
Automatic Deformations Detection in Internet
Interfaces: ADDII

Leandro Sanchez2 and Plinio Thomaz Aquino Jr.1,2(&)

1 Centro Universitário da FEI – Fundação Educacional Inaciana
Pe. Sabóia de Medeiros, São Bernardo do Campo, São Paulo, Brazil

plinio.aquino@fei.edu.br
2 IPT - Instituto de Pesquisas Tecnológicas, São Paulo, Brazil

leandrosanchez@me.com

Abstract. Developers have been trying to create uniform and consistent web-
pages in the different browsers available in the market. Known as Crossbrowser
issue, it affects pages in different ways, on its functionalities and visually aspects
and sometimes not related to the source code. Using screenshot and image
comparison algorithms, this paper presents a technique for automated detection
of visual deformations in web pages using a tool developed during the research
called Automatic Deformations Detection in Internet Interfaces (ADDII).

Keywords: Business: interfaces in automated manufacturing � Business: visual
analytics and business intelligence � Technology: intelligent and agent systems

1 Introduction

Since the beginning of the Internet and offer of different web browsers, has been a
challenge to developers to keep your pages uniform and consistent between the dif-
ferent versions available, both in functional and visually. Much of the problem not
related to the source code created by developers, but by the different implementations
of browsers, which interpret and visually present the pages. About four browsers have
over 70 % of market share and big companies like Microsoft are still investing on new
products, as Project Spartan [1] recently announced. If we add in that count the cur-
rently available browsers on other platforms, such as smartphones and tablets, the
number would be higher. Different tools have been developed and commercially
available to support developers in testing your pages and applications. However, none
of them is completely effective in automatically detecting visual deformations, usually
leaving the checking and interpretation on developers mind. This paper presents a
technique for automated detection of visual deformations in web pages using a tool
developed during the research called Automatic Deformations Detection in Internet
Interfaces (ADDII). The ADDII compares screenshots of pages generated in three
different browsers and uses algorithms to compare type image Perceptual Hash to
verify the similarity between them, indicating which browsers had a discrepancy.

In the next chapters, we will present more detailed information about the Cross
browser issue, the visual algorithm’s, the concept and process behind ADDII and our
experiment results.

© Springer International Publishing Switzerland 2015
M. Kurosu (Ed.): Human-Computer Interaction, Part III, HCII 2015, LNCS 9171, pp. 43–53, 2015.
DOI: 10.1007/978-3-319-21006-3_5



2 Cross Browser Issue: Visual or Functional?

During the research, the compatibility issue divided into two types: Visual and
Functional. The first type refers to the rendering of a page, in the interpretation of the
code by web browsers, including HTML, Javascript and CSS content and present
visual differences or errors that mischaracterize content. The image below illustrates the
visual issue, which the center content is dislocated to right side, not following the
header that is in the left position (Fig. 1).

The second type comes to functional errors when the browser does not interpret a
particular action or event correctly. Both types have common importance, however
may contain different relevance depending on their use. The problem of type Visual
directly affects developers who produce visual content, in which the pages created for
advertising, promotion and marketing, where the inadequate presentation of a given
page implies that a message not delivered to the user. The image below illustrate the
functional issue, which the browser throws an error message during the execution in
one of the functions (Fig. 2).

Develop applications compatible with most existing browsers is still a problem for
developers, due to implementation differences in most of its components, which
interpret and render the codes in different ways. Researchers Grosskurth et al. [2]
presented the eight (8) components that make up the architecture of Internet browsers:
User Interface; Browser Engine; Rendering Engine; Networking Subsystem; Javascript
Interpreter; XML Parser Subsystem; Display Backend and Data Persistence Subsystem.

Also during the research, found that the companies that develop web browsers
implement these components in different ways.

Figures 3 and 4 show two different browsers architecture. You can see the different
components. The areas of User Interface, Browser Engine, Rendering Engine, Data
Persistence, Networking, JavaScript Interpreter, XML (eXtensible Markup Language)

Fig. 1. Visual issue (source case: itaú internet banking, browser safari)

44 L. Sanchez and P.T. Aquino Jr.



Parser and Display backend have differences in their implementations. The most
noticeable to the user is the user interface (User Interface), which explicitly differs
between browsers. Components such as networking, because they are different, expose
specific security vulnerabilities of each browser and therefore rarely the same vul-
nerability found is contained in all browsers. Other components have a direct influence
on performance, such as JavaScript Interpreter. Their different implementations make
a browser more efficient for execution of specific scripts on pages. It is common to find
JavaScript codes that do not work in all browsers. As an example, document.getEle-
mentById statement, which should return the unique identifier of an object on a page in
all browsers, in some versions of Internet Explorer may return unexpected values as
Microsoft article [3].

