper is a domain specific language
and compiler that supports automatic linearizability checking while providing
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fine-grained control over the generated model to improve scalability without the
overhead of creating multiple models by hand. A secondary contribution of the
paper is a demonstration of our approach on the industrial case study of SGX.
We first describe how to prove that SGX is linearizable directly using model
checking and then show how this process is improved by the use of Accordion.
With this approach, we identified previously undiscovered concurrency bugs in
a design that had already been intensively reviewed.

The remainder of the paper is organized as follows. In Sect. 2, we give an
overview of the internal hardware data structures used by SGX, as well as the
SGX instructions, to provide a basis for understanding the examples in the
later sections. Section 3 describes our formal model of SGX in the iPave model
checker and illustrates an architecture bug that was caught as a violation of
linearizability. Section 4 introduces Accordion, our domain specific language and
compiler for automatically proving linearizability. The remaining sections discuss
related work (Sect.5) and provide a summary (Sect. 6).

2 SGX Overview

SGX defines new processor internal state, outlined in Sect. 2.1, and a collection
of instructions for creating, executing, and manipulating enclaves, covered in
Sect. 2.2. In this paper, we focus on the instructions and processor state that
directly affect the integrity and confidentiality guarantees of SGX, and thus,
are particularly interesting targets of our linearizability analysis. For a complete
overview of SGX, see the Programmer’s Reference Manual [17].

2.1 Enclave Page Cache

The Enclave Page Cache (EPC) is a protected area of memory used to store
enclave code and data as well as some additional management structures intro-
duced by SGX. Each page of EPC memory has an associated entry in the Enclave
Page Cache Map (EPCM), which tracks metadata for that page. The SGX
instructions use this metadata to ensure that EPC memory pages are always
accessed in a secure manner. The EPCM is also used in the address translation
lookup algorithm for enclave memory accesses, providing a secure additional
layer of access control on top of existing mechanisms such as segmentation, pag-
ing tables, and extended paging tables [16].

The EPCM is managed by the processor as part of SGX operation and is
never directly accessible to software or to devices. The format of the EPCM is
microarchitectural and implementation specific, but conceptually each EPCM
entry contains the following fields:

VALID Unallocated EPC pages are considered to be invalid. Pages in this state
cannot be read or written by enclave threads and can only be operated on by
allocation instructions that specifically require an invalid page as an input.
If the VALID bit is not set, the remaining fields should not be examined.
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OWNER An enclave instance is identified by its enclave control structure, which
is a special kind of EPC page called an SECS. Each EPC page is associated
with a single enclave instance. We track membership in an enclave instance
through the OWNER field in the EPCM, which points to the SECS page of the
enclave to which the page belongs.

PAGETYPE The PAGETYPE field describes the kind of data that is stored in the EPC
page. In this paper we discuss four types of enclave page contents: regular
enclave code or data (REG), thread control structures (TCS), enclave control
structures (SECS), and data that has been deallocated but not yet reclaimed
(TRIM).

LINADDR Enclave pages are accessible through a single linear address that is fixed
at allocation time. SGX ensures that all accesses to an EPC page are through
the appropriate linear address by comparing the address of the access to the
stored LINADDR value.

RWX EPC page permissions may be set independently from page table and
extended page table permissions, resulting in the minimal common access
rights. The RWX bits of the EPCM track these supplementary permissions.

PENDING When an EPC page is dynamically added to a running enclave, the
enclave code approves the addition of the new page as a protection mecha-
nism against malicious or buggy systems software (see Sect. 2.2). During this
intermediate period when the page has been allocated but not approved, the
PENDING bit is set to prevent enclave code from accessing the page.

MODIFIED When the EPCM attributes of a page are dynamically modified by
systems software, such as the PAGETYPE, the enclave code acknowledges the
change using a process similar to dynamic EPC page allocation. In this case,
the MODIFIED bit is set to prevent enclave code from accessing the page.

See Sect. 2.2 for a description of how these fields are manipulated by the enclave
instructions.

Figure 1 illustrates how the EPCM enforces security on enclave page accesses,
even in the presence of incorrect OS behavior. In this example, the OS has
incorrectly mapped a page belonging to enclave B to enclave A, but any attempt
by A to access the page will be prevented by the SGX hardware due to the
mismatch in the EPCM OWNER field.

