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Abstract. The conformance testing problem for dynamical systems
asks, given two dynamical models (e.g., as Simulink diagrams), whether
their behaviors are “close” to each other. In the semi-formal approach
to conformance testing, the two systems are simulated on a large set
of tests, and a metric, defined on pairs of real-valued, real-timed tra-
jectories, is used to determine a lower bound on the distance. We show
how the Skorokhod metric on continuous dynamical systems can be used
as the foundation for conformance testing of complex dynamical models.
The Skorokhod metric allows for both state value mismatches and tim-
ing distortions, and is thus well suited for checking conformance between
idealized models of dynamical systems and their implementations. We
demonstrate the robustness of the metric by proving a transference the-
orem: trajectories close under the Skorokhod metric satisfy “close” log-
ical properties in the timed linear time logic TLTL augmented with a
rich class of temporal and spatial constraint predicates. We provide an
efficient window-based streaming algorithm to compute the Skorokhod
metric, and use it as a basis for a conformance testing tool for Simulink.
We experimentally demonstrate the effectiveness of our tool in finding
discrepant behaviors on a set of control system benchmarks, including
an industrial challenge problem.

1 Introduction

A fundamental question in model-based design is conformance testing: whether
two models of a system display similar behavior. For discrete systems, this ques-
tion is well-studied [19,20,28,29], and there is a rich theory of process equiva-
lences based, e.g., on bisimilarity. For continuous and hybrid systems, however,
the state of the art is somewhat unsatisfactory. While there is a straightforward
generalization of process equivalences to the continuous case, in practice, equiva-
lence notions such as bisimilarity are always too strong and most systems are not
bisimilar. Since equivalence is a Boolean notion, one gets no additional informa-
tion about the systems other than they are “not bisimilar.” Further, even if two
dynamical systems are bisimilar, they may still differ in many control-theoretic
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properties. Thus, classical notions for equivalence and conformance have been of
limited use in industrial practice.

In recent years, the notion of bisimulation has therefore been generalized
to metrics on systems, which quantify the distance between them. For exam-
ple, one approach is that of ε-bisimulation, which requires that the states of
the two systems remain “close” forever (within an ε-ball), rather than coincide
exactly. Under suitable stability assumptions on the dynamics, one can con-
struct ε-bisimulations [17,18]. Unfortunately, proving the pre-requisites for the
existence of ε-bisimulations for complex dynamical models, or coming up with
suitable and practically tractable bisimulation functions is extremely difficult in
practice. In addition, establishing ε-bisimulation requires full knowledge of the
system dynamics making the scheme inapplicable where one system is an actual
physical component with unknown dynamics. So, these notions have also been
of limited industrial use so far.

Instead, a more pragmatic semi-formal approach has gained prominence in
industrial practice. In this approach, the two systems are executed on the same
input sequences and a metric on finite trajectories is used to evaluate the close-
ness of these trajectories. The key to this methodology is the selection of a good
metric, with the following properties:

– Transference. Closeness in the metric must translate to preserving interesting
classes of logical and functional specifications between systems, and

– Tractability. The metric should be efficiently computable.

In addition, there is the more informal requirement of usability : the metric should
classify systems which the engineers consider close as being close, and conversely.

The simplest candidate metric is a pointwise metric that computes the max-
imum pointwise difference between two trajectories, sometimes generalized to
apply a constant time-shift to one trajectory [15]. Unfortunately, for many prac-
tical models, two trajectories may be close only under variable time-shifts. This
is the case, for example, for two dynamical models that may use different numer-
ical integration techniques (e.g., fixed step versus adaptive step) or when some
component in the implementation has some jitter. Thus, the pointwise metric
spuriously reports large distances for “close” models. More nuanched hybrid dis-
tances have been proposed [1], but the transference properties of these metrics
w.r.t. common temporal logics are not yet clear.

In this work we present a methodology for quantifying conformance between
real-valued dynamical systems based on the Skorokhod metric [12]. The
Skorokhod metric allows for mismatches in both the trace values and in the
timeline, and quantifies temporal and spatial variation of the system dynam-
ics under a unifying framework. The distortion of the timeline is specified by a
retiming function r which is a continuous bijective strictly increasing function
from R+ to R+. Using the retiming function, we obtain the retimed trace x (r(t))
from the original trace x(t). Intuitively, in the retimed trace x (r(t)), we see
exactly the same values as before, in exactly the same order, but the time dura-
tion between two values might now be different than the corresponding duration
in the original trace. The amount of distortion for the retiming r is given by
supt≥0|r(t) − t|. Using retiming functions, the Skorokhod distance between two
traces x and y is defined to be the least value over all possible retimings r of:
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max

(
sup

t∈[0,T ]

|r(t) − t|, sup
t∈[0,T ]

D
(
x (r(t)) , y(t)

))
,

where D is a pointwise metric on values. In this formula, the first component
quantifies the timing discrepancy of the timing distortion required to “match”
two traces, and the second quantifies the value mismatch (in the metric space O)
of the values under the timing distortion. The Skorokhod metric was introduced
as a theoretical basis for defining the semantics of hybrid systems by providing
an appropriate hybrid topology [8,9]. We now demonstrate its usefulness in the
context of conformance testing.

Transference. We show that the Skorokhod metric gives a robust quantifi-
cation of system conformance by relating the metric to TLTL (timed LTL)
enriched with (i) predicates of the form f(x1, . . . , xn) ≥ 0, as in Signal Tem-
poral Logic [15], for specifying constraints on trace values; and (ii) freeze quan-
tifiers, as in TPTL [4], for specifying temporal constraints (freeze quantifiers
can express more complex timing constraints than bounded timing constraints,
e.g., of MTL). TLTL subsumes MTL and STL [15]. We prove a transference
theorem: flows (and propositional traces) which are close under the Skorokhod
metric satisfy “close” TLTL formulae for a rich class of temporal and spatial
predicates, where the untimed structure of the formulae remains unchanged, only
the predicates are enlarged.

