
Delegation Theory in the Design
of Cross-Platform User Interfaces

Dagmawi L. Gobena1(&), Gonçalo N.P. Amador2, Abel J.P. Gomes3,
and Dejene Ejigu1

1 Addis Ababa University, Addis Ababa, Ethiopia
dagmawi.Lemma@gmail.com, ejigud@yahoo.com

2 University of Beira Interior, Covilhã, Portugal
gamador@it.ubi.pt

3 Instituto de Telecomunicações, Covilhã, Portugal
agomes@di.ubi.pt

Abstract. The amalgamation of various technologies to support the needs of
new computing models has become prevalent in computing environments like
ubiquitous computing. Amalgamation means here heterogeneity caused by not
only the coexistence of various devices in the same computing environment, but
also the diversity between software, users as well as interaction modalities. The
platform heterogeneity together with additional needs of interaction modalities
and the proliferation of new technologies pose unique challenges for user
interface (UI) designers and developers. We consider the problem of hetero-
geneity as a demand of collaboration between platforms (device and system)
that are owned or controlled by a human user. Hence, we drive the concept of
delegation to be implemented in a peer-to-peer model, where one peer (known
as delegator) delegates another peer (known as delegatee) to run a UI (or a
single interaction-modality) on its behalf. Thus, the delegatee uses its own
capabilities to present the required UI or interaction-modality.

Keywords: Cross-platform UI � UI migration � Distributed UI

1 Introduction

Delegation is the act of appointing others in order to discharge a certain responsibility
on behalf of the appointer. The concept of delegation may appear in various forms and
within diversified context. Nevertheless, in any form of delegation, there are two parties
– the delegator and the delegatee. The former empower or appoint the later to dis-
charge a task on its behalf.

Accordingly, we argue that, an interaction might be held across a platform if a device
is appointed to run the user interface (UI) on behalf of another device while the service
of the task runs at the delegator end. This approach is similar to some existing services
such as remote desktop. But in remote desktop, identical interaction modality is con-
sidered between peers. We include the possibilities of assimilating diverse interaction
modalities using peer-to-peer model. Each peer is autonomous to apply the interaction
modalities as per their capabilities. For example, a visual modality might be converted

© Springer International Publishing Switzerland 2015
M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2015, LNCS 9170, pp. 519–530, 2015.
DOI: 10.1007/978-3-319-20916-6_48



into voice interaction at the peer delegated to run a certain UI. Thus, in this paper, we
extend the concept of delegation to be applied in developing cross-platform UI within
ubiquitous computing, which is characterized by heterogeneity of diverse elements.

The heterogeneity is caused by the coexistence of various devices in the same
computing environment as well as due to the diversity between software, users,
interaction modalities and environments.

It happens that two of the prominent approaches (i.e., UI distribution and UI
migration), usually followed in the development of cross-platform UI, focus on a
particular aspect of the heterogeneity – mostly the device [2]. But, while having het-
erogeneous environment, if the UI is generated based on a specific context (e.g., the
device, user, task, interaction modalities, etc.), it is likely that the usability of the
system would be reduced entailing several usability issues [1]. Furthermore, since both
UI distribution and UI migrations are often based on client-server model, the entire
cross-platform UI environment is subjected to single point of failure.

Rather, we consider the problem of heterogeneity as a demand of collaboration
between platforms (device and system) that are part of the computing environment
(e.g., wearable platform like a smart watch) or controlled by a human user.

We are motivated to develop the theory of UI delegation to sustain an alternative
approach in the development of cross-platform UI within a peer-to-peer model where
one peer (known as delegator) delegates another peer (known as delegatee) to run a
UI/interaction-modality on its behalf. This means that the delegatee is autonomous and
uses its own capabilities to present the required UI/interaction-modality. In other
words, the UI (resp., interaction modality) generated (resp., used) by the delegatee does
not need to be identical to delegator’s one, but has to perform the function to achieve
the same goal. Thus, we consider the concept of UI delegation as an opportunity to take
advantage of heterogeneity, so that interaction can be extended and usability can be
improved using the capabilities of the delegatee. For example, a list box widget can be
used “on behalf of” radio button for implementing “choice” concept in the interaction.
Similarly, instead of visually reading a text from the screen it can be converted to audio
and played if the capability exists. Thus, audio listening can be used “on behalf of” of
visual reading.