Fig. 2. Functional issue (source: computerworld (2007), browser IE 6)

Fig. 3. Mozila architecture (source: [2] architecture and evolution of the modern web browser,
p. 9).

Automatic Deformations Detection in Internet Interfaces: ADDII 45



Studies continue to exist in this area, implementing different forms of check or
normalize the pages, making it compatible with different browsers. The researchers
Eaton et al. [4] demonstrated that the use of a tool that performs scanning in HTML
(Hyper Text Markup Language) code to find invalid tags or used incorrectly, causing
inconsistency in the application. Have the researchers Choudhary et al. [5] proposed the
use of a tool that performs validations in the DOM (Document Object Model) structure
of pages and in the analysis of images (screenshots). The researchers, Zhu et al. [6]
demonstrated a technique for creating layouts, which contains a generator able to
produce HTML code set for each version, and model browser.

3 Visual Comparison Algorithm’s

During the research, this work tried to explore the use of image comparison algorithms,
which can point the similarity between two images. Algorithms that address this issue
are being developed in the areas of computer graphics and vision. Perhaps the most
common algorithms are the Peak signal-to-noise ratio (PNSR) and root-mean-square
error (RMSE), which are used to measure the quality of images. These algorithms can
be found as library functions called ImageMagick [7]. An evolution of these algorithms
is the Structural Similarity Image Metric (SSIM), presented by Wang et al. [8], which
computes and compares the number of errors on the images to see their similarities. An
implementation of this algorithm can be found in the Python-based tool called pyssim
[9]. After validate these algorithms, the visual perception chosen, for its efficacy during
the tests. The RMSE and PNSR algorithms were not effective to check the discrep-
ancies and presented the results in decibels. The implementation of SSIM has values
between 0 and 1, complicating the calculation to check similarity on images of different
sizes. In the other hand, visual perception algorithms presented the results with

Fig. 4. Safari architecture (source: [2] architecture and evolution of the modern web browser,
p. 14)

46 L. Sanchez and P.T. Aquino Jr.



numerical values that facilitate the calculation, including the number of different pixels
between the two images.

There are several algorithms using Hash and its most common applications are file
integrity checking. The MD5 and SHA1 algorithms have become popular on authen-
tication systems, since the hash is unique and unchanging as a signature [10], reflecting
the exact sequence of bytes. In case of any change in the bytes, the Hash will be
different. These algorithms would be efficient if the scope is to validate if two images
are identical, exactly same in the bytes point of view.

The Perceptual Hash allows you to check the similarity between two images, from
small changes imperceptible to the human eye, including small changes of color and
form.

Some researchers have been working on new algorithms and improving some
existing ones over the years. Lin et al. [11] and Fridrich et al. [12] studies showed that
verify the differences of two coefficients resulting from the calculation of the DCT
(Discrete Cosine Transform), which is a formula used in processing digital and com-
pression algorithms. Although they worked on different implementations, both used the
DCT to calculate the Hash. Another algorithm is the SVD (Singular Value Decom-
position). Kozat et al. [13] proposed an algorithm to calculate the hash using this
formula. Perceptual Hash algorithms implementations are available for many different
languages and platforms. For the development of ADDII, we used the algorithm written
by Shepherd [14], which returns the Hamming Distance: given two strings, the
Hamming distance is the lower number of replacements required to transform a string
in another, or number of errors that turned on each other [15]. The Shepherd algorithm
[14] was based on the article published by Krawetz [16].

The Perceptual Diff, created by Yee et al. [17] allows the comparison of two
images, indicating whether they are similar or not and the number of different pixels.
The comparison method used for calculating metrics of processed images, extending
the VDP (Visible Differences Predictor) technique by Daly [18]. The comparison
performed by the Perceptual Diff shows the differences in pixel by pixel in each image
area available, taking into account the scanning angle. The algorithms and source code
can be accessed through the SourceForge site pdiff [17].

4 ADDII: Automatic Deformations Detection in Internet
Interfaces

The ADDII has four steps to perform the verification of pages. First, it loads the URL’s
of the pages to scanned, which should be available on web servers. The second step
called Screenshot Generator, performs the screenshot of the images of each URL in
three different browsers. The third step compares each screenshot of each URL gen-
erated in the above process, recording the result of the two algorithms implemented.
Finally, the last step present the results, showing how similar is each screenshot
between each other. As mentioned before, the ADDII implements two Visual com-
parison algorithms. Both have different metrics but with the same goal. Pointing out the
similarity between two images.