Tractability. We improve on recent polynomial-time algorithms for the
Skorokhod metric [25] by taking advantage of the fact that, in practice, only
retimings that map the times in one trace to “close” times in the other are of
interest. This enables us to obtain a streaming sliding-window based monitoring
procedure which takes only O(W ) time per sample, where W is the window size
(assuming the dimension n of the system to be a constant).

Usability. Using the Skorokhod distance checking procedure as a subroutine,
we have implemented a Simulink toolbox for conformance testing. Our tool inte-
grates with Simulink’s model-based design flow for control systems, and provides
a stochastic search-based approach to find inputs which maximize the Skorokhod
distance between systems under these inputs.

We present three case studies from the control domain, including industrial
challenge problems; our empirical evaluation shows that our tool computes sharp
estimates of the conformance distance reasonably fast on each of them. Our input
models were complex enough that techniques such as ε-bisimulation functions
are inapplicable. We conclude that the Skorokhod metric can be an effective
foundation for semi-formal conformance testing for complex dynamical models.
Proofs of the theorems are given in the accompanying technical report [13].

Related Work. The work of [1,2] is closely related to ours. In it, robustness
properties of hybrid state sequences are derived with respect to a trace met-
ric which also quantifies temporal and spatial variations. Our work differs in
the following ways. First, we guarantee robustness properties over flows rather
than only over (discrete) sequences. Second, the Skorokhod metric is a stronger
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form of the (T, J, (τ, ε))-closeness degree1,2 (for systems which do not have
hybrid time); and allows us to give stronger robustness transference guaran-
tees. The Skorokhod metric requires order preservation of the timeline, which
the (T, J, (τ, ε))-closeness function does not. Preservation of the timeline order
allows us to (i) keep the untimed structure of the formulae the same (unlike in
the transference theorem of [1]); (ii) show transference of a rich class of global
timing constraints using freeze quantifiers (rather than only for the standard
bounded time quantifiers of MTL/MITL). However, for implementations where
the timeline order is not preserved, we have to settle for the less stronger guar-
antees provided by [1]. The work of [15] deals with spatial robustness of STL;
the only temporal disturbances considered are constant time-shifts for the entire
signal where the entire signal is moved to the past, or to the future by the same
amount. In contrast, the Skorokhod metric incorporates variable time-shifts.

2 Conformance Testing with the Skorokhod Metric

2.1 Systems and Conformance Testing

Traces and Systems. A (finite) trace or a signal π : [Ti, Te] �→ O is a mapping
from a finite closed interval [Ti, Te] of R+, with 0 ≤ Ti < Te, to some topological
space O. If O is a metric space, we refer to the associated metric on O as DO.
The time-domain of π, denoted tdom(π), is the time interval [Ti, Te] over which
it is defined. The time-duration of π, denoted tlen(π), is sup (tdom(π)). The t-
suffix of π for t ∈ tdom(π), denoted πt, is the trace π restricted to the interval
(tdom(π) ∩ [t, tlen(π)]. We denote by π↓T ′

e
the prefix trace obtained from π by

restricting the domain to [Ti, T
′
e] ⊆ tdom(π).

A (continuous-time) system A :
(
R

[ ]
+ �→ Oip

)
�→

(
R

[ ]
+ �→ Oop

)
, where R

[ ]
+ is

the set of finite closed intervals of R+, transforms input traces πip : [Ti, Te] �→ Oip

into output traces πop : [Ti, Te] �→ Oop (over the same time domain). We require
that the system is causal : if A(πip) �→ πop, then for every min tdom(π) ≤ T ′

e <
max tdom(π), the system A maps πip↓T ′

e
to πop↓T ′

e
. Common examples of such

systems are (causal) dynamical and hybrid dynamical systems [7,30].

Conformance Testing. Let A1 and A2 be systems and let DTR be a metric
over output traces. For a set Πip of input traces, we define the (quantitative)
conformance between A1 and A2 w.r.t. Πip as supπip∈Πip

DTR (A1 (πip) ,A2 (πip))
The conformance between A1 and A2 is their conformance w.r.t. the set of all
input traces.

The conformance testing problem asks, given systems A1,A2, a trace metric
DTR, a tolerance δ, and a set of test input traces Πtest , if the quantitative
conformance between A1 and A2 w.r.t. Πtest is more than δ. Clearly, conformance
w.r.t. Πtest is a lower bound on the conformance between A1 and A2.
1 Instead of having two separate parameters τ and ε for time and state variation, we

pre-scale time and the n state components with n + 1 constants, and have a single
value quantifying closeness of the scaled traces.

2 Informally, two signals x, y are (T, J, (τ, ε))-close if for each point x(t), there is a
point y(t′) with |t − t′| < τ such that D(x(t), y(t′)) < ε; and similarly for y(t).
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Algorithm 1. Algorithm for conformance testing
Input: Systems A1, A2, trace metric DTR, time horizon T , input parameterization F ,

termination criterion terminate?
Output: Input u that achieves maximum distance between A1 and A2

1 d ← 0, u ←⊥, dmax ← 0, umax ←⊥
2 while not(terminate?) do
3 u ← pickNewInputs(F, T, d)
4 y1 ← simulate(A1, u, T ) and y2 ← simulate(A2, u, T )
5 d ← DTR(y1, y2)
6 if d > dmax then dmax ← d , umax ← u

7 end

8 return“on input umax, outputs A1(umax) and A2(umax) differ by dmax by time T”

Algorithm 1 is a standard optimization-guided adaptive testing algorithm.
To define the set Πtest of test inputs, we use a fixed finite parameterization of
the input space using a finite set F of basis functions and fix a time horizon T .
We only generate inputs obtained as a linear combination

∑
f∈F pf · f of basis

functions over the interval [0, T ], where the coefficients {pf | f ∈ F} come from
a closed convex subset of R|F |.