Summing up, the theory of UI delegation is presented in this paper to take
advantage of heterogeneity inherent to different devices, systems, users, interaction
modalities co-existing in a ubiquitous environment. In Sect. 2, we briefly review the
literature related to concepts of cross-platform UI and types of user interfaces. The
main constructs of theory of UI delegation are then discussed in Sect. 3. In Sect. 4, we
discuss the common interface language (CIL) as a protocol for realizing UI delegation
within the context of heterogeneous environment. Finally in Sect. 5 we made our
conclusion.

2 Literature Review

Ubiquitous computing comprises various platforms to achieve its goal. These platforms
are heterogeneous in type, technology, as well as function. For example, browsing the
Internet is a common function that can be supported by various computing devices in

520 D.L. Gobena et al.



the same environment, but such devices make usage of different browsers, display
sizes, screen resolutions, operating systems, etc. – even by different users and in
different contexts. Because of this, one of the characteristics of ubiquitous computing is
heterogeneity. [1] In this setting, users interact with devices implicitly or explicitly
using different interaction modalities [2].

The heterogeneity of the platforms can be felt at various levels and from different
perspectives: users, UI designers, as well as the usability of the system. With respect to
users, they are required to learn new UI and interaction modalities. Regarding the
usability of the system, the learning curve of the user could take more time until the user
becomes adequately proficient and efficient in dealing with the system. From designers’
perspective, they may be required to develop unique UIs for each platform [3].

Vanderdonckt [4] classifies the UI design for heterogeneous platforms as per the
situation that causes the diversity. Therefore, the UI design may focus on the presence
of multiple users or, alternatively, on the usage of multiple monitors, devices, plat-
forms, and displays [5].

Nevertheless, designing various versions of same UI for distinct platforms oper-
ating within the same environment entails several problems. Foremost, there would be
duplication of effort in the UI development process and also.

• changing/adding/removing features consistently across each platform could be
cumbersome [6], and this leads us to the problem of maintainability of each type of
platform;

• introducing new platform may require rework, since it is important to have new
design for supporting the newly added platform; and this would challenge the
scalability of the environment.

Another approach in cross-platform UI development is adapting a UI for the context of
a platform by automatically generating the UI or, alternatively, migrating UI [7–9]. In
this regards, UI distribution and UI migration have become two of the prominent
approaches. These approaches are followed as general UI development approaches
[10–14]. In [14], distributed and migratory UIs are discussed as two independent
concepts.

In UI distribution, UI elements are distributed across platforms, so that, in some
cases, this may create duplication of UI elements [14]. For example, in [15], a
multi-client (multi-platform) UI is presented using the model-view-controller
(MVC) architecture that stores different versions of a webpage (UI) on the server for
each predefined platform; and a controller is responsible for selecting one of the UI
versions that most fits a particular platform from which the users operate. Also, UI
distribution depends on predefined UI elements created at design time and available (or
distributed across platforms) with a certain platform/user context in mind.

The action of transferring a UI from one device (source) to another device (sink) is
called UI migration; the UI itself is known as migratory UI, which is “said to be
migratable if it has the migration ability” [16]. Migratory ability is the ability of a UI
element to be rendered at a remote peer. Hence, UI designers can decide on the part of
the UI that shall be migrated across platform as the need arise. Thus a UI can be
migrated partially or completely [10]. However, the interaction modality between the
peers remains the same. Hence mono-modality is often followed [10].

Delegation Theory in the Design of Cross-Platform 521



Migrating UI can help a user to continue computing on the go. Thus, unlike
distributed UIs, during migration not only the structure of the UI element but also their
content is maintained and migrated [10, 14]. For example, if a user selects a checkbox
on an interface before migration, then that checkbox shall appear as selected checkbox
across a platform where the UI is migrated and rendered.

Migratory UIs can be seen as a particular type of distributed UI. Berti et al. [10]
indicated that a UI migration process is mainly started on-demand. That is, if the
user desires to continue the interaction on a different platform, but using exactly the
same UI.

What distributed and migratory UI have in common is that they both run over the
client-server computing architecture. Consequently, in addition to the unsolved prob-
lems of scalability and maintainability, these UIs suffer from lack of reliability because
the UI server is a single point of failure.

In our opinion, the current cross-platform UI development methods need a different
dimension, where a UI can be automatically generated from runtime UI related
information about the device, the system and human user. It is here that delegation
theory and delegated UIs come into play.