Automatic Deformations Detection in Internet Interfaces: ADDII 47



4.1 Process and Components Detail

The following diagram illustrates the communication between the components created
with ADDII.

Figure 5 illustrates the ADDII Architecture. The first lane shows the main process,
the second the storage layer, and the interaction with the file system in the third. The
lanes are also divided into three steps (columns), the first column generation screen-
shots, the second resizing images for the same resolution, and the third processing of
the image comparison algorithms.

When you run the ADDII, the first step is obtain the screenshots. This task leverage
Selenium API to take screenshots. This same step stores the image in a folder in the file
system and records the path in the database (lanes 2 and 3). The second step calculates
and resizes the three screenshots obtained in the previous step. The third and final step,
runs the two visual comparison algorithms implemented and collect the results recor-
ded in the database.

The implementation of the above components demonstrates the modularity of the
ADDII. The implementation of new browsers to obtain screenshots, through new future
plugins offered by Selenium API or components developed apart is possible. New
image comparison algorithms can also be added or improved in new versions.

4.2 Automatic Screenshots

To perform screenshots, ADDII utilize the Selenium Java API [19]. Selenium is an API
that allows developers to perform dynamic actions on pages and sites across browsers.

Fig. 5. Components and process (source: author)

48 L. Sanchez and P.T. Aquino Jr.



It is widely used in Web Application testing automation. Selenium API requires that
the browser being used is installed on the computer, the screenshots are generated
directly in the browser itself. The code snippet below illustrates the Webdriver API call
to perform the screenshot in Google Chrome browser.

4.3 Visual Algorithm’s Implementation

The ADDII implements two algorithms visual algorithm’s. Both have different metrics
but with the same goal. Pointing out the similarity between two images. The first
algorithm implemented, was created by the programmer Elliot Shepherd [14], using
Java language. In this work the algorithm is called pHash. The result of the algorithm is
a range of values that informs how equal are two images. To perform the verification of
images, it uses the DCT (Discrete Cosine Transformation) for low frequencies of the
image, as used in image compressors like JPEG format. The Hamming distance
algorithm is applied to calculate the difference between the Hash’s. When the algorithm
returns 0–10, means that the images are similar. If returning more than 10 means that
the images have significant differences.

The second algorithm is called Perceptual Image Diff [17], which the binaries are
distributed as free software by the GNU (General Public License). Its use is performed
through the command prompt, passing the path of the two images to be verified, as the
example below:

Automatic Deformations Detection in Internet Interfaces: ADDII 49



The algorithm returns a text saying that the images are similar. In verbose mode,
activated via parameter -verbose also returns the number of distinct pixels was found
between images. During the implementation of Perceptual Image Diff, was found that
the utility only compares images with similar resolution. However, the screenshots
generated by Selenium API had small differences in resolution. To resolve this point,
the ADDII implemented a call to ImageMagick API, which among its many functions
allows you to resize an image to a desired resolution. To configure the most appropriate
resolution, we chose a simple calculation of average pixel width and height of the three
screenshots generated. The formula is:

ImageMagick using the values calculated on the above formula converts the final
resolution of the screenshots. On ADDII the two algorithms are complementary. The
first shows that the images are similar, the second reports the amount of distinct pixels
and how different two images are.

In the next chapter will present the test scenarios for validation ad results obtained
with ADDII.

5 Results

In order to validate the effectiveness of ADDII, three (3) cases were prepared, con-
taining visual errors in at least one of the browsers. In addition, ten (10) sites also
checked from the Internet, just as validation of its operation outside of a controlled
environment. The definition of right or wrong in the results table was defined pHash
algorithm, the information of pixels being informed by the additional Perceptual Diff
algorithm in the analysis. For each test was selected a default browser, which is the
browser where the test or site in question works correctly. The default browser shown
in bold in the table below, which shows the test results.

As shown in Table 1, cases 1 and 3 showed similar results where the algorithm
pHash presented a score below 10, the Mozilla Firefox and Google Chrome presented
scores above 10 compared with Internet Explorer, as expected by the scenarios.
Analyzing the results obtained by the Perceptual Diff algorithm, it was found that is
consistent with results obtained by pHash, being possible to observe the large number
of distinct pixels when screenshots were compared with Internet Explorer. Case 2
showed a different result than expected. The pHash algorithm assigned a score above
10 for screenshots of Mozilla Firefox and Google Chrome browsers, but it was
expected a score below 10, due to the similarity of the images. Perceptual diff worked
as expected, showing the similarity of screenshots browsers Mozilla Firefox and

50 L. Sanchez and P.T. Aquino Jr.



Google Chrome and the high number of distinct pixels in comparison with Internet
Explorer.