In each step, Algorithm 1 picks an input signal u and computes the dis-
tance between the corresponding outputs y1 = A1(u) and y2 = A2(u). Based
on heuristics that rely on the current distance, and a possibly bounded history
of costs, the procedure then picks a new value for u by choosing new values
for the coefficients {pf | f ∈ F}. For instance, in a gradient-ascent based pro-
cedure, the new value of u is chosen by estimating the local gradient in each
direction in the input-parameter space, and then picking the direction that has
the largest (positive) gradient. In our implementation, we use the Nelder-Mead
(or nonlinear simplex) algorithm to pick new inputs.

On termination (e.g., when some maximum number of iterations is reached),
the algorithm returns the conformance distance between A1 and A2 w.r.t. the
set of tests generated. One can compare the distance to some tolerance δ chosen
based on engineering requirements.

Sampling and Polygonal Traces. In practice, the output behaviors of the
systems are observed with a sampling process, thus y1 and y2 on line 4 are
discrete time-sampled sequences. We go from these sequences to output traces
by linearly interpolating between the sampled time points.

Formally, a polygonal trace π : Iπ �→ O where O is a vector space with
the scalar field R is a continuous trace such that there exists a finite sequence
min Iπ = t0 < t1 < · · · < tm = max Iπ of time-points such that the trace segment
between tk and tk+1 is affine for all 0 ≤ k < m, i.e., for tk ≤ t ≤ tk+1 we have
π(t) = π(tk) + t−tk

tk+1−tk
·(π(tk+1) − π(tk)).

Given a timed trace sequence tseq, let [[tseq]]LI denote the polygonal trace
obtained from tseq by linear interpolation. Let tseqπ, tseqπ′ be two corresponding
samplings of the traces π, π′, respectively. For a trace metric DTR, we have:

DTR(π, π′) ≤ DTR ([[tseqπ]]LI, [[tseqπ′ ]]LI) + DTR ([[tseqπ]]LI, π) + DTR
(
[[tseqπ′ ]]LI, π

′).
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If Δsamerr is a bound on the distance between a trace and an interpolated com-
pletion of its sampling, we have that DTR(π, π′) ≤ DTR([[tseqπ]]LI, [[tseqπ′ ]]LI) +
2·Δsamerr. Thus, a value of 2·Δsamerr needs to be added in the testing algorithm
to account for the error due to polygonal approximations.

2.2 The Skorokhod Metric

We now define the Skorokhod metric, which we use as the metric in Algorithm 1.
A retiming r : I �→ I ′, for closed intervals I, I ′ of R+ is an order-preserving
(i.e., monotone) continuous bijective function from I to I ′; thus if t < t′ then
r(t) < r(t′). Let RI �→I′ be the class of retiming functions from I to I ′ and let I be
the identity retiming. Intuitively, retiming can be thought of as follows: imagine
a stretchable and compressible timeline; a retiming of the original timeline gives
a new timeline where some parts have been stretched, and some compressed,
without the timeline having been broken. Given a trace π : Iπ → O, and a
retiming r : I �→ Iπ; the function π ◦ r is another trace from I to O.

Definition 1 (Skorokhod Metric). Given a retiming r : I �→ I ′, let ||r−I||sup
be defined as ||r − I||sup = supt∈I |r(t) − t|. Given two traces π : Iπ �→ O and
π′ : Iπ′ �→ O, where O is a metric space with the associated metric DO, and a
retiming r : Iπ �→ Iπ′ , let ‖π − π′ ◦ r‖sup be defined as:

‖π − π′ ◦ r‖sup = supt∈Iπ
DO

(
π(t), π′ (r(t))

)
.

The Skorokhod distance3 between the traces π() and π′() is defined to be:

DS(π, π′) = inf
r∈RIπ �→I

π′
max(‖r − I‖sup , ‖π − π′ ◦ r‖sup). �� (1)

Intuitively, the Skorokhod distance incorporates two components: the first com-
ponent quantifies the timing discrepancy of the timing distortion required to
“match” two traces, and the second quantifies the value mismatch (in the met-
ric space O) of the values under the timing distortion. In the retimed trace π ◦ r,
we see exactly the same values as in π, in exactly the same order, but the times
at which the values are seen can be different.

The following theorem shows that the Skorokhod distance between polygonal
traces can be computed efficiently. We remark that after retiming, the retimed
version π ◦ r of a polygonal trace π need not be polygonal (see e.g., [24]).

Theorem 1 (Computing the Distance Between Polygonal Traces [25]).
Let π : Iπ �→ R

n and π′ : Iπ′ �→ R
n be two polygonal traces with mπ and mπ′

affine segments respectively. Let the Skorokhod distance between them (for the
L2 norm on R

n) be denoted as DS(π, π′).

1. Given δ ≥ 0, it can be checked whether DS(π, π′) ≤ δ in time O (mπ ·mπ′ ·n).

3 The two components of the Skorokhod distance (the retiming, and the value differ-
ence components) can be weighed with different weights – this simply corresponds
to a change of scale.
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2. Suppose we restrict retimings to be such that the i-th affine segment of π can
only be matched to π′ affine segments i − W through i + W for all i, where
W ≥ 1. Under this retiming restriction, we can determine, with a streaming
algorithm, whether DS(π, π′) ≤ δ in time O ((mπ + mπ′)·n·W ). ��

Let us denote by DW
S (π, π′) the Skorokhod difference between π, π′ under the

retiming restriction of the second part of Theorem 1, i.e., the value obtained by
restricting the retimings in Eq. 14. The value DW

S (π, π′) is an upper bound on
DS(π, π′). In addition, for W ′ < W , we have DW

S (π, π′) ≤ DW ′
S (π, π′).