The notion of delegation is applied in some areas of computing. For example in [17],
devices with less computing power benefits the computational power of delegated
devices with higher computational power for assigning and revoking privileges to users
in pervasive environment. Haddadi also developed a theory, in agent-based system, by
taking “an internal perspective to model how individual agents may reason about their
actions” [18]. This is further developed in [19], where it is stated that “in delegation an
agent A needs or likes an action of another agent B and includes it in its own plan, thus, A
is trying to achieve some of its goals through B’s action”. According to Castelfranchi
et al., A is said to be the “client”, while B is the “contractor” [19].

Since heterogeneous environment introduce several diversified platform capabili-
ties at each distinct peer, this opportunity shall be consider in improving usability of the
system by letting the user to interact through collaborated capabilities. Hence, we
foresee a different dimension of cross-platform UIs that can be realized by delegating a
peer to run a UI on behalf of another peer. For example, it is more convenient to
compose a message on the standard keyboard than on virtual keyboard of small
handheld device. Thus, thought the actual messaging service (e.g., SMS) can be
delivered via a mobile phone, for instance, the user could be more satisfied if allowed
to interact with its standard keyboard for the purpose of composing the message.
Hence, the usability can be improved if the mobile phone delegates the desktop only
for the HCI aspect of the messaging system.

According to the works and techniques we found in the literature, at the time of
automatically generating a specific UI across platform within a certain computing
environment, they focus only on one of the views (user, device or system). Though it is
common practice to consider the user and platform capabilities in UI development at
design time [20], this is not the case at runtime. For example, responsive web devel-
opment approaches as well as solutions presented by Zhang et al., in their pattern based
approach [7], the focus is on screen size adaptation. On the other hand, Jeffery et al. [6]
focused on the functionality of the appliances while Sauter et al. focused [15] only
consider the device type, just to mention a few works.

522 D.L. Gobena et al.



Therefore, we hypothesize that if each peer within the environment describe its UI
capabilities and store it locally, advertising or making them available to other peers
using the same protocol (i.e. CIL) whenever needed, and if there is at least another peer
(delegatee) that matches its capabilities literally or by transmutability, then it is possible
to run the UI or interaction modality on behalf of the delegator.

In this paper, delegating the build-ups of a UI on some device in the computing
environment means that we are not using the client-server computing model anymore,
but the peer-to-peer computing model. So,

1. since each peer is responsible to maintain and locally store its own capabilities, it is
always possible to authorize new peers signing up and in the environment; i.e., the
environment can be scaled up easily,

2. since the desired UI or interaction modality is generated during interaction, there is
no need to create the UI element at design time (e.g., a menu to access a certain
functionality), thus the environment would be easy to maintain.

Moreover, we assume a holistic approach of the UI by considering triplet views (the
user, device and system) in cross-platform UI, but not in partiality of any of the views.
This is especially useful when the peers communicate their capabilities during the
delegation process. Thus, delegated UIs sustain themselves on autonomy of the dele-
gatee, as well as on transmutability of capabilities between the delegator and the
delegatee.

3 Theory of UI Delegation

There are two decision makers in delegation: the principal (delegator) and the agent
(delegatee). The delegator decides whether to initiate the delegation or not while the
delegatee may be willing to participate in the delegation process or not [21]. Thus, both
the delegator and delegatee are autonomous. Hence, UI delegation shall take place
within a peer-to-peer model.

In UI delegation, the delegatee may initiate the delegation process on-demand or
automatically. The delegation process can be initiated on-demand if the user wants to
continue the interaction with the system but using another peer possibly owning more
suitable capabilities. For example, a user who wants to compose an email that would be
sent from its smartphone may wish to use a standard keyboard attached to his desktop
computer. Hence the user shall initiate the delegation process manually so that the
smartphone may delegate the desktop. Likewise, automatic delegation can be initiated
by the delegator if a peer believes it is deemed important to do so. For example, in a
situation where a user interacts within a context-aware system using the speech/audio
modality at a desktop in his/her office, once the user changes the location and enters in
to a noisy zone, a peer may decide to switch to the visual modality while delegating the
UI on handheld device so that the user may continue the interaction using visual
modality, providing that the delegatee peer is dressed up with the desired capabilities.

On the other hand, the delegatee peer might be willing or not to participate in the
delegation process. Furthermore, considering a heterogeneous environment where
peers are dressed up with various capabilities, and are able to support diversified

Delegation Theory in the Design of Cross-Platform 523



functionalities, not all the peers shall participate in an instance of a delegation process.
Accordingly, the peers can be classified as delegatee, candidate or neither. Thus, in the
delegation process:

A peer is said to be –

–

delegatee if it responds to a delegation request and necessarily 
selected by a delegator peer 
A peer is said to be candidate peer when it responds to a delegation request

Therefore, a reply to a delegation request indicates that the responding peer is
willing to take part in the delegation process.

