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Abstract. Air Traffic Management is responsible for guiding airplanes as
efficiently and safely as possible at and between airports. A team of air traffic
controllers is required to make good decisions at all times, even under high
stress. The complexity of their tasks requires frequent and high-quality training
to ensure constant high performance of the team. In this paper, we present work
in progress on a novel training tool based on the Optimization-based Virtual
Instructor. The tool we propose combines mathematical optimization with
visualization, and is expected to improve the training quality while reducing the
training cost. We discuss the new Virtual Instructor concept and introduce the
necessary state-of-the-art advances needed for both visualization and mathe-
matical optimization to make it work. Two early-stage visualization prototypes
are presented. The paper concludes with a possible way forward in the devel-
opment of the Virtual Instructor.

Keywords: ATM � Training � Optimization

1 Introduction

The increase in air transportation is an important factor for economic growth. However,
the current Air Traffic Management (ATM) systems are already approaching
their capacity limits and need to be reformed to meet the demands of further growth,
sustainability, increased safety, predictability, and efficiency [1]. Coping with these
challenges requires not only new automation tools and enhanced procedures, but also a
rethinking of Air Traffic Controller (ATCO) training [2].

The real-time simulation (RTS) of work scenarios is considered a cost-effective
method of training new and experienced ATCOs to safely manage the efficient flow of
aircrafts [3]. One of the great advantages of RTS, compared with other learning aids, is
the ability to freeze and replay scenarios directly, enabling instructors to provide timely
feedback related to a given traffic situation, as well as on the quality of the decisions
made by the trainee [4]. However, there are several disadvantages of RTS: it requires
the full attention of an instructor and it disrupts the trainees, making it difficult for them
to progress and positively reinforce their learned skills [2]. This can have negative
impacts on the achieved learning quality and can consequently affect the operative
productivity in Air Traffic Control (ATC) rooms. To overcome this, a self-assessment
training tool has been developed that enables ATCOs to review their workflow and
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performance at the individual and team level [5]. The results show visual feedback
consisting of workflow graphs and radar replays can generate valuable insights that
enable self/peer assessments during ATC training. However, the users of the tool
expressed a need for the inclusion of a presentation of better (optimal) solutions/decisions
that could be used to improve self-learning or group discussions.

In combinatorial complex environments like ATM, it is very unlikely to find
optimal solutions/decisions manually. As the many possible decisions and objectives
should be considered simultaneously mathematical optimization excels. We believe a
training tool based on visualization along with discrete optimization models and
algorithms will improve ATCO training. We envisage such a tool will help ATCOs
gain an understanding of the effects of their decisions on team performance when using
an optimization-based algorithm as a virtual instructor.

This paper presents our ongoing development of such a tool. Section 2 describes
the related work done in the area of visualization, learning, and optimization. Section 3
presents our optimization-based virtual instructor, and Sect. 4 concludes and proposes
future work.

2 Related Work

To develop a training tool capable of presenting an optimal solution, we must draw
from the related work in the areas of visualization, learning, and optimization. This
section briefly presents the related work and our research questions.

2.1 Visualization and Learning

Whereas traditionally, the term visualization was used to mean ‘constructing a visual
image in the mind’, it now means ‘a graphical representation of data or concepts’ [9].
Visualization has been used to present the data, support reasoning, and make predic-
tions. With the development of the technology and advancements of our abilities to
interact with information, the need to understand the benefits of different presentation
forms for human cognition has arisen. Scaife and Rogers proposed a framework to
investigate the cognitive value of external graphical presentations, such as maps,
diagrams, drawings, and graphs [10]. The main cognitive benefits of using such pre-
sentations are externalizing to reduce memory load, computational offloading, anno-
tating, and cognitive tracking. Externalization to reduce memory load includes personal
reminders and calendars. Computational offloading includes using a pen and paper for
calculations. Annotations and cognitive tracking include modifying representations to
reflect changes, such as reordering or crossing tasks off a to-do list [11].

Research has been conducted on understanding the effects of multiple representa-
tions. In his Design, Function, Task (DeFT) framework, Ainsworth integrates research
in learning, the cognitive science of representation, and constructivist theories of
education. He argues that effectiveness of multiple (external) representations can be
best understood by considering the characteristics of representations, the role of rep-
resentations in learning, and the cognitive tasks of learners when interacting with
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representations [12]. Furthermore, it has been argued that studies evaluating informa-
tion visualization should focus on the following three aspects, namely users, tasks, and
tools (visual representations) [13].