3 Transference of Logical Properties

In this section, we demonstrate a transference result for the Skorokhod metric
for a version of the timed linear time logic TLTL [4]. The logic we consider
generalizes MTL and STL. We show that if the Skorokhod distance between
two traces is small, they satisfy close TLTL formulae. Given a formula φ of
TLTL satisfied by trace π1, we can compute a “relaxation” of φ that will be
satisfied by the “close” trace π2. We first present the results in a propositional
framework, and then extend to R

n-valued spaces for a logic generalizing STL.

3.1 The Logic TLTL

Let P be a set of propositions. A propositional trace π over P is a trace where the
topological space is 2P , with the associated metric DP(σ, σ′) = 0 if σ = σ′, and
∞ otherwise, for σ, σ′ ∈ 2P . We restrict our attention to propositional traces with
finite variability: we require that there exists a finite partition of tdom(π) into
disjoint subintervals I0, I1, . . . , Im such that π is constant on each subinterval.
The set of all timed propositional traces over P is denoted by Π(P).

Definition 2 (TLTL(FT) Syntax). Given a set of propositions P, a set of
(time) variables VT, and a set FT of functions from R

l
+ to R, the formulae of

TLTL(FT) are defined by the following grammar.

φ := p | true | fT(x) ∼ 0 | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 U φ2 | x.φ where

– p ∈ P and x ∈ VT, and x = (x1, . . . , xl) with xi ∈ VT for all 1 ≤ i ≤ l;
– fT ∈ FT is a real-valued function, and ∼ is one of {≤, <,≥, >}. ��
The quantifier “x.” is known as the freeze quantifier, and binds variable x to the
current time. A variable x is defined to be free in φ as follows. The variable x is
not free in x.Ψ , or in p (a proposition), or in true, or in fT(x1, . . . , xl) ∼ 0 where
xi �= x for all i. It is also not free in φ if φ does not contain an occurrence of x.
It is free in ¬ψ iff x is free in ψ; and it is free in φ1

∧
∨ φ2, or in φ1 U φ2, iff x is

free in either φ1 or in φ2. Finally, variable x is free in fT(x1, . . . , xl) ∼ 0 if some
xi is x. A formula is closed if it has no free variables.
4 DW

S is not a metric over traces (the triangle inequality fails).
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Definition 3 (TLTL(FT) Semantics). Let π : I �→ 2P be a timed propositional
trace, and let E : VT �→ I be the time environment mapping the variables in VT to
time values in I. The satisfaction of the trace π with respect to the TLTL(FT)
formula φ in the time environment E is written as π |=E φ, and is defined
inductively as follows (denoting t0 = min tdom(π)).

π |=E p for p ∈ P iff p ∈ π(t0); π |=E true; π |=E ¬Ψ iff π �|=E Ψ ;

π |=E φ1 ∧ φ2 iff π |=E φ1 and π |=E φ2; π |=E φ1 ∨ φ2 iff π |=E φ1 or π |=E φ2;

π |=E fT(x1, . . . , xl) ∼ 0 iff fT(E(x1), . . . , E(xl)) ∼ 0 for ∼ ∈ {≤, <, ≥, >};

π |=E x.ψ iff π |=E[x:=t0] ψ where E [x := t0] agrees with E for all xi�=x, andmapsx to t0;

π |=E φ1 U φ2 iff πt |=E φ2 for some t ∈ I and πt′ |=E φ1 ∨ φ2 for all t0 ≤ t′ < t.

A timed trace π is said to satisfy the closed formula φ (written as π |= φ) if there
is some environment E such that π |=E φ. ��
We define additional temporal operators in the standard way: the “eventually”
operator ♦φ stands for true U φ; and the “always” operator �φ stands for ¬♦¬φ.
TLTL(FT) provides a richer framework than MTL [23] for expressing timing
constraints as: (i) freeze quantifiers allow specification of constraints between
distant contexts, which the bounded temporal operators in MTL cannot do;
and (ii) the predicates fT() ∼ 0 for fT ∈ FT allow the specification of complex
timing requirements not expressible in MTL. Note that even if the predicates
fT() ∼ 0 are restricted to be of the form x1 − x2 + c ∼ 0, where x1, x2 are freeze
variables, and c is a constant, TLTL(FT) is more expressive than MTL [6] (and
hence more expressive than MITL on which STL is based).

Example 1 (TLTL(FT) Subsumes MTL). Let FT be the set of two variable
functions of the form f(x, y) = x − y + c where c is a rational constant. Then
TLTL(FT) subsumes MTL. The MTL formula p U [a,b]q can be written as

x.
(
p U y.

(
(y ≤ x + b) ∧ (y ≥ x + a) ∧ q

))
.

We explain the formula as follows. We assign the “current” time tx to the variable
x, and some future time ty to the variable y. The values tx and ty are such that
at time ty, we have q to be true, and moreover, at all times between tx and ty,
we have p ∨ q to be true. Furthermore, ty must be such that ty ∈ [tx + a, tx + b],
which is specified by the term (y ≤ x + b) ∧ (y ≥ x + a). ��
Example 2 (Temporal Constraints). Suppose we want to express that whenever
the event p occurs, it must be followed by a response q, and then by r. In
addition, we have the following timing requirement: if εpq, εqr, εpr are the time
delays between p and q, between q and r, and between p and r, respectively,
then: we must have ε2pq + ε2qr + ε2pr ≤ d for a given positive constant d. This can
be written using freeze quantifiers as the TLTL formula φ:

x.
(
p → ♦

(
y.