2.2 Instructions

A summary of the SGX instructions is shown in Table 1. The remainder of this
section will examine the behavior and usage of each instruction in more detail.

Enclave Creation. The enclave creation process begins with ECREATE, a super-
visor instruction that allocates an enclave control structure from a free EPC
page. As part of invoking the instruction, systems software selects the desired
location in the EPC for the enclave control structure and a linear address range
that will be associated with the enclave. A successful call to ECREATE sets the
VALID bit for the page, sets the OWNER pointer to itself, sets the PAGETYPE to
SECS, and the EPCM RWX bits to zero.
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Enclave A System
Virtual Memory Page EPC EPCM
—— Tables
\» /—> EPC PAGE W =1 OWNER=A
PAGE A2 Mapping
Bogus EPC PAGE X <1 OWNER=B
Mapping
Enclave B
Virtual Memory
_/—P Mapping
PAGE B1 EPC PAGE Y <t OWNER=B
PAGE B2 ~—
Mapping

Fig. 1. Security protection in SGX. Systems software controls enclave memory with
traditional structures like page tables, but cannot override the SGX security guarantees.
Here, the OS maps enclave A’s virtual address A2 to physical page X, which belongs to
enclave B. Before allowing a memory access to X, the hardware checks the OWNER field,
issuing a fault if the access does not come from enclave B. Here, this check prevents an
unsecure access to X through the illegal mapping A2.

Enclave Initialization and Teardown. Once the SECS has been created, the
enclave is initialized by copying data from normal memory pages into the EPC
using EADD. A successful call to EADD sets the VALID bit for the page, associates
the page with the specified enclave and sets the OWNER pointer to the appropriate
SECS, sets the PAGETYPE to the specified type, and initializes the RWX bits. To
destroy an enclave, system software deallocates all of its pages using EREMOVE.

Entering and Exiting an Enclave. SGX supports a standard call and return
execution pattern through the instructions EENTER and EEXIT. The EENTER
instruction puts the processor in a new enclave execution mode whereas EEXIT
exits enclave mode and clears any enclave register state.

Dynamic Memory Management. Once an enclave is running, dynamic
changes to its memory are performed as a collaborative effort between systems
software and the enclave. The OS may allocate a new page (EAUG), deallocate
a page or convert a REG page into a TCS (EMODT), and restrict the EPCM per-
missions available to the enclave (EMODPR). Without checks in place within the
enclave, this could provide a vector for systems software to corrupt enclave data.
To address this concern, we introduce the enclave-mode instruction EACCEPT,
which an enclave executes to approve a change that was made by the OS.
A successful call to EACCEPT finalizes the change by clearing the PENDING and
MODIFIED bits. We also enable the enclave to perform dynamic changes itself
where possible to reduce the number of enclave/kernel transitions. SGX cur-
rently supports enclave-mode permission extension (EMODPE) and a variant of
EACCEPT that supports initialization of a newly allocated page (EACCEPTCOPY).
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Table 1. Summary of the SGX instruction set. The table describes the instruction
name, the processor mode from which the instruction should be called (supervisor,
user, or enclave mode), and the usage of the instruction.

Name Mode Description

EACCEPT enclave Approve a dynamic memory change
EACCEPTCOPY | enclave Approve and initialize a dynamically allocated page
EAUG supervisor | Dynamically allocate a REG page

EADD supervisor | Allocate a REG or TCS page

ECREATE supervisor | Allocate SECS page and initialize control structure
EENTER user Call an enclave function

EEXIT enclave Return from enclave execution

EMODPE enclave Extend the EPCM permissions of a page
EMODPR supervisor | Restrict the EPCM permissions of a page

EMODT supervisor | Change the type of a page

EREMOVE supervisor | Deallocate an enclave page

3 Proving SGX Is Linearizable in iPave

We encode linearizability as a model checking problem by inserting an assertion
at the linearization point of each instruction. The assertion compares the current
state of the EPCM (reached by some concurrent execution) with the known value
that the EPCM would hold in a sequential execution. Any mismatch between
the expected state and the actual state is caught by the model checker, and indi-
cates that the instruction has observed an update by a concurrently executing
instruction (that is, the instruction is not linearizable at that point). The lin-
earization points are easy to identify in SGX because the instruction definitions
all follow a similar pattern:

Pre-checking of parameters
Lock acquisition(s)

EPCM and other state checks
EPCM and other state updates
Lock release(s)

G o=

There is occasionally overlap between these steps, but it is always the case that
a write is the last access to the EPCM and that this is a location where a correct
SGX instruction implementation will have a linearization point.