Research has also been done on how visualization techniques can support the
teaching and learning of optimization algorithms [14]. To enhance the learning of the
Golden Section method, a tool was developed that visualizes the process of bracketing
the optimal solution, the iterative reduction of the interval size, and the effectiveness of
using the Golden Section ratio. The results indicate the usefulness of such tools.

2.2 Optimization

In optimization, the problem faced by the decision maker is modelled mathematically
with the use of constraints, variables, and objectives. When this is done, an algorithm
then evaluate a large amount of plausible solutions to the problem to identify the
optimal or near-optimal solution. In the context of this paper, a solution describes the
decisions that could be implemented.

In more detail, the mathematical model consists of a set of variables, and for each
variable, a set of possible values the variable can take. These variables are connected
through a set of constraints that restrict which value the variables can take. In general, a
feasible solution is the simultaneous assignment of a value to every variable in such a
way that no constraints are violated. An objective function is then used to determine the
optimal solutions (or good ones) by evaluating the quality of feasible solutions. This
objective function consists of a set of decision variables with associated weights of
importance (e.g., the importance of route length compared to time used). The feasible
solutions are then evaluated through the objective function, and those with the best
objective function score are considered the best solution.

Mathematical optimization is used in our daily lives, for example: when asking our
GPS navigation system to find the shortest (or fastest) route from point A to point B.
Calculating optimal routes manually is a combinatorial, complex, and time-consuming
task, while mathematical optimization techniques in our navigation systems often
provide the optimal route in mille-seconds.

The ATCO is faced with what mathematicians classify as a hard combinatorial
problem where it would be too time-consuming for an ATCO to evaluate all the
possible combinations of airplane routes manually. However, while the controller can
often find feasible combinations of routes manually (due to the large amount of
solutions), it is highly unlikely they would be efficient considering the sheer number of
existing combinations—it’s a combinatorial problem, where the amount of combina-
tions to investigate increases exponentially with the problem size.

For example, an ATCO assigning existing fixed routes to airplanes from the gate to
the runway would have 720 combinations to evaluate when dealing with only six
planes and six routes. While some of these combinations (plans) might violate some
given constraints (e.g., maximum speed, crossing restricted area, etc.), others do not
and are thereby feasible plans. To find the optimal plan, all feasible plans must be
evaluated against each other on properties that characterize a good plan (e.g., min.
delay, min. distance, preferences, etc.). While six airplanes and six routes is a small
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problem, as the problem grows in size, the combinations grow exponentially (see
Table 1). Note that a realistic ATC problem is much more complex.

It is in these types of combinatorial problems where optimization algorithms excel
over humans by quickly searching through a large number of combinations and
identifying efficient or optimal ones by evaluating each possible solution against others
with respect to several (and often conflicting) criteria that characterize a good solution.

The literature on optimized air traffic control for an airport is quite wide, and we
refer the reader to recent surveys [6, 7]. Relevant recent progress has been on opti-
mizing different routing phases (surface, departure, and arrival phases) simultaneously
and only need on average 15 s (on a laptop) to find the optimal solution. In [8], the
authors explain the application and results of the optimization model and algorithms
that decide the trajectories of all airplanes in time and space at the Hamburg airport.
Afterwards, these optimal trajectories produced by the algorithm were compared with
the trajectories made by the controllers during training for three simulation runs. The
algorithm and the controllers were given exactly the same input from the simulator to
ensure as fair a comparison as possible; the algorithm and controllers considered the
same safety rules (runway separations, airplane turning restrictions, etc.) with the
objectives of “minimizing total taxi time” and “maximizing punctuality”. The results
showed optimization-based decision support can provide significant improvements to
total taxi time and punctuality, while still maintaining the same level of safety. The
improvement potential for the controllers against the algorithm on taxi time was on
average 30 %, while punctuality can be improved by 60 %. In addition, without
explicitly modelling it, the maximum number of airplanes simultaneously moving on
the taxiway can be reduced by 45 %, which would imply a decreased risk of collisions.

The main reason for the performance difference between ATCOs and the algorithm
is the capability of the algorithm to make more globally coordinated decisions than the
ATCO team. Each individual controller is only responsible for a part of the airport.
This compartmentalization of responsibility within the ATCO team is needed to
manually cope with the complexity of the task. However, its downside it that it
removes the globally view of the problem and most likely also some globally efficient
solutions are removed. One really god solutions for one ATC might create havoc ATC
down the line. Optimization techniques do not have this disadvantage.