(
q ∧ ♦

[
z.

(
r ∧ (

(y − x)2 + (z − y)2 + (z − x)2 ≤ d
))]) ))

. ��
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3.2 Transference of TLTL Properties for Propositional Traces

We now show that if a timed propositional trace π satisfies a TLTL(FT) formula
φ, then any timed trace π′ that is at most δ distance away from π satisfies a
slightly relaxed version of the formula φ, the degree of relaxation being governed
by δ; and the variance of the functions in FT over the time interval containing
the time domains of π and π′.

We define the distance DS between two propositional traces as the Skorokhod
distance, where we use DP as the distance between two sets of propositions.

Next, we define relaxations of TLTL(FT) formulae. The relaxations are
defined as a syntactic transformation on formulae in negation-normal form, i.e.,
in which negations only appear at the propositions. It can be showed that every
TLTL(FT) formula can be rewritten in negation-normal form, when we addi-
tionally use the waiting for operator, W, defined as:

π |=E φ1 W φ2 iff either (1) πt |=E φ1 for all t ∈ Iπ; or (2) πt |=E φ2 for
some t ∈ Iπ; and πt′ |=E φ1 ∨ φ2 for all min Iπ ≤ t′ < t.

Definition 4 (δ-relaxation of TLTL(FT) Formulae). Let φ be a TLTL(FT)

formula in which negations appear only on the propositional symbols. The δ
relaxation of φ (for δ≥0) over a closed interval J , denoted rxδ

J(φ), is defined as:

rxδ
J(p) = p

rxδ
J(¬p) = ¬p

rxδ
J(φ1 ∧ φ2) = rxδ

J(φ1) ∧ rxδ
J(φ2)

rxδ
J(x.ψ) = x.rxδ

J(ψ)
rxδ

J(φ1 U φ2) = rxδ
J(φ1)U rxδ

J (φ2)

rxδ
J(true) = true

rxδ
J(false) = false

rxδ
J(φ1 ∨ φ2) = rxδ

J(φ1) ∨ rxδ
J(φ2)

rxδ
J(φ1 W φ2) = rxδ

J(φ1)W rxδ
J(φ2)

rxδ
J (fT(x1, . . . , xl)) ∼ 0) =

{
fT(x1, . . . , xl) + KfT

J (δ) ∼ 0 if ∼ ∈ {>,≥}
fT(x1, . . . , xl) − KfT

J (δ) ∼ 0 if ∼ ∈ {<,≤},

where KfT

J : [0,max tdom(J) − min tdom(J)] �→ R+, and

KfT

J (δ)def= sup
t1, . . . , tl ∈ J
t′1, . . . , t

′
l ∈ J

⎧⎨
⎩

∣∣∣∣∣∣
fT(t1, . . . , tl)

−
fT(t′1, . . . , t

′
l)

∣∣∣∣∣∣ s.t. |ti − t′i| ≤ δ for all i

⎫⎬
⎭

(2)

Thus, instead of comparing the fT() values to 0, we relax by comparing instead
to ±KfT

J (δ). The other cases recursively relax the subformulae. The functions
KfT

J (δ) define the maximal change in the value of fT that can occur when the
input variables can vary by δ. The role of J is to restrict the domain of the freeze
quantifier variables to the time interval J (from R+) in order to obtain the least
possible relaxation on a given trace π (e.g., we do not care about the values of
a function in FT outside of the domain tdom(π) of the trace).

Example 3 (δ-relaxation for Bounded Temporal Operators – MTL). We demon-
strate how δ-relaxation operates on bounded time constraints. Consider again
the MTL formula φ = p U [a,b]q. When written as a TLTL formula and relaxed
using the rxδ

R+
function, the relaxed TLTL formula is equivalent to the MTL

formula p U [a−2·δ , b+2·δ]q. ��
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Theorem 2 (Transference for Propositional Traces). Let π, π′ be two
timed propositional traces such that DS(π, π′) < δ for some finite δ. Let φ
be a closed TLTL(FT) formula in negation-normal form. If π |= φ, then
π′ |= rxδ

Iπ,π′ (φ) where Iπ,π′ is the convex hull of tdom(π) ∪ tdom(π′). ��

Theorem 2 relaxes the freeze variables over the entire signal time-range Iπ,π′ ; it
can be strengthened by relaxing over a smaller range: if π |= φ, and t1, . . . , tk
are time-stamp assignments to the freeze variables x1, . . . , xk which witness π
satisfying φ, then xi only needs to be relaxed over [ti − δ, ti + δ] rather than the
larger interval Iπ,π′ . These smaller relaxation intervals for the freeze variables
can be incorporated in Eq. 2. We omit the details for ease of presentation.

Example 4. Recall Example 2, and the formula φ presented in it. Suppose a
trace π satisfies φ; and let DS (π, π′) < δ (using the Skorokhod metric for propo-
sitional traces). Our transference theorem ensures that (i) π′ will satisfy the
same untimed formula p → ♦ (q ∧ ♦r); and (ii) it gives a bound on how much
the timing constraints need to be relaxed in φ in order to ensure satisfaction by
π′; it states that π′ satisfies the following relaxed formula φ′.

π′ |= x.
(
p → ♦

(
y.

(
q ∧ ♦

[
z.

