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Abstract. To support the re-use of business process models, an emerg-
ing trend in Business Process Management, it is crucial to assist cus-
tomers during deployment. We study how to do this for an important
class of business processes, called security-sensitive workflows, in which
execution constraints on the tasks are complemented with authorization
constraints (e.g., Separation of Duty) and authorization policies (con-
straining which users can execute which tasks). We identify the capability
of solving Scenario Finding Problems (SFPs), i.e. finding concrete exe-
cution scenarios, as crucial in supporting the re-use of security-sensitive
workflows. Solutions of SFPs provide evidence that the business process
model can be successfully executed under the policy adopted by the cus-
tomer. We present a technique for solving two SFPs and validate it on
real-world business process models taken from an on-line library.

1 Introduction

Organizations rely on Business Process Management (BPM) [22] to achieve
certain business objectives by orchestrating workflows, which are collections of
sequences of tasks executed by human or software agents. An increasingly impor-
tant class of workflows is that of security-sensitive workflows [1], in which task
execution constraints are complemented with an authorization policy (defining
which users can execute which tasks) and a set of authorization constraints (fur-
ther restricting which users can execute some sub-sets of the tasks).

Example 1 (Trip Request Workflow (TRW)). A typical example of a security-
sensitive workflow has the goal of requesting trips for employees in an organi-
zation. It is composed of five tasks: Trip request (t1), Car rental (t2), Hotel
booking (t3), Flight reservation (t4), and Trip validation (t5). The execution of
the tasks is constrained as follows: t1 must be executed first, then t2, t3 and
t4 can be executed in any order, and when all have been performed, t5 can be
executed. Overall, there are six possible task execution sequences in which the

This work has been partly supported by the EU under grant 317387 SECENTIS
(FP7-PEOPLE-2012-ITN).

c© IFIP International Federation for Information Processing 2015
P. Samarati (Ed.): DBSec 2015, LNCS 9149, pp. 85–100, 2015.
DOI: 10.1007/978-3-319-20810-7 6



86 D.R. dos Santos et al.

Fig. 1. TRW in (extended) BPM notation

first is always task t1, the last is always task t5, and—in between—there is any
one of the six permutations of t2, t3 and t4.

It is also required that each task is executed under the responsibility of a user
who has the right to execute it according to some authorization policy. To prevent
frauds, five authorization constraints—called Separation of Duty (SoD) in the
literature; see, e.g., [8]—must also be enforced: each one of the following pairs
of tasks must be executed by distinct users in any sequence of task executions
of the workflow: (t1, t2), (t1, t4), (t2, t3), (t2, t5), and (t3, t5).

This workflow can be modeled in a graphical notation such as BPMN [15]
as shown in Fig. 1: the circle on the left represents the start event (triggering
the execution of the workflow), whereas that on the right the end event (termi-
nating the execution of the workflow), tasks are depicted by labeled boxes, the
constraints on the execution of tasks are shown as solid arrows (for sequence
flows) and diamonds labeled by + (for parallel flows), the fact that a task must
be executed under the responsibility of a user is indicated by the man icon inside
a box, and the SoD constraints as dashed lines labeled by �=. ��
One of the most important problems for security-sensitive workflows is the Work-
flow Satisfiability Problem (WSP) [8], which consists of checking if there exists
an assignment of users to tasks such that at least one task execution sequence in
a workflow successfully terminates while satisfying all authorization constraints
and the authorization policy. Several papers (see, e.g., [8–10,21]) have provided
solutions to the WSP, which are becoming less and less satisfactory because
of the recent trend in BPM of collecting and re-using large numbers of busi-
ness process models [11,19,23]. For instance, the SAP HANA Workflow1 is a
BPMN-based solution that allows for the creation of business process models
(templates) that can be deployed and operated in different contexts. At deploy-
ment time, what is crucial for customers re-using a template from the library
is to understand whether it can be successfully instantiated with the authoriza-
tion policy adopted by their organization. This means that customers want to
scrutinize concrete execution scenarios showing the termination of the instanti-
ated business process model by giving evidence that some of the employees can
successfully execute the various tasks in the workflow.