We determine the appropriate linearization assertion on a per instruction
basis by examining the EPCM state on which the instruction depends. We will
see examples of this in the coming sections. In general, any EPCM value read by
the instruction should not change between the time of the read and linearization
point. The value of any EPCM field written by the instruction should not change
between the time of the write and the linearization point. In some cases, track-
ing the value that was written requires the use of logic variables to remember
intermediate values of the state.
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3.1 Model Overview

We construct our formal model of SGX in iPave [10], a graphical specification
language and SMT-based bounded model checker built on top of Boolector [4].
Similar to other modeling languages, an iPave model is specified as a finite
state machine with guarded transitions between states. An example instruction
specification in iPave is shown in Fig. 2. We can see that the EMODPE instruction
shown in the figure follows the standard pattern, performing pre-checks on the
EPCM to see if the running enclave may access the target page, acquiring a
lock to synchronize accesses to the EPCM, checking that the state of the page
is appropriate for the operation, and finally updating the RWX bits of the page.

else_guard. N
. . . END
(Epcmvalid == true) && lock_acquisition_failed
(EpcmMyEnclave == true) && { check If EPC Page Is In Use 5 —
(EpcmPageType == REG) (Try to Acquire Lock) nop
; [+]

> +
EMODPE nop . Mark Page as Not In Use
START (Release Lock)
(Epcmvalid == true) 8&

(EpcmMyEnclave == true) &&
(EpcmModified == false) &&
(EpcmPending == false) &&

(EpcmPageType == REG) epcm_checks_failed_guard

; ; —
AL TmpEpcmR[j] = EpcmR; nop

TmpEpcmW[j] = EpcmW;

TmpEpcmX[j] = EpcmX;

(Epcmvalid == false) |
(EpcmMyEnclave == false) ||
(EpcmModified == true) ||
(EpcmPending == true) |
I
Il
I

linearization_checks_succeed_guard
(EpcmPageType != REG)
(TmpEpcmR[j] != EpcmR)

EpcmR = EpcmR | ThrdChooseBit@[j];
Process Page EpcmW = EpcmW | (ThrdChooseBit1[j] &
(TmpEpcmW[j] != Epcmi) ThrdChooseBite[]]);

(TmpEpcmX[j] != EpcmX) EpcmX = EpcmX | ThrdChooseBit2[j];
5

nop

Fig. 2. Simplified EMODPE instruction specification in iPave. The model begins execu-
tion in the EMODPE START state in the upper left-hand corner of the diagram. Circles
represent start or end states, rounded boxes represent intermediate states in the model’s
execution, and arrows represent transitions. Arrows may be labeled with guards and
actions of the form guard ; actiomnj; ...; action,;, which will only be executed if
the guard is true. Either the guard or the action sequence may be empty; here the
empty action sequence is represented by the effectless nop. Linearization checks and
logic variable assignments are shown in bold.

The primary purpose of the iPave model is to verify that the SGX accesses
to the EPCM are linearizable. To keep the problem tractable, the content of the
model includes the minimum state necessary to describe the interaction between
the instructions and the EPCM. The modeled state includes:
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— A single concrete EPCM entry and its fields (see Sect. 2.1).

— An abstract representation of “the other” EPCM entries on the machine.
Accesses to EPCM entries by SGX instructions are symmetric, so we employ
this abstraction for improved performance.

— A single concrete enclave. Threads may enter this enclave and execute instruc-
tions on pages that belong to this enclave.

— An abstract representation of “the other” SGX enclaves.

— An array of logical processor states, which includes per hardware-thread data
such as whether the processor is executing in enclave mode (and thus, allowed
to access EPC pages) and other microarchitectural state.

— Metadata used to track model parameters and write assertions.

To improve the performance of the model checker, we initialize the state to an
arbitrary reachable configuration, rather than a zeroed initial state. Though not
all reachable states are known a priori, there is an easily calculable subset of
the reachable states that can be used for initialization. In our experience, this
significantly reduces the steps required to find interesting bugs. All of the SGX
instructions described in Sect. 2.2 are modeled, as well as other relevant events
such as memory accesses by enclave and non-enclave code.