On the websites checking, the scenarios of Sites 1, 3, 5 and 8 showed the expected
results, illustrating the problem of rendering in Internet Explorer. The scenarios of Sites
2, 4, 6, 7 and 10 showed different results than expected. This fact shows that mainly
pHash algorithm was not able to identify small differences in pages such as changes in
small letters and pictures or missing areas. This is due to the reduction of the image and
use only low frequency in the comparison process. The Perceptual Diff was more
assertive in these cases, highlighting the difference in pixels pages that showed the
highest difference, which in some cases showed more than 50 % of pixels different
from one browser to another, such as sites 4, 6 and 9.

The project is available for download and complete data analysis report in http://
www.fei.edu.br/*plinio.aquino/ADDII/.

Table 1. ADDII test cases results

Scenario BrowserA BrowserB Phash
score

Pdiff
(pixels)

Total
(pixels)

Result Expected
results

Case 1 Mozilla Firefox Google Chrome 5 3755 636582 Ok Ok
Internet Explorer Google Chrome 20 147729 636582 Error Error

Case 2 Mozilla Firefox Google Chrome 14 6706 807143 Error Ok
Internet Explorer Google Chrome 17 20607 807143 Error Error

Case 3 Mozilla Firefox Google Chrome 5 39022 636582 Ok Ok
Internet Explorer Google Chrome 17 348794 636582 Error Error

Site 1 Mozilla Firefox Google Chrome 7 66773 1169566 Ok Ok
Internet Explorer Google Chrome 15 218039 1169566 Error Error

Site 2 Mozilla Firefox Google Chrome 6 213276 1738232 Ok Ok
Internet Explorer Google Chrome 7 291147 1738232 Ok Error

Site 3 Mozilla Firefox Google Chrome 6 322894 2819295 Ok Ok
Internet Explorer Google Chrome 14 1235330 2819295 Error Error

Site 4 Mozilla Firefox Google Chrome 1 88033 908424 Ok Error
Internet Explorer Google Chrome 6 192627 908424 Ok Ok

Site 5 Mozilla Firefox Google Chrome 4 417848 1966032 Ok Ok
Internet Explorer Google Chrome 27 828384 1966032 Error Error

Site 6 Mozilla Firefox Google Chrome 6 285333 2014163 Ok Error
Internet Explorer Google Chrome 2 337863 2014163 Ok Ok

Site 7 Mozilla Firefox Google Chrome 2 92767 979755 Ok Error
Internet Explorer Google Chrome 2 119258 979755 Ok Ok

Site 8 Mozilla Firefox Google Chrome 4 282375 1803528 Ok Ok
Internet Explorer Google Chrome 21 1173685 1803528 Error Error

Site 9 Mozilla Firefox Google Chrome 13 1037731 2903274 Error Error
Mozilla Firefox Internet

Explorer
14 522682 2903274 Error Ok

Site 10 Mozilla Firefox Google Chrome 3 325485 1163376 Ok Error
Mozilla Firefox Internet

Explorer
4 321559 1163376 Ok Error

Automatic Deformations Detection in Internet Interfaces: ADDII 51

http://www.fei.edu.br/~plinio.aquino/ADDII/
http://www.fei.edu.br/~plinio.aquino/ADDII/


6 Conclusion

Based on the scenarios evaluated during the work, it was possible to prove the viability
of the ADDII as a tool for visual deformations caused by the mismatch in the inter-
pretation and rendering of HTML content. We have concluded that the goals of gen-
erating screenshots and use of algorithms for visual perception established early in the
project were achieved.

The examples with low/medium difficult (medium to high differences between the
screenshots) were successfully detected and represented about 50 % of total amount of
tests created to identify distortions caused by the browser. When selecting a standard
web browser, the user ADDII defines a base where your code has been tested, allowing
comparison with other browsers, allowing different combinations.

It was also possible to observe the greater efficiency of the Perceptual Diff algo-
rithm, which presented efficiently the non-equal pixels during the comparison. Algo-
rithm pHash had failed in tests where the visual differences were in small areas, which
makes it a not good choice for images with large viewable area. For future work, it
would be interesting to further explore the Perceptual Diff algorithm, delegating to the
ADDII user the task of defining the acceptable percentage of distinct pixels for a given
test, allowing the user to choose the acceptable level of difference to your pages. Even
was not the main reason of the research, compare the two algorithms was inevitable,
adding value to the research.