Example 2. A simple situation in which the TRW in Example 1 can be deployed
is a tiny organization with a set U = {a, b, c} of three users and the following
1 http://help.sap.com/saphelp hana opint/SAP OPInt Developers Guide.pdf.

http://help.sap.com/saphelp_hana_opint/SAP_OPInt_Developers_Guide.pdf
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authorization policy TA = {(a, t1), (b, t1), (a, t2), (b, t2), (c, t2), (a, t3), (b, t3),
(c, t3), (a, t4), (a, t5), (b, t5), (c, t5)}, where (u, t) ∈ TA means that user u is
entitled to execute task t. The organization would then like to know if there
is an execution scenario that allows the process to terminate according to TA.
Indeed, this is the case as shown by the following sequence of task-user pairs:
η = t1(b), t3(c), t4(a), t2(a), t5(b) where t(u) means that user u has executed task
t and the position in the sequence corresponds to the order in which the tasks have
been executed (i.e. t1 has been executed first, t5 last, t3 after t1 but before t4, t2,
and t5, etc.). It is easy to check that the tasks in η are executed so that the order-
ing constraints on task execution are satisfied, each user u in each pair t(u) of η
is authorized to execute t since (u, t) ∈ TA, and each SoD constraint is satisfied
(e.g., tasks t1 and t2 are executed by the distinct users b and a, respectively).��
Among all possible scenarios permitting a workflow to terminate, customers may
be particularly interested in those that can be executed by a smallest possible set
of users, called minimal user base in the literature [10]. This knowledge would
enable organizations to assess the likelihood of emergencies or extraordinary
situations due to, e.g., employee absences.

We call Scenario Finding Problems (SFPs) this kind of problems. Techniques
for solving the WSP can also be used to solve SFPs; unfortunately, this has a
very high computational cost because they are not able to exploit the fact that
execution and authorization constraints are fixed and only the authorization
policy changes at deployment time. (WSP is NP-hard already in the presence of
one SoD constraint [21].)

The main contributions of this paper are three. First, we give precise
statements of two SFPs together with a discussion of their relationships with
the WSP (Sect. 2). Second, we describe techniques to solve them by adapting
the technique for the synthesis of run-time monitors for the WSP developed in [5]
(Sect. 3). Third, we validate our solutions on real-world examples from a library
of re-usable business process models (Sect. 4). We use the TRW in Example 1 as
a running example to illustrate the main notions in the paper.

2 From the WSP to SFPs

Let T be a finite set of tasks and U a finite set of users. An execution scenario
(or, simply, a scenario) is a finite sequence of pairs of the form (t, u), written
as t(u), where t ∈ T and u ∈ U . The intuitive meaning of a scenario η =
t1(u1), ..., tn(un) is that task ti is executed before task tj for 1 ≤ i < j ≤ n
and that task tk is executed by user uk for k = 1, ..., n. A workflow W (T,U)
is a set of scenarios. Among the scenarios in a workflow, we are interested in
those that describe successfully terminating executions in which users execute
tasks satisfying the authorization constraints and the authorization policy. Since
the notion of successful termination depends on the definition of the workflow
(e.g., in case of a conditional choice, we will have two acceptable execution
sequences according to the Boolean value of the condition), in the following
we focus only on the authorization policy and the authorization constraints
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while assuming that all the scenarios in the workflow characterize successfully
terminating behaviors.

Given a workflow W (T,U), an authorization relation TA is a sub-set of U×T .
Intuitively, (u, t) ∈ TA means that u is authorized to execute task t. We say that
a scenario η of a workflow W (T,U) is authorized according to TA iff (u, t) is in
TA for each t(u) in η. An authorization constraint over a workflow W (T,U) is
a tuple (t1, t2, ρ) where t1, t2 ∈ T and ρ is a sub-set of U × U . (It is possible to
generalize authorization constraints to the form (T1, T2, ρ) where T1, T2 are sets
of tasks as done in, e.g., [9]. We do not do this here for the sake of simplicity.) For
instance, a SoD constraint between tasks t and t′ can be formalized as (t, t′, �=)
with �= being the relation {(u, u′)|u, u′ ∈ U and u �= u′}. A scenario η of W (T,U)
satisfies the authorization constraint (t1, t2, ρ) over W (T,U) iff there exist t1(u1)
and t2(u2) in η such that (u1, u2) ∈ ρ. Let C be a (finite) set of authorization
constraints, a scenario η satisfies C iff η satisfies c, for each c in C. A scenario η of
a workflow W (T,U) is eligible according to a set C of authorization constraints
iff η satisfies C.