In order to participate in UI delegation, each peer shall describe its supported
capabilities and store them locally. This can be done at design time and modified as
required to incorporate new capabilities or removing undesired ones. However,
selection of capabilities and rendering the UI accordingly can be done at runtime. The
local description is then used when a peer creates and transmits a delegation request,
and when a peer checks the degree of matching of its capabilities with other peer. The
former is responsibility of the delegator, while the latter is responsibility of the
delegatee.

3.1 Delegation Request

A peer willing to delegate another peer shall create a delegation request to peers within
the same environment in order to be aware of existing capabilities available across such
environment. Thus, a delegation request conveys a partial description of a UI or
interaction modalities in terms of the desired capabilities required to build a usable
interaction. Therefore, the delegator peer shall describe the required capabilities and
then send them as a delegation request for each peer in the environment. At this stage,
only basic information about the UI to be delegated is required.

For example, if there is a selection widget in the prospective UI to be delegated,
then only its basic information is required, but not the details, such as the content
(value) of the widget and the data structure (data type). As explained further ahead,
delegation requests and communication between peers can take place using a
XML-based protocol.

3.2 Degree of Matching

Having the delegation request in the form of XML description, each candidate peer
shall compute the degree of matching M between capabilities, which is used to
determine how much a peer’s capability resembles to what is requested by the dele-
gator peer. In this regards, three possible conditions can be considered:

1. There is identical capability
2. There is similar but not identical capability
3. The requested capability is not available.

524 D.L. Gobena et al.



In the case that the capability is identically supported by the candidate peer, the
value of M is incremented by 2; if the homologous capabilities are similar, the
value of M is incremented by 1; otherwise, the capability does not exist on
the candidate delegatee side, even using transmutation, so the value of M shall be
decremented to discourage the competing candidate peer so as to minimize the
chance of appointment as delegatee. Thus, after computing the value of M, each
candidate peer Pi returns Mito delegator as its value of M. Therefore, for a given
list of capabilities in the delegation request with size N, the maximum possible
value that Pi can attain (i.e. if all the capabilities in the delegation request iden-
tically matches the corresponding local capabilities maintained by the candidate
peer) is given by:

M ¼ 2N ð1Þ

On the other hand, if all the capabilities in the delegation request can be supported
by the candidate peer, using similar capabilities but not identical capability, then the
value of M would be:

M ¼ N ð2Þ

Therefore, suppose the number of candidate peers is n, then it is most appropriate to
select a peer with the highest degree of matching, which is given by

MAX ðM1; M2; . . .; MnÞ : 1\ i\n and N � Mi � 2N ð3Þ

Nevertheless, Eq. (3) is subjected to design decision and the UI developers might
decide letting the delegation to prevail if N < M, but if N ≈ M variation may occur with
respect to Eq. (3).

3.3 Flow of UI Delegation

The following flow of steps intends to clarify the idea of UI delegation that is presented
as within a heterogeneous environment.

1. user starts operation at platform pi ði ¼ 1; 2; . . .; nÞ;wheren is the number of plat-
forms within the environment;

2. after a while, the user changes its location;

Thus, the UI delegation holds:

–
–

if there exists an active peer that responds to delegation request, and
if Eq. (3) is satisfied.

Delegation Theory in the Design of Cross-Platform 525



3. platform pi is aware of the new user location (for example, the absence of UI can be
traced/anticipated if the user is not responsive in a certain given time, and location
service can be then used to learn about the new location of the user)

4. platform pi broadcasts delegation request message Mpi, given by Eq. 4

Mpi ¼ di; hi; sif g ð4Þ

where d, h and s stand for the desired device, human and system capabilities
respectively, that should be considered while applying the UI or interaction modality at
the delegatee end;
5. platforms within the environment advertise their degree of matching with Mpi;
6. platform pi delegates device pj since pj better supports the desired capabilities;
7. platform pj uses the description of Mpi to generate as per the locally maintained

capability

Mpj ¼ dj; hj; sj
� � ð5Þ

8. user operates at platform pj using the delegated UI.

Therefore, since not all platforms in the environment are the most adequate for the
delegation, the respondent peer that most fits the required capability will become the
delegatee.