3.2 Linearizability Assertions

We add linearizability checks to our iPave model according to the algorithm
described at the beginning of the section, but optimize the insertion of the lin-
earization point to reduce the number of possible interleavings. Our optimization
is sound, but makes assumptions about the other instructions, making the app-
roach less ideal than the general algorithm that we implement in Accordion.
Examining Fig. 2, we see that the linearization checks are performed immedi-
ately before the state update to the RWX bits, avoiding the need to introduce an
additional state after the RWX assignment. Immediately before the linearization
point, we save the value of the RWX bits into logic variables. The intermediate
state Process Page serves as a preemption point where other instructions could
access the EPCM, after which we insert the linearization checks. In the case of
EMODPE, the page must be valid, not pending, not modified, have the REG type,
and belong to the currently running enclave. Furthermore, the values contained
in the EPCM RWX bits should match the values saved in the logic variables. No
other aspects of the state are accessed by the instruction, and thus no other
fields need to be checked by our assertion.

3.3 Results

Our linearizability model in iPave uncovered architectural concurrency bugs
that had not been discovered by manual inspection or testing, despite inten-
sive review. We were also able to confirm a number of previously discovered
bugs and increase overall confidence in the architecture design. Formal verifica-
tion using iPave has been integrated into the SGX development and validation
flow, where such methods were not previously common practice.
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As an example of the kind of race that this methodology can detect, consider
again the EMODPE example from Fig. 2. In that example, the PAGETYPE and OWNER
of the page being modified by the instruction are checked twice: once before the
EPC page lock is taken and once afterward. In an earlier version of the instruction
definition, shown in Fig. 3, the OWNER is only checked before the lock acquisition
and the PAGETYPE is only checked afterward. Due to an interaction with the
EREMOVE instruction that is possible when a page has the type TRIM, this design
allowed EMODPE to change the permissions of a page that did not belong to the
running enclave, a clear violation of the SGX security guarantees. Though the
bug might seem straightforward, it depends on a particular interleaving that is
not easily triggered through testing.

(* Check security attributes of the EPC page *)

IF ((EPCM(DS:RCX).VALID = 0) or (EPCM(DS:RCX).OWNER != CR_ACTIVE_SECS))
Then #PF(DS:RCX); FI;

(* Check the EPC page for concurrency *)

IF (EPC page in use by another SGX2 instruction) Then #GP(0); FI;

(* Re-check security attributes of the EPC page *)

IF ((EPCM(DS:RCX) .PENDING '= 0) or (EPCM(DS:RCX).MODIFIED != 0) or

(EPCM(DS:RCX) .PAGETYPE != REG) or (EPCM(DS:RCX).LINADDR != DS:RCX))

Then #PF(DS:RCX); FI;

Fig. 3. Original EMODPE specification excerpt (Simplified)

The race condition found using iPave is shown in Table2. The initial state
for the model is that the concrete EPCM page belongs to the running enclave
and is valid, not pending, not modified, and of the TRIM type. Examination of
the race case revealed the root cause: the EPCM constraints in EMODPE were not
sufficient to prevent the page from being removed during the instruction, nor
was the removal detected as a failure mode of the instruction. The additional
checks in the model shown in Fig. 2 prevent this race.

4 Automating the Process with Accordion

The iPave model was sufficient to demonstrate linearizability for a reasonably
concrete model of SGX, but the modeling language and toolchain did not provide
us with all of the features that we would like for our architecture explorations.
We found that the graphical nature of the input language created a heavy trans-
lation burden from the original SGX specification. The translation process was a
frequent source of modeling errors, and the disconnect between the specification
and modeling language made it difficult for the architects to understand and
evaluate the accuracy of the model. A further source of difficulty was the lack of
abstraction mechanisms, such as functions, in the language. As a result, it was
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Table 2. EMODPE race example

Step | Logical processor X Logical processor Y
Start EMODPE
Check VALID and OWNER fields

Start EREMOVE

Check PAGETYPE and MODIFIED fields
Remove page; set VALID=0

End EREMOVE

Allocate page to another enclave with
VALID=1, MODIFIED=0, PENDING=O,
PAGETYPE=REG

N OO e W N

Acquire exclusive access to page
Perform post-lock EPCM checks

10 | Continue on another enclave’s page!

not easy to experiment with different SGX configurations (number of simultane-
ously running threads, number of memory pages, instructions to include in the
verification run), and modifications required extensive manual effort.