(
r ∧ (

(y − x)2 + (z − y)2 + (z − x)2 ≤ d†))]) ))
where d† = d + 12 · δ2 + 4

√
3 · δ · √

d (see [13]). ��

3.3 Transference of TLTL Properties for R
n-valued Signals

A timed R
n-valued trace π is a function from a closed interval I of R+ to R

n.
For α = (α0, . . . , αn) ∈ R

n, we denote the k-th dimensional value αk as α[k].
The π projected function onto the k-th R dimension is denoted by πk : I �→ R.

To define the semantics of TLTL formulae over timed R
n-valued sequences,

we use booleanizing predicates μ : Rn �→ B, as in STL [15], to transform R
n-

valued sequences into timed propositional sequences. These predicates are part
of the logical specification. In this work, we restrict our attention to traces and
predicates such that each predicate varies only finitely often on the finite time
traces under consideration. Since we also have freeze variables, TLTL with pred-
icates is strictly more expressive than STL5 (as in the propositional case [6]).

Definition 5 (TLTL(FT, FS) Syntax). Given a set of variables VT (the freeze
variables), a set of ordered variables VS (the signal variables), and two sets
FT,FS of functions, the formulae of TLTL(FT, FS) are defined by the grammar:

φ := true | fT(x) ∼ 0 | fS(y) ∼ 0 | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 U φ2 | x.φ where

– x ∈ VT, and x = (x1, . . . , xl) with xi ∈ VT for all 1 ≤ i ≤ l;
– z = (z1, . . . , zd) with zj ∈ VS for all 1 ≤ j ≤ d (with d ≤ n);
– VT and VS are disjoint;
– fT ∈ FT and fS ∈ FS are real-valued functions, and ∼ is ≤, <,≥, or >. ��
5 STL is MITL enriched with booleanzing predicates, i.e., STL is MITL(FS).
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The semantics of TLTL(FT, FS) is straightforward and similar to the proposi-
tional case (Definition 3). The only new ingredients are the booleanizing predi-
cates fS(z) ∼ 0: we define π |=E fS(z1, . . . , zd) ∼ 0 iff fS(πj1 [t0], . . . , πjd

[t0]) ∼ 0
for any freeze variable environment E , where t0 = min tdom(π), and zi is the
ji-th variable in VS (i.e., zi refers to the ji-th dimension in the signal trace). We
require that for a timed R

n-valued trace π to satisfy φ, the arity of the functions
in FS occurring in φ should not be more than n, that is, functions should not
refer to dimensions greater than n for an R

n trace.
δ relaxation of TLTL(FT, FS). Let JVS

be a mapping from VS to closed intervals
of R, thus JVS

(z) denotes a sub-domain of z ∈ VS. The relaxation function rxδ
J,JVS

which operates on TLTL(FT, FS) formulae is defined analogous to the relaxation
function rxδ

J in Definition 4. We omit the similar cases, and only present the new
case for the predicates formed from FS.

rxδ
J,JVS

(fS(z1, . . . , zl)) ∼ 0) =

⎧
⎨

⎩

fS(z1, . . . , zl) + K
fS
J,JVS

(δ) ∼ 0 if ∼ ∈ {>, ≥};
fS(z1, . . . , zl) − K

fS
J,JVS

(δ) ∼ 0 if ∼ ∈ {<, ≤}

where KfS

J,JVS
:
[
0, maxz∈VS

|maxJVS
(z) − minJVS

(z)|] �→ R+ is a function s.t.

K
fS
J,JVS

(δ) = sup
ui ∈ JVS

(zi); u′
i ∈ JVS

(z′
i)

for all i

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

fS(u1, . . . , ul)
−

fS(u
′
1, . . . , u′

l)

∣
∣
∣
∣
∣
∣
s.t. |ui−u′

i| ≤ δ for all i

⎫
⎬

⎭
.

The functions KfS

J,JVS
(δ) define the maximal change in the value of fS that can

occur when the input variables can vary by δ over the intervals in JVS
(z) and

J . The role of JVS
in the above definition is to restrict the domain of the signal

variables in order to obtain the least possible relaxation bounds on the signal
constraints; as was done in Definition 4 for the freeze variables.

Theorem 3 (Transference for R
n-valued Traces). Let π, π′ be two R

n-
valued traces such the Skorokhod distance between them is less than δ for some
finite δ. Let φ be a closed TLTL(FT, FS) formula in negation-normal form. If
π |= φ, then π′ |= rxδ

Iπ,π′ ,IVS
(φ), where

– Iπ,π′ is the convex hull of tdom(π) ∪ tdom(π′); and
– IVS

(z) is the convex hull of {π(t)[k] | t ∈ tdom(π)} ∪ {π′(t)[k] | t ∈ tdom(π′)};
where z is the k-th variable in the ordered set VS. ��

Theorem 3 can be strengthened similar to the strengthening mentioned for
Theorem 2 by relaxing the variables over smaller intervals obtained from assign-
ments to variables which witness π |= φ.

Example 5 (Spatial Constraints and Transference). Recall Example 2, suppose
that the events p, q, and r are defined by the following predicates over real
variables α1 and α2. Let p ≡ α1 + 10·α2 ≥ 3; the predicate q ≡ |α1| + |α2| ≤ 20;
and r ≡ |α1| + |α2| ≤ 15. Let π satisfy this formula with these predicates, and
let π′ be δ close to π, for a finite δ under the Skorokhod metric for R

2. Our
robustness theorem ensures that π′ will satisfy the relaxed formula

x.
(
pδ → ♦(y.