4 The CIL Protocol

In order to maintain the collaboration between peers, as well as to standardize how
capabilities are represented and exchanged between peers, the peers shall use the CIL
(Common Interface Language) as a protocol for describing: the capabilities, the pre-
sentation, and the message to be exchanged between the peers.

Furthermore, each description shall abide the syntax and semantics as defined in the
CIL-definition.

We create CIL-definition using XML-schema for setting the constraints and
structure of the descriptions that would be used between the peers. Hence, description
for representing the UI, message, and capabilities shall be validated as per the CIL-
definition.

The CIL-definition is created using three broad aspects deemed to be important in
any HCI: the human, device and system. As indicated in the following fragment of the
XML-schema, these three views are represented as the top-level elements of a tax-
onomy for cross-platform interfaces, so that any description shall be created under
either of these elements.

526 D.L. Gobena et al.



The _HumanBeingView and _DeviceBeingView are used to define the
required elements and respective constraints useful to describe human and device
capabilities. For example, a human capability is the eye sight, so we need to specify
whether or not a given individual is trichromat or colorblind.

Thus, child elements are created under each of those top-level elements in the
schema, which are useful to describe and represent:

• the human physical interaction capabilities;
• the device interaction modalities, with a focus on the input and output mechanisms

possibly supported by the device

However, it is not important to create an exhaustive description of capabilities using all
the elements defined within the schema. Rather, each peer shall locally describe and
store its own capabilities using the same schema, so that such list of capabilities can be
used.

Delegation Theory in the Design of Cross-Platform 527



• when determining the degree of matching M after receiving a delegation request.
• to describe UI that to be run at a certain delegatee end

For example, if a delegator desires to run a UI that is meant to support a colorblind
user, then part of the delegation request description shall include this information under
the _HumanBeingView.

The presentational description (or description of the running UI/interaction
modalities) has to be created in accordance to the elements and the respective con-
straints set under _SystemBeingView. Nevertheless, the elements under this ele-
ment can be used to describe platform capabilities related to services useful for HCI as
well. For example, a text-to-speech conversion capability that may exist at one of the
peer can be described under the _SystemBeingView within the presentation
element.

The extent how CIL is used might vary at different level of the delegation process.
For example, though we include all the possible generic information that can be
required and useful to describe UIs or interaction modalities using XML-schema, it
may not be important to use the entire structure; for instance for delegation request.

For example the above schema can be useful to describe the basic information
about a particular widget that severs as a build-up of the UI. In this case, the Widget is
an element that is defined under the WidgetSet, which is used to represent the form
of explicit interaction. And the Widget element is further described by its class, using
the WidgetClass element. Other parts of the schema shown in the above code are
useful for defining the presentational description, but can be less relevant within the

528 D.L. Gobena et al.



delegation request. Therefore, each peer within the environment, where UI delegation
is applied, has to describe its capability using as per the CIL-definition and store it
locally; and when required a peer can advertise its capability in the form of delegation
request or for computing the degree of matching in response to delegation request.

It is important to note that the entire schema we created for CIL can be updated and
improved by incorporating new elements to include new UI style or interaction
modalities. But peers participating in the UI delegation process shall describe their
capabilities and store is locally using the same version of the schema, known as CIL-
definition. At this stage of our study, four classes of widget are identified: selec-
tion, text, view and switch. However, it has to be noted that this classes may
appear in any form across various platforms. For example, choice can be presented in
the form of radio, checkbox, list box, etc. Thus what is needed during delegation
request is the basic information that shows whether the candidate peer supports the
selection class or not.

5 Conclusion

In the theory of UI delegation we have identified four constructs. The concept of CIL is
the main construct that is useful to realize the communication and collaboration
between peers. Yet, the peers may appear as delegator, delegatee or candidate peer.
Thus peer type is the second construct in the theory. However, the distinction between
delegatee and candidate peer related to two other important constructs: delegation
request and degree of matching. We argue that it is possible to generate at runtime a
more usable UI across platforms as well as build scalable and maintainable hetero-
geneous environment by following the theory of UI delegation. Nevertheless, dele-
gation is based on trust, thus more work has to be done regarding trust management
between the delegator and delegatee. Also, though broadcasting the delegation request
for all the peers is one option, it could be bandwidth intensive. Therefore, how to select
most appropriate candidate peer remains as an issue in trust computing for future
works.