To address the gaps in iPave for our usage, we designed and implemented
Accordion, a domain specific language and compiler for proving linearizability.
We focused on the following goals in the design of the language:

Mirror Existing Design Specification Language. Instruction set extensions
are typically specified in a semi-formal notation that is not machine check-
able. The Accordion language should match this syntax as closely as possible
so that architects can comprehend the models easily, while also providing a
machine checkable format with a defined semantics. The ultimate goal is that
Accordion will supplant the informal specification language for SGX.

Support Rapid Prototyping. Design changes are frequent as a feature is
extended and optimized. Bugs must be found as early in the design process
as possible for verification to be worthwhile. Synchronization behavior is a
particular source of experimentation, so the language should support a variety
of locking primitives and should make varying the size and location of atomic
blocks simple for the designer.

Enable Designers to Leverage a Variety of Analysis Tools. No tool con-
sistently yields superior results. A single source avoids translation errors and
provides significant time savings.

Support Experimentation within a Particular Analysis Tool. Model
checkers and other verification tools can be sensitive to the size of the input
problem. When analyzing a particular design, the validator needs to exper-
iment with the configuration of the model to produce results in a timely
fashion.
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Automate Linearizability Analysis. Calculate the linearization points and
generate linearizability assertions automatically in the compiler.

Facilitate Experimentation with Different Interleaving Semantics. In
our experience, full interleaving semantics does not scale to models of the
complete SGX architecture. To gain traction in our analysis, we would like
to evaluate a collection of models with a variety of interleaving semantics, for
example, analyzing atomic versions of enclave initialization instructions with
fully interleaved versions of the dynamic memory management instructions.

In the remainder of this section, we will show how Accordion meets these goals by
providing an overview of the language syntax, describing the compiler implemen-
tation in Haskell [18], and sketching the algorithm for automatically calculating
linearization points and linearizability checks.

4.1 Language Syntax

The Accordion language supports a basic set of types including physical addresses,
Boolean values, and unsigned integers. SGX data structures like the EPCM are
built into the language as well, but ultimately we would like to introduce user-
defined data structures to maximize extensibility to future hardware features. The
expression language contains constants, variables, standard Boolean and arith-
metic operations, structure accesses (for reading SGX data structures), and an
address validation operation that performs SGX-specific checks on a physical add-
ress, such as membership in the EPC. The statement language includes variable
assignments, conditionals, assertions, mutex and reader/writer lock acquire and
release operations, abort statements, structure updates (for writing to SGX data
structures), and atomic blocks (used to override the default grouping of state-
ments into rules in the compiler; see Sect. 4.2).

Figure 4 shows the code for the EMODPE instruction in Accordion syntax and
is analogous to the iPave specification shown in Fig.2. As we will see in the
next section, Accordion is implemented as an embedded domain specific lan-
guage in Haskell, so aspects of the Haskell syntax are mixed with the Accordion
syntax in the example. The instruction specification is written as a function
with four arguments, only three of which are used by EMODPE. The argument
cr_active_secs is a pointer to the enclave that is currently running, rcx con-
tains the physical address of the EPC page to be modified, and rbx contains
a data structure called a secinfo that specifies the desired permissions for the
target EPC page. In hardware, and in the model produced by the Accordion
compiler, these instruction parameters are provided implicitly as part of the
system state.

Those familiar with Haskell will notice that the code is written in a monad
using do-notation, but it is not essential to understand this mechanism in order
to comprehend the code. The instruction content begins on Line 3 with a check
that the target EPC page is accessible (valid, regular, and owned by the cur-
rently running enclave). If the check fails, execution will abort with page fault
semantics (#PF). If the check succeeds, the instruction will continue with the
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1 emodpe :: SGXlInstruction

2 emodpe cr_active_secs rbx rcx - = do

3 ift ((!)((epem rcx).valid) ||

4 (epcm rex).pagetype != REG ||

5 (epcm rcx ).owner != cr_active_secs) (do

6 (#)PF rcx)

7  (epcm rcx ).mutex.acquire() (do

§ (4GP 0)

9 ift ((!)(epem rcx).valid) || (epcm rcx).pt != REG ||
10 (epcm rex).pending || (epem rex).modified ||
11 (epcm rex).owner != cr_active_secs) (atomic $ do
12 (epecm rex ). mutex.release ()

13 (#)PF rcx)

14  (epcm rcx).r =: (epcm rcx).r || (secinfo rbx).r

15  (epcm rex).w =: (epcm rex).w || (secinfo rbx).w

16  (epcm rex).x =: (epcm rex).x || (secinfo rbx).x

17 (epcm rcx).mutex.release ()

18 end_of_flow

Fig. 4. Simplified EMODPE specification in accordion.

next statement at the leftmost level of indentation (Line 7). The rest of the
code follows a similar pattern of execution. Except for the occurrences of do, $,
and some case mismatches, the syntax shown here is very close to the informal
specification language used by the SGX architects.