A workflow W (T,U) is security-sensitive according to an authorization rela-
tion TA and a (finite) set C of authorization constraints iff every scenario η
in W (T,U) is both authorized and eligible. There are various ways to spec-
ify security-sensitive workflows. For instance, [9] introduces the notion of “con-
strained workflow authorization schema” as a tuple (T,U,≤,TA, C), where ≤ is
a partial order over T and the other components are as above. Then, it defines
an “execution schedule” as a tuple (t1, ..., tk) of tasks such that {t1, ..., tk} = T
and tj �≤ ti for each 1 ≤ i < j ≤ k and a “valid plan” π as a mapping from T
to U such that (t, π(t)) ∈ TA and (π(t1), π(t2)) ∈ ρ for each constraint (t1, t2, ρ)
in C. Given an execution schedule and (t1, ..., tk) and a valid plan π of a con-
strained workflow authorization schema (T,U,≤,TA, C), it is easy to derive an
authorized and eligible scenario t1(π(t1)), ..., tk(π(tk)) of the security-sensitive
workflow W (T,U) according to TA and C.

Definition 1 (Workflow Satisfiability Problem (WSP)). Given a work-
flow W (T,U), an authorization relation TA, and a set C of authorization con-
straints, return (if possible) a scenario η which is authorized according to TA
and eligible according to C.

Recall Example 2 in Sect. 1 for an instance of this problem and a solution.

2.1 Scenario Finding Problems

In the context of business process reuse, it is possible to compute—once and for
all—the set E of eligible scenarios associated to a security-sensitive workflow in
a library (we will describe how to compute and compactly represent this set in
Sect. 3 below). The problem is then to look for those scenarios in E with some
properties when an authorization policy becomes available.

Definition 2 (Basic Scenario Finding Problem (B-SFP)). Given the
finite set E of eligible scenarios according to a set C of authorization constraints
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in a workflow W (T,U), return (if possible) a scenario η ∈ E which is authorized
according to a given authorization relation TA.

Example 3. Let us consider the TRW. If U = {Alice,Bob,Charlie,Dave,Erin,
Frank} is the set of users, then the set E of eligible scenarios contains, among
many others, the following elements:

η1 = t1(Alice), t2(Bob), t3(Charlie), t4(Dave), t5(Erin)
η2 = t1(Bob), t2(Alice), t3(Charlie), t4(Alice), t5(Bob)
η3 = t1(Bob), t4(Charlie), t2(Alice), t3(Dave), t5(Bob)

Now, let TA={(Alice, t1),(Bob, t1),(Alice, t2),(Bob, t2),(Charlie, t3),(Alice, t4),
(Dave, t4), (Bob, t5), (Erin, t5)} be the authorization relation, then η1 and η2
are solutions to the B-SFP, while η3 is not because (Dave, t3) �∈ TA. ��
A scenario η solving the B-SFP is also a solution of the WSP and vice versa. So,
in principle, to solve the B-SFP for a workflow W (U, T ), a set C of authoriza-
tion constraints, an authorization policy TA, and ηe = t(u), t′(u′), ... an eligible
scenario in E, we can re-use an algorithm A returning answers to the WSP
as follows. Initially, we consider the task-user pair t(u) in ηe and create a new
authorization relation TA1 = TA|(u,t) derived from TA by deleting all pairs
(x, t) ∈ TA with x �= u. We invoke A on the WSP for W (U, T ), C, and TA1: if A
returns a scenario, this must have the form t(u), η where η is some sequence of
task-user pairs (notice that t(u), η and ηe are guaranteed to have only t(u) as a
common prefix). Afterwards, we move to the task-user pair t′(u′) in ηe and run
A on the WSP for W (U, T ), C, and TA2 = TA1|(u′,t′). If A returns a scenario,
this must have the form t(u), t′(u′), η′ where η′ is some sequence of task-user
pairs (notice that t(u), t′(u′), η′ and ηe are guaranteed to have only t(u), t′(u′)
as a common prefix). By repeating this process for each ηe in E, until all tasks
in ηe are executed, we can check if it is also authorized according to TA (besides
being eligible as ηe is in E). Overall, there are at most O(�max · |E|) invocations
to A, where �max is the longest (in terms of number of task-user pairs occurring
in it) scenario of E. Indeed, this is very expensive from a computational point of
view since the WSP is NP-hard already in presence of one SoD constraint [21]
and, most importantly, we do not exploit the fact that the scenarios in E are
eligible.