References

1. Byeong-Ho, K.: Ubiquitous computing environment threats and defensive measures. Int.
J. Multimedia Ubiquit. Eng. 2(1), 47–60 (2007)

2. Albrecht, S.: Implicit human computer interaction through context. Pers. Technol. 4(2–3),
191–199 (2000)

3. Meixner, G.: Past, present, and future of model-based user interface development. i-com 10
(3), 2–11 (2011)

4. Vanderdonckt, J.: Distributed user interfaces: how to distribute user interfaces elements
across users, platform and environments. In: The 11th Congreso Internacional de Interacción
Persona–Ordenador (Interacción 2010), Valencia, Spain, pp. 3–14 (2010)

Delegation Theory in the Design of Cross-Platform 529



5. Melchior, J., Grolaux, D., Vanderdonckt, J., Van Roy, P.: A toolkit for peer-to-peer
distributed user interfaces: concepts, implementation and applications. In: EICS, USA,
pp. 69–78 (2009)

6. Nichols, J., Myers, B.: Creating a lightweight user interface description language: an
overview and analysis of the personal universal controller project. ACM Trans. Comput.-
Hum. Interact. 16(4), 17–37 (2009)

7. Radu, V.: Application. In: Radu, V. (ed.) Stochastic Modeling of Thermal Fatigue Crack
Growth. ACM, vol. 1, pp. 63–70. Springer, Heidelberg (2015)

8. Nilsson, E., Floch, J., Hallsteinsen, S., Stav, E.: Model-based user interface adaptation.
Comput. Graph. 30(5), 692–701 (2006)

9. Ghiani, G., Paternò, F., Santoro, C.: On-demand cross-device interface components
migration. In: Proceedings of the 12th international Conference on Human Computer
Interaction with Mobile Devices and Services, MobileHCI 2010, Lisboa, Portugal, pp. 299–
308 (2010)

10. Berti, S., Paternó, F., Santoro, C.: A taxonomy for migratory user interfaces. In: Gilroy, S.
W., Harrison, M.D. (eds.) DSV-IS 2005. LNCS, vol. 3941, pp. 149–160. Springer,
Heidelberg (2006)

11. Sørensen, H., Raptis, D., Kjeldskov, J., Skov, M.: The 4C framework: principles of
interaction in digital ecosystems. In: ACM International Conference on Pervasive and
Ubiquitous Computing (UbiComp 2014), USA (2014)

12. Elmqvist, N.: Distributed user interfaces: state of the art. In: Gallud, J.A., Tesoriero, R.,
Penichet, V.M.R. (eds.) Distributed User Interface. Human-Computer Interaction Series,
pp. 7–12. Springer, London (2011)

13. Frosini, L., Paternò, F.: User interface distribution in multi-device and multi-user
environments with dynamically migrating engines. In: EICS, USA, pp. 55–64 (2009)

14. Paternò, F., Santoro, C.: A logical framework for multi-device user interfaces. In: The 4th
ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2012),
Denmark, pp. 45–50 (2012)

15. Sauter, P., Vogler, G., Specht, G., Flor, T.: A model–view–controller extension for pervasive
multi-client user interfaces. Pers. Ubiquit. Comput. 9(2), 100–107 (2005)

16. Grolaux, D., Van Roy, P., Vanderdonckt, J.: Migratable user interfaces: beyond migratory
interfaces. In: The First Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services, MOBIQUITOUS 2004, Cambridge, pp. 422–430 (2004)

17. Pham, A.: Privilege delegation and revocation for distributed pervasive computing
environments. In Abraham, G., Rubinstein, B., (eds.) Proceedings of the Second
Australian Undergraduate Students’ Computing Conference, pp. 136–141 (2004)

18. Haddadi, A.: Communication and Cooperation In Agent Systems: A Pragmatic Theory.
Springer-Verlag, New York (1996)

19. Castelfranchi, C.: Towards a theory of delegation for agent-based systems. Robot. Auton.
Syst. 24(3), 141–157 (1998)

20. Mayhew, D.: The Usability Engineering Lifecycle: A Practitioner’s Handbook for User
Interface Design. Morgan Kaufmann Publishers, San Francisco, USA (1999)

21. Bendor, J., Glazer, A., Hammond, T.: Theories of delegation. Annu. Rev. Polit. Sci. 4, 235–
269 (2001)

530 D.L. Gobena et al.


	Delegation Theory in the Design of Cross-Platform User Interfaces
	Abstract
	1 Introduction
	2 Literature Review
	3 Theory of UI Delegation
	3.1 Delegation Request
	3.2 Degree of Matching
	3.3 Flow of UI Delegation

	4 The CIL Protocol
	5 Conclusion
	References