The result also demonstrates the correct decision to use both algorithms in a
complementary manner, as it enables the analysis of two different views.

Allow authentication pages for testing in secured pages and set the resolution of the
browsers performs a test are also desirable improvements in future versions.

Acknowledgment. To FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for
financial support.

References

1. Project Spartan announcement. http://blogs.msdn.com/b/ie/archive/2015/01/22/project-
spartan-and-the-windows-10-january-preview-build.aspx

2. Grosskurth, A., Godfrey, M.W.: Architecture and evolution of the modern web browser, 1–
24 (2006)

3. MSDN GetElementById reference. http://msdn.microsoft.com/enus/library/ie/ms536437(v=
vs.85).aspx

4. Eaton, C., Memon, A.M.: An empirical approach to testing web applications across diverse
client platform configurations. Int. J. Web Eng. Technol. IJWET Spec. Issue Empir. Stud.
Web Eng. 3(3), 227–253 (2007)

5. Choudhary, S., Versee, H., Orso, A.: WEB DIFF: automated identification of cross-browser
issues in web applications. In: 2010 IEEE International Conference on Software
Maintenance (ICSM) (2010)

52 L. Sanchez and P.T. Aquino Jr.

http://blogs.msdn.com/b/ie/archive/2015/01/22/project-spartan-and-the-windows-10-january-preview-build.aspx
http://blogs.msdn.com/b/ie/archive/2015/01/22/project-spartan-and-the-windows-10-january-preview-build.aspx
http://msdn.microsoft.com/enus/library/ie/ms536437(v=vs.85).aspx
http://msdn.microsoft.com/enus/library/ie/ms536437(v=vs.85).aspx


6. Zhu, J., Liu, X., Urano, Y., Jin, Q.: A novel WYSIWYG approach for generating
cross-browser web data. In: 2010 International Conference on Computational Science and
Its Applications, pp. 155–164

7. IMAGEMAGICK. http://www.imagemagick.org/script/index.php
8. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error

visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
9. PYSSIM. https://github.com/jterrace/pyssim
10. Stevens, M.: On collisions for MD5, June 2007
11. Lin, C., Chang, S.: A robust image authentication method distinguishing JPEG compression

from malicious manipulation. IEEE Trans. Circ. Syst. Video Technol. 11(2), 153–168
(2001)

12. Fridrich, J., Goljan, M.: Robust Hash Functions for Digital Watermarking Department of
Electrical Engineering, SUNY Binghamton, NY 13902-6000

13. Kozat, S.S., Mihcak, K., Venkatesan, R.: Robust perceptual image hashing via matrix
invariances. In: Proceedings of the IEEE Conference on Image Processing, pp. 3443–3446,
October 2004

14. Shepherd, E.: Perceptual Hash Algorithm. http://pastebin.com/Pj9d8jt5
15. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29. 147–160

(1950). http://www.caip.rutgers.edu/*bushnell/dsdwebsite/hamming.pdf
16. Krawetz, N.: A Picture’s Worth … Digital Image Analysis and Forensics Table of Contents,

pp. 1–31 (2007)
17. Yee, H., Corley, S., Sauerwein, T., Breidenbach, J., Foster, C., Tilander, J.: Perceptual

Image Diff. http://pdiff.sourceforge.net
18. Daly, S.: Visible differences predictor: an algorithm for the assessment of image fidelity. In:

SPIE/IS&T 1992 Symposium, vol. 1666 (1992)
19. SELENIUM. http://seleniumhq.org/

Automatic Deformations Detection in Internet Interfaces: ADDII 53

http://www.imagemagick.org/script/index.php
https://github.com/jterrace/pyssim
http://pastebin.com/Pj9d8jt5
http://www.caip.rutgers.edu/~bushnell/dsdwebsite/hamming.pdf
http://pdiff.sourceforge.net
http://seleniumhq.org/

	Automatic Deformations Detection in Internet Interfaces: ADDII
	Abstract
	1 Introduction
	2 Cross Browser Issue: Visual or Functional?
	3 Visual Comparison Algorithm's
	4 ADDII: Automatic Deformations Detection in Internet Interfaces
	4.1 Process and Components Detail
	4.2 Automatic Screenshots
	4.3 Visual Algorithm's Implementation

	5 Results
	6 Conclusion
	Acknowledgment
	References