2.3 Research Questions

The research conducted in the areas of visualization and learning forms a solid basis for
our understanding of the effects of different presentation forms on learning. However,

Table 1. Route assignment, a combinatorial problem

Number of airplanes Number of routes Number of combinations

6 6 720
12 12 479001600
25 25 15511210043330985984000000
50 50 3.0414093e+64
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there is a lack of knowledge on how to present pedagogically alternative solutions in
complex domains, such as ATM. According to our knowledge, there is a large research
gap when it comes to optimization used for learning.

This leads us to the following research questions:

• RQ1: How can we visually present alternative (optimal) decisions and impact of
these decisions in order to improve learning?

• RQ2: If and how optimal solutions proposed by the mathematical optimization can
improve learning? How can we identify the most beneficial and learnable changes
to the decisions made by the controller given the optimal solution?

3 Virtual Instructor

To enhance learning in the ATM context, we envisage a tool called the virtual
instructor, which will enable trainees to replay their decisions, present the impact of
these decisions on system performance, and present the alternative solutions in a
pedagogical way. This section describes the requirements for such a tool.

An important concept in the ATM context is situation awareness (SA). SA is ‘the
perception of the elements in the environment within a volume of time and space, the
comprehension of their meaning, and the projection of their status in the near future’
[8]. Work has been done on the development of design guidelines for SA [9]. In the
context of air traffic control, SA usually means the picture, a mental representation of
the situation the controllers have on which they base their decisions. A training tool for
ATCOs should aim to increase situation awareness.

The above-described frameworks [10–13] identify the main components that
should be understood when using visualization in learning. Designing an efficient
learning tool for ATCOs should build on:

• A good understanding of users. This includes different levels of expertise in their
job, such as general ATCO experience, as well as experience with a particular
airport, proficiency with the tools they are using, and cognitive abilities, such as
spatial ability and associative memory. Standard tests like Kit of Factor-Referenced
Cognitive tests1 can be used.

• A good understanding of the tasks conducted in a learning situation with no
instructor.

• A good understanding of potential cognitive benefits of different presentations. The
above-described benefits, design objectives, and design heuristics [11, 12] can be
used.

• Identifying the learning benefits of different information, presentation forms, and
their combinations.

We started by identifying two possible scenarios. In the first scenario, the trainees
replay their actions, receive feedback from the system at different decision points based

1 http://trec.nist.gov/data.html.
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on the consequences of their decisions, and are presented with an alternative (better)
solution. For example, one can present the information on the reduction of taxi time
achieved by changing the block-off time and present the movements at the airport in
that case. In the other scenario, one can guide trainees to make better decisions by using
reminders. For example, one can remind ATCOs of the optimal time for a plane to
leave the gate.

The preliminary exploration of the above-described scenarios has been done in two
student projects. The first one developed and evaluated a post-simulation training tool
that presented an animation of the plane movements based on what the trainees did in
the previous training session. The tool presents some critical decision points on a
timeline, as well as an explanation of the how these decisions can be improved [14].
During the evaluation, several participants pointed out they would prefer an animated
presentation of the optimal solution instead of its textual description (Fig 1).

The other project focused on informing the controllers when to leave the gate, as
well as which route should they take [15]. Visualizing the state of a plane (more than
5 min to off-block: red; less than 5 min: orange; time for off-block: green) and pre-
senting a timer was proposed. These two scenarios will further be detailed to provide a
list of tasks the trainees perform when learning with the help of an optimization tool.

To identify the learning benefits of different information, presentations forms, and
their combinations, a set of measures capturing the learning effect in this context must
be proposed. Presenting to ATCOs an alternative way of doing their job is not only a

Fig. 1. Flashback tool. from [14]. The green box on the left presents an explanation (early
off-block in this case). Different decisions that can be improved are presented on the timeline
(Color figure online).
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question of presentation form, but also a question of the selection of data to be pre-
sented. Whereas traditional studies on the usefulness of visualization in learning
compare the effects of two different ways of presenting the same information (e.g.,
comparing an animated and static condition like in [16]), we must also identify the
information that will be presented. We assume some solutions generated by an opti-
mization algorithm are more difficult to explain and less intuitive than others.