A better approach to solve the B-SFP is to consider each eligible scenario ηe

in E and check if all task-user pairs in ηe are authorized according to TA. This
means that there are at most O(�max ·|E|) invocations to the algorithm for check-
ing membership of a user-task pair to TA. The complexity of such an algorithm
depends on how TA has been specified. Policy languages are designed to make
such a check very efficient (e.g., linear or polynomial); this is in sharp contrast
to the heavy computational cost of running A. Below, we assume authorization
policies to be specified in Datalog so that checking membership to TA is equiva-
lent to answering a Datalog query, which is well-known to have polynomial-time
(data) complexity [6]. Even though checking for membership to TA is efficiently
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performed, the overall computational complexity may be problematic since such
a check must be repeated O(�max ·|E|) and |E| may be very large. For instance, as
we will show below, already for the simple TRW with |U | = 6 (as in Example 3),
the cardinality of E is 19, 080. Intuitively, the larger the set U of users, the higher
the cardinality of E. It is thus important to design a suitable data structure to
represent the available set E of eligible scenarios which permits to design an effi-
cient strategy to search through all scenarios and identify one that is authorized.
We will see this in Sect. 3.1.

A refinement of B-SFP is to search for (eligible and) authorized scenarios in
which a “minimal” set of users occurs. Formally, let η be a scenario in a workflow
W (T,U), the set of users occurring in η is usr(η) = {u|t(u) ∈ η}. Following [10],
we define a minimal user base of a workflow W (T,U) to be a sub-set U ′ of the set
U of users such that there exists a scenario η in W (T,U) in which usr(η) = U ′

and there is no scenario η′ in W (T,U) in which usr(η′) is a strict sub-set of U ′.

Definition 3 (Minimal User-Base Scenario Finding Problem (MUB-
SFP)). Given the set E of eligible scenarios according to a set C of authorization
constraints in a workflow W (T,U), return (if possible) a scenario η ∈ E which
is authorized according to a given relation TA and such that the set usr(η) of
users occurring in η is a minimal user base.

Example 4. Let us consider again the TRW together with the set U of users,
the set E of eligible scenarios, and the authorization relation TA of Example 3.
A solution to the MUB-SFP is ηM = t1(Bob), t2(Alice), t3(Charlie), t4(Alice),
t5(Bob) and a minimal user base is usr(ηM ) = {Alice, Bob,Charlie}. ��
An approach derived from that solving the B-SFP can also solve the MUB-SFP.
We consider each eligible scenario ηe in E and check if all task-user pairs in
ηe are authorized according to TA. We also maintain a variable ηM storing an
eligible scenario in E such that ηM is authorized (according to TA) and usr(ηM )
is a candidate minimal user base. Initially, ηM is set to the empty sequence ε.
If the eligible scenario ηe under consideration is authorized and ηM �= ε, then we
compare the cardinalities of usr(ηe) and usr(ηM ): if |usr(ηe)| < |usr(ηM )|, then
ηM ← ηe; otherwise ηM is left unchanged. When ηM = ε, we do not perform the
comparison between the cardinalities of usr(ηe) and usr(ηM ) and simply set ηM

to ηe. Indeed, when all eligible scenarios in E have been considered, usr(ηM )
stores a minimal user base. This process requires that there are O(�max · |E|)
invocations to the algorithm for checking membership of a user-task pair to TA.
Although the complexity bounds of solving the B-SFP and the MUB-SFP are
identical, the bound for the latter is tighter than the former. This is so because
we always need to consider all eligible scenarios in E for the MUB-SFP whereas
we can stop as soon as we find an authorized scenario for the B-SFP. This is
confirmed by our experimental evaluation in Sect. 4 (compare the timings for
solving SFPs with those for MUB-SFPs in Table 2).
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3 From Solving the WSP to Solving SFPs

We now briefly recall the technique in [5] to synthesize run-time monitors solving
the WSP. This is important as it provides us with a compact data structure to
represent the set of all eligible scenarios in a workflow, which is crucial for the
design of an efficient solution to SFPs. It takes as input the specification of
a security-sensitive workflow (e.g., the BPMN in Fig. 1 for the TRW with the
specification of an authorization policy, such as the relation TA of Example 2)
and consists of two steps.