(
qδ ∧ ♦

[
z.
(
rδ ∧ ((y − x)2 + (z − y)2 + (z − x)2 ≤ d + 12·δ2)

)]) ))
.
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[
ḣ1

ḣ2

]
=

[
i − d1−d2

] [
ḣ1

ḣ2

]
=

[ −d1
i − d2

]
h2 < �2

h1 < �1

Fig. 1. System A1 used for benchmarking Skorokhod Distance computation. Inflow
rate i, Drain rate d1 for tank 1 and d2 for tank 2 are all inputs to the system.

where the relaxed predicates pδ, qδ, rδ are defined as follows: pδ ≡ α1 + 10·α2 ≥
3 − 22·δ; qδ ≡ |α1| + |α2| ≤ 20 + 4·δ; and rδ ≡ |α1| + |α2| ≤ 15 + 4·δ. ��

4 Experimental Evaluation

We have implemented a streaming, sliding window-based monitoring routine
which checks, given a fixed δ, whether the linear interpolations of two time-
sampled traces are at Skorokhod distance at most δ away from each other. The
least such δ value is then computed by binary search over the monitoring routine.
The upper limit of the search range is set to the pointwise metric (i.e., assuming
the identity retiming) between the two traces. The traces to the monitoring rou-
tine are pre-scaled, each dimension (and the time-stamp) is scaled by a different
constant. The constants are chosen so that after scaling, one unit of deviation
in one dimension is as undesirable as one unit of jitter in other dimensions.

We have integrated the monitoring routine in an adaptive testing proce-
dure for Simulink blocks based on Algorithm 1. The output of Algorithm 1 is
compared against tolerance levels (e.g., maximum allowed jitter) given by the
engineering requirements. In the following, we evaluate the effectiveness of the
Skorokhod metric in conformance testing of Simulink applications.

Skorokhod Distance Computation Benchmark. We first show that
the window-based implementation is efficient using the following benchmark.
Figure 1 shows a hybrid dynamical system A1 consisting of two water tanks,
each with an outlet from which water drains at a constant rate dj . Both tanks
share a single inlet pipe that is switched between the tanks, filling only one tank
at any given time at a constant inflow rate of i. When the water-level in tank
j falls below level �j , the pipe switches to fill it. The drain and inflow rates d1,
d2 and i are assumed to be inputs to the system. Now consider a version A2

that incorporates an actuation delay that is a function of the inflow rate. This
means that after the level drops to �j for tank j, the inlet pipe starts filling it
only after a finite time. A1 and A2 have the same initial water level. We perform
a fixed number of simulations by systematically choosing drain and inflow rates
d1, d2, i to generate traces (water-level vs. time) of both systems and compute
their Skorokhod distance. We summarize the results in Table 1.

Recall that the Skorokhod distance computation involves a sequence of mon-
itoring calls with different δ values picked by a binary-search procedure. Thus,
the total time to compute DS is the sum over the computation times for individ-
ual monitoring calls plus some bookkeeping. In Table 1, we make a distinction
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Table 1. Computation of DS(π1, π2), where π1 is a trace of system A1 described in
Fig. 1, and π2 is a trace of system A2, which is A1 with an actuation delay. D2 is the
pointwise L2 distance. Both π1 and π2 contain equally spaced 2001 time points over a
simulation horizon of 100 s.

Window Avg. DS Avg. Time taken (secs) D2−DS
D2

size Computation Monitoring Max. Avg. Std. dev.

20 8.58 0.81 0.13 0.11 0.03 0.03

40 8.35 1.55 0.26 0.23 0.06 0.06

60 8.09 2.31 0.39 0.34 0.1 0.09

80 7.88 3.05 0.52 0.38 0.1 0.11

100 7.72 3.77 0.64 0.38 0.1 0.11

between the average time to monitor traces (given a δ value), and the average
time to compute DS. There are an average of 6 monitoring calls per DS com-
putation. We ran 64 simulations by choosing different input values, and then
computing DS for increasing window sizes. As the window size increases, the
average DS decreases and the computation time increases linearly, as expected
from Theorem 1. Finally, the Skorokhod distance can be significantly smaller
than the simpler metric D2 (defined as the maximum of the pointwise L2 norm).
This discrepancy becomes more prominent with increased window size. With a
window size of 100, the variation between DS and D2 was up to 38% (mean
difference of 10% with std. deviation of 11%).

Case Study I: LQR-Based Controller. The first case study for conformance
testing is an aircraft pitch control application taken from the openly accessible
control tutorials for Matlab and Simulink [27]. The authors describe a linear
dynamical system of the form: ẋ = (A − BK)x + Bθdes. Here, x describes the
vector of continuous state variables and θdes is the desired reference provided as
an external input. One of the states in the x vector is the pitch angle θ, which
is also the system output. The controller gain matrix K is computed using the
linear quadratic regulator method [5], a standard technique from optimal control.
We are interested in studying a digital implementation of the continuous-time
controller obtained using the LQR method. To do so, we consider sampled-data
control where the controller samples the plant output, computes, and provides
the control input to the plant every Δ s. To model sensor delay, we add a fixed
delay element to the system; thus, the overall system now represents a delay-
differential equation.

Control engineers are typically interested in the step response of a system.
In particular, quantities such as the overshoot/undershoot of the output signal
(maximum positive/negative deviation from a reference value) and the settling
time (time it takes for transient behaviors to converge to some small region
around the reference value) are of interest. Given a settling time and overshoot
for the first system, we would like the second system to display similar charac-
teristics. We remark that both of these properties can be expressed in STL (and
hence in TLTL(FT, FS)), see [21] for details. We quantify system conformance
(and thereby adherence to requirements) in terms of the Skorokhod distance, or,
in other words, maximum permitted time/space-jitter value δ. For this system,
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Table 2. Variation in Skorokhod Distance with changing sampling time for an aircraft
pitch control system with an LQR-based controller. Time taken indicates the total time
spent in computing the upper bound on the Skorokhod distance across all simulations.
We choose a window size chosen of 150 samples and simulate the system for 5 s with
a variable-step solver.