4.2 Compiler Implementation

We implemented Accordion as an embedded domain specific language (DSL) in
Haskell [11]. When writing an embedded DSL, the language designer encodes the
abstract syntax tree of the new language directly in the host language, allowing
the designer to take advantage of the parser and type system of the host language
in their DSL. This allowed us to get a version of Accordion running much faster
than would have been possible with a standalone DSL. The disadvantage to using
an embedded DSL is that there are certain syntactic aspects of the host language
that cannot be overridden. For example, we cannot use the same symbol for
assignment in Accordion as in the SGX specification, :=, because of the special
treatment of colon in Haskell.

Model Generation. Our compiler supports two back-ends: one for generat-
ing Murphi syntax—which is compatible with the explicit state model checker
CMurphi [7] and its distributed counterpart PReach [3]—and one for generating
input to the symbolic bounded model checker SAL [2]. We found that running
SAL with a relatively low bound performed well on many of our examples and
was useful for finding early modeling bugs. PReach was slow to run but for small
enough models (with either an abstract definition of the SGX instructions or a
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model that does not include the full instruction set) was able to give us a full
proof of linearizability.

The full SGX architecture without any simplifying abstractions is too large
to be fully verified, which is why it is so important for the compiler to provide
support for generating models with a variety of configurations. We provide con-
trol over the number of threads, the number of memory pages, and the set of
instructions to include in the generated model with compile time flags. Interleav-
ing semantics are also specified at compile time on a per instruction basis. By
default, every statement in an Accordion program becomes a rule in the result-
ing model. Sometimes, we are interested in evaluating the concurrent interaction
between two or three instructions at this level, but are not interested in ana-
lyzing the initialization instructions that are necessary to drive the model into
an interesting state. In those cases, we would compile the specification with full
interleaving semantics for the instructions of interest but with atomic semantics,
where the entire instruction becomes a single model transition, for the rest. The
DSL also provides an atomic primitive for concurrency control between these
extremes. Figure4 shows an example of this primitive on Line 11, which will
cause the lock release statement on Line 12 and the abort statement on Line 13
to compile to a single model checker rule.

Linearizability Inference. As discussed in Sect. 3, the SGX instruction defin-
itions follow a common pattern that makes the location of the linearization point
clear from a cursory inspection. In fact, this pattern is predictable enough that
it can be computed, along with the precise set of checks that must be satisfied
in order for the instruction to be linearizable.

Calculating the linearization point is relatively straightforward. We perform
a backward walk through the control flow graph of the instruction, skipping
past any abort statements (end_of flow or a fault) or lock releases, until an
SGX state update is found. We insert the linearization point here, after the final
state update that the instruction performs. In our EMODPE example from Fig. 4,
the linearization point would be placed in between Lines 16 and 17.

Once the linearization point has been identified, the compiler computes the
assertion that should be placed there in the generated code. For this analysis, the
compiler performs a forward walk over the control flow graph of the instruction,
accumulating assumptions based on the portions of the SGX state that the
instruction reads or writes. In Line 3 of EMODPE, for example, the instruction
checks that the VALID bit is set, that the PAGETYPE is REG, and that the OWNER
of the page matches the running enclave. This will generate an assertion that
checks for that scenario at the linearization point. If another thread has modified
the VALID bit, PAGETYPE, or OWNER of the page in the mean time, the assertion
will fail. The full linearization assertion for EMODPE is:
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assert( (epcm rex).valid A (epcm rex).pagetype = REG A
(epcm rex).owner = cr_active_secs A
()(epem rex).pending A (!)(epem rex).modified A
(epcm rex).r = ((epem rex).r’ || (secinfo rbx).r) A
(epcm rex).w = ((epem rex).w’ || (secinfo rbx).w) A
(epcm rex).x = ((epem rex).x” || (secinfo rbx).x) )

As outlined in Sect. 3, this assertion checks that any state accessed by the instruc-
tion does not change between the time of the access and the linearization point.
The values r’, w’, and x’ in the example are logic variables used to track the
intermediate value of the EPCM.