The virtual instructor would need to suggest the most optimal sequence of changes,
starting from the decisions made by the controller. How do we identify this sequence
was the subject of research question 2 (Sect. 2.3). Furthermore, for this, we use opti-
mization techniques. A change is defined as a set of decisions that must be modified to
move from one solution to another. Two different types of objectives determine
whether one change is better than another. The first objective is maximizing perfor-
mance improvement. In our case, we would like to make changes that improve aspects,
such as total taxi time and punctuality. The second objective is more related to the
learnability of the changes themselves. Are the proposed changes easily understood by
the trainee so that in the future, he or she would take the more performant decision?
How this learnability can be measured and formalized is still a subject for future work.
However, one can imagine the learnability of the changes depends on multiple factors,
such as:

1. The number of decisions that are different from the original decisions;
2. How far into the decision tree the proposed changes propagate;
3. How complex the actions are to perform to implement in practice the change.

We assume a suitable learnability distance measure can be defined based on the
above and possibly other factors. The larger the learnability distance between two
solutions, the more difficult it would be to learn the changes to move from one solution
to another. Hence, the second objective boils down to minimizing this distance from
the initial solution when selecting changes to improve the first objective. The two
objectives will often be conflicting and a suitable balance between them must be
achieved. Furthermore, we want to avoid changing a solution such that it becomes
unfeasible, i.e., two airplanes crash. In Fig. 2, the optimization problem to find the
optimal sequence of changes is illustrated. In summary, the algorithm must find the best
possible solution (in terms of the first objective), which can be reached by applying a
sequence of changes from the starting solution. The sequence of changes should result
in the lowest possible learnability distance from the starting solution.

This mathematical optimization problem is not easily solved and to the best of our
knowledge, not much relevant research exists. Although used in another context
(solving vehicle routing problems), distance-based path relinking is an approach [17]
that shows potential for several reasons. Path relinking assumes a good solution exists
on the path between a so-called “incumbent” solution and the “guiding” solution [18].
The former would be the manual or initial solution, while the optimal solution is the
latter. There exists an exponential number of paths or sequences of changes between
these solutions. The resulting path is chosen by making local changes to the solution,
and a distance measure is used to ensure it moves further away from the incumbent
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solution. In our case, we would try to stay as close as possible to the incumbent
solution. This looks like a promising path to solve such optimization problem but
further investigation is needed.

4 Conclusions and Future Work

In this paper, we proposed the development of a novel concept to improve training of
decision maker in complex environments. We focused on ATC as a use case and
introduced the optimization-based Virtual Instructor. The Virtual Instructor is part of a
training tool that can generate challenging scenarios or can replay historic ones. The
latter can be used, for example, at team meetings when traffic from the previous day is
discussed. The optimization-based Virtual Instructor uses discrete optimization to
analyze the decisions made by the trainee and to propose improvements without the
need of a physical instructor to be present. The tool is able to run on a standard PC so
the training could take place at work, workshops, or at home.

This paper describes relevant concepts from two different research areas, namely
HCI and Optimization, to develop such a Virtual Instructor. We argue that it would
benefit training to combine and advance the state-of the art in visualization for learning
and optimization in a learning environment.

As a first step, we give an initial specification and indicate where the state-of-the-art
needs to be advanced. The main challenge is to identify the groups of individual’s
decisions which can not only significantly improve the team performance, but also be

Fig. 2. Finding the optimal sequence of changes
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explained and visualized in a way that enhance learning. Therefore, we identified
theoretical frameworks and algorithms that form the basis for exploring benefits of
optimization in ATCO training. In addition, we prototyped visualizations based on two
usage scenarios of the virtual instructor. We presented the improvement potential of
using optimization algorithms. Then we identified factors that affect the learnability of
the decisions proposed by the algorithm. Finally, we describe a suitable algorithm that
would find a sequence of changes to the controller’s decisions that are both learnable
and result in a solution closer to the optimal one.

We plan to formalize different learnability distance metrics, to develop different
algorithms to suggest learnable solutions, and their visualizations. Explorative studies
are needed for investigating the effects of: i) the efficiency and the accuracy of the
algorithms, ii) the different learnability distances, iii) the different visualization forms,
and their combinations on learning. We are going to conduct several studies with
ATCO and ATCO trainees to explore this.

Acknowledgements. We are grateful to the students of Department of Informatics, University
of Oslo who prototyped the scenarios we described in the paper and to the all participants in our
studies.
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