Controller Skorokhod Time taken (seconds) Number of

Sample-Time distance to compute DS simulations

(seconds)

0.01 0.012 232 104

0.05 0.049 96 104

0.1 0.11 70 106

0.3 0.39 45 104

0.5 1.51 40 101

we know that at nominal conditions, the settling time is approximately 2.5 s, and
that we can tolerate an increase in settling time of about 0.5 s. Thus, we chose a
time-scaling factor of 2 = 1

0.5 . We observe that the range of θ is about 0.4 radi-
ans, and specify an overshoot of 20% of this range as being permissible. Thus,
we pick a scaling factor of 1

0.08 for the signal domain. In other words, Skorokhod
distance δ = 1 corresponds to either a time-jitter of 0.5 s, or a space-discrepancy
of 0.08 radians.

We summarize the results of conformance testing for different values of sam-
pling time Δ in Table 2. As expected, the conformance increases with increasing
Δ. The time taken to compute the Skorokhod distance decreases with increasing
Δ, as the number of time-points in the two traces decreases.

Case Study II: Air-Fuel Ratio Controller. In [21], the authors present three
systems representing an air-fuel ratio (λ) controller for a gasoline engine, that
regulate λ to a given reference value of λref = 14.7. Of interest to us are the sec-
ond and the third systems. The former has a continuous-time plant model with
highly nonlinear dynamics, and a discrete-time controller model. In [22], the
authors present a version of this system where the controller is also continuous.
We take this to be A1. The third system in [21] is a continuous-time closed-loop
system where all the system differential equations have right-hand-sides that are
polynomial approximations of the nonlinear dynamics in A1. We call this polyno-
mial dynamical system A2. The rationale for these system versions is as follows:
existing formal methods tools cannot reason about highly nonlinear dynamical
systems, but tools such as Flow* [10], C2E2 [16], and CORA [3] demonstrate
good capabilities for polynomial dynamical systems. Thus, the hope is to ana-
lyze the simpler systems instead. In [21], the authors comment that the system
transformations are not accompanied by formal guarantees. By quantifying the
difference in the system behaviors, we hope to show that if the system A2 satis-
fies the temporal requirements ϕ presented in [21], then A1 satisfies a relaxation
of ϕ. We pick a scaling factor of 2 for the time domain, as a time-jitter of 0.5
s is the maximum deviation we wish to tolerate in the settling time, and pick
0.68 = 1

0.1∗λref
as the scaling factor for λ (which corresponds to the worst case

tolerated discrepancy in the overshoot).
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Table 3. Conformance testing for closed-loop A/F ratio controller at different engine
speeds. We scale the signals such that 0.5 s of time-jitter is treated equivalent to 10 % of
the steady-state value (14.7) of the A/F ratio signal. The simulation traces correspond
to a time horizon of 10 s and the window size is 300.

Engine Skorokhod Computation Total Time Number of

speed (rpm) distance Time (secs) taken (secs) simulations

1000 0.31 218 544 700

1500 0.20 240 553 700

2000 0.27 223 532 700

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
2900

2930

2960

2990
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Fig. 2. Outputs showing a Skorokhod distance of 1.04.

Table 3 summarizes the results of conformance testing for these systems.
In [14], the authors posed a challenge problem for conformance testing. They
reported that the original nonlinear system and the approximate polynomial
system both satisfy the STL requirements specifying overshoot/undershoot and
settling time. We, however, found an input that causes the outputs of the two
systems to have a high Skorokhod distance. Thus, comparing the two systems
by considering equi-satisfaction of a given set of STL requirements such as over-
shoot/undershoot and settling time may not always be sufficient. Our experiment
indicates that the Skorokhod metric may be a better measure of conformance.

Case Study III: Engine Timing Model. The Simulink demo palette from
Mathworks [26] contains a system representing a four-cylinder spark ignition
internal combustion engine based on a model by Crossley and Cook [11]. This
system is then enhanced by adding a proportional plus integral (P+I) control
law. The integrator is used to adjust the steady-state throttle as the desired
engine speed set-point changes, and the proportional term compensates for phase
lag introduced by the integrator. In an actual implementation of such a system,
such a P+I controller is implemented using a discrete-time integrator. Such
integrator blocks are typically associated with a particular numerical integration
technique, e.g., forward-Euler, backward-Euler, trapezoidal, etc. It is expected
that different numerical techniques will produce slight variation in the results.
We wish to quantify the effect of using different numerical integrators in a closed-
loop setting. We checked if the user-provided tolerance of δ = 1.0 is satisfied by
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systems A1 and A2, where A1 is the original system provided in [26] and A2 is a
modified system that uses the backward Euler method to compute the discrete-
time integral in the controller. We scale the outputs in such a way that a value
discrepancy of 1% of the the output range (∼ 1000) is equivalent to a time
discrepancy of 0.1 s. These values are chosen to bias the search towards finding
signals that have a small time jitter. This is an interesting scenario for this case
study where the two systems are equivalent except for the underlying numerical
integration solver. We find the signal shown in Fig. 2, for which we find output
traces with Skorokhod distance 1.04. The experiment uses 296 simulations and
the total time taken to find the counterexample is 677 s.

5 Conclusion

We argue that the Skorokhod metric provides a robust basis for checking con-
formance between dynamical systems. We showed that it provides transference
of a rich class of temporal logic properties and that it can be computed effi-
ciently, both in theory and in practice. Our experiments indicate that confor-
mance checking using the Skorokhod metric can be integrated into a testing flow
for Simulink models and can find non-conformant behaviors effectively, allowing
for independent weighing of time and value distortions.
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