Recall that the buggy version of EMODPE discussed in Sect. 3.3 checked the
page owner before acquiring the lock but not afterward and only checked the
page type afterward. This allowed the page to be removed and assigned to a
different owner, without the ownership change being caught by the instruction.
We can see that these automatically generated linearization assertions would
catch this error, by identifying the requirement that the page owner remain
unchanged from the moment of the first read until the linearization point.

Results. The models produced by the Accordion compiler are able to replicate
the bugs that were found both by inspection and by formal verification using
iPave. By making use of Accordion’s model configuration facilities, we are able
to construct experiments that find bugs in a matter of minutes and complete a
total verification for a subset of instructions in a matter of hours, as opposed to
the many hours or even days that iPave would require. These models are by no
means equivalent, but for design-time analysis of new instructions the immediate
feedback provided by the Accordion models is more useful than a long-running
exhaustive verification. We can of course perform a full verification of SGX using
Accordion as well.

No new bugs were found using Accordion because the SGX architecture was
largely stable by the time our work on Accordion was complete. However, there
are many ongoing projects within the SGX architecture team that would benefit
from the sorts of analysis that Accordion provides.

5 Related Work

Model checking linearizability is not itself a new idea. Our algorithm for check-
ing linearizability using a shadow state is equivalent to the algorithm for veri-
fying commit-atomicity in [9]. In our case, we are able to calculate the shadow
state within the Accordion compiler and generate the appropriate linearizability
checks, avoiding the need to explicitly track the shadow state in the generated
model. Much of the other work on linearizability to date has focused on gen-
eral purpose concurrent data structures, such as lists [6,22,24]. There are also
tools for automatically proving linearizability, such as CAVe [23] and Line-Up [5].
With SGX, our domain specific knowledge allows us to prove linearizability with
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a simpler approach, using off-the-shelf tools. We focus our efforts on the model
generation code, which supports experimentation with a variety of tools and
model configurations. Unlike other tools, Accordion provides fine grained con-
trol over the interleaving semantics in the generated model, allowing for a great
deal of control over the possible schedules.

Similar to our work, CHESS [20] tackles the challenge of finding concurrency
bugs in large systems that may not be amenable to full verification. The tool
uses a happens-before analysis to analyze the concurrent execution of a system
and exhaustively explores all interleavings in the program. This approach is not
ideal for SGX because we do not use a standard set of concurrency primitives
in our implementation. CHESS achieves scalability by bounding the number of
context switches that may occur in a particular run of the system and by scoping
the context switches to an area of interest in the program. These techniques for
improving scalability would likely work well in our problem domain where races
tend to involve a small number of context switches and where we have a strong
sense for where races are likely to occur.

The Copilot DSL [21] is similar to our work on Accordion in that it is also
embedded in Haskell and provides multiple formal verification back-ends. One
back-end that Copilot compiles to is the Haskell SBV library [8], which supports
reasoning about Haskell programs using SMT. This approach would be a valuable
extension to Accordion. Currently our sequential verification proofs which use
SMT and our linearization work using model checking are not connected via the
same source. The two projects differ in the domain targeted by the DSLs: Copilot
focuses on run-time monitoring for hard real-time programs, an area with very
different considerations than SGX design. Other domain specific languages for
hardware design exist, such as Kansas Lava [12] and Hawk [19], but these target
low-level circuit designs rather than high-level features like SGX.

6 Summary

This paper introduced our approach to verifying SGX, a novel collection of hard-
ware instructions for providing strong integrity and confidentiality guarantees in
a highly concurrent setting. We identified linearizability as the relevant correct-
ness condition for analyzing concurrent interactions between SGX instructions
and described an algorithm for demonstrating linearizability using off-the-shelf
model checking tools. Our work showed that this approach is capable of finding
critical security bugs and underscored the importance of performing formal veri-
fication early in the design process of complex features like SGX. Building on the
success of our verification in iPave, we outlined the development of the Accordion
domain specific language and compiler, a tool that automatically proves lineariz-
ability for SGX instructions via model checking and supports experimentation
with a wide variety of model configurations across multiple model checking tools.
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