Off-line step. A symbolic transition system S is automatically derived (in a way
similar to that described in [20]) from the task execution constraints of a work-
flow W (T,U) and the set C of authorization constraints (notice that TA is not yet
taken into consideration). S is used to compute a symbolic reachability graph RG ,
i.e. a directed graph whose edges are labeled by task-user pairs in which users are
symbolically represented by variables (called user variables) and whose nodes are
labeled by a symbolic representation (namely, a formula of first-order logic) of
the set of states from which it is possible to reach a state in which the workflow
successfully terminates (for the TRW, this is the set of states in which all five
tasks have been executed). A sequence ηs = t1(υj1), ..., tn(υjn) of task-user pairs
is a symbolic execution scenario where υji is a user variable with 1 ≤ ji ≤ n and
i = 1, ..., n. A well-formed path in RG is a path starting with a node without an
incoming edge and ending with a node without an outgoing edge. The crucial
property of RG is that the symbolic execution scenario ηs = t1(υj1), ..., tn(υjn)
collected while traversing one of its well-formed paths corresponds to an eligible
(according to C) execution scenario ηc = μ(ηs) = t1(μ(υj1)), ..., tn(μ(υjn)) for μ
an injective function from the set Υ = {υj1 , ..., υjn} of user variables (also called
symbolic users) to the given set U of users of W (T,U). Three observations are
in order. First, μ is extended to symbolic execution scenarios in the obvious way,
i.e. by applying it to each user variable occurring in them. Second, since ji can
be equal to ji′ for 1 ≤ i �= i′ ≤ n, the cardinality of Υ is at most equal to the
number n of tasks in the symbolic execution scenario. Third, since μ is injective,
distinct user variables are never mapped to the same user.

Example 5. An excerpt of the symbolic reachability graph for the TRW is
depicted in Fig. 2 where a task-user pair t(υk) labeling an edge is abbreviated
by t(k) for the sake of compactness.

For instance, the symbolic execution scenario ηs = t1(υ3), t3(υ3), t4(υ2),
t2(υ2), t5(υ1) (cf. the well-formed path identified by the blue nodes in Fig. 2)
represents all those execution scenarios in which a symbolic user identified by
υ3 first performs task t1 followed by t3, then a symbolic user identified by υ2

performs t4 and t2 in this order, and finally a symbolic user identified by υ1

executes t5. If we apply an injective function μ from the set Υ = {υ1, υ2, υ3}
of user variables to any finite set U of users (of cardinality at least three), the
corresponding execution scenario ηc = μ(ηs) is eligible according to the set C of
SoD constraints shown in Fig. 1. ��
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Fig. 2. An excerpt of the symbolic
reachability graph for the TRW

Table 1. A run of the monitor program
for the TRW

# History Query Answer

0 ∅ can do(a, t1) deny

1 - can do(b, t1) grant

2 h(t1, b) can do(c, t3) grant

3 h(t3, c) can do(a, t4) grant

4 h(t4, a) can do(b, t2) deny

5 - can do(a, t2) grant

6 h(t2, a) can do(b, t5) grant

7 h(t5, b) - -

On-line Step. A non-recursive Datalog program M with negation is derived
from the symbolic reachability graph RG by building a clause of the form
can do(υ, t) ← βv where βv is the formula labeling node v in RG . (For more
details on how M is built, the interested reader is pointed to [5]). The formula
βv contains invocations to the binary predicates auth and h. The former is the
interface to the authorization policy and such that auth(u, t) holds iff (u, t) ∈ TA
while the latter keeps track of which user has executed which task, i.e. h(t, u)
means that t has been executed by u. Following an established tradition (see,
e.g., [13]) claiming that (variants of) Datalog are adequate to express a wide
range of access control policy idioms, we assume auth to be defined by a Data-
log program P . Instead, the predicate h is dynamic and defined by a set H of
(ground) facts which is updated after each task execution. Thus, if the query
can do(u, t) can be derived from M,P,H (in symbols, M,P,H � can do(u, t)),
then user u can execute task t and the workflow can terminate while satisfying
the authorization policy and the authorization constraints.

Example 6. For the TRW, let us consider again the set of users and the autho-
rization policy discussed in Example 2. The relation TA can be specified after
the Role Base Access Control (RBAC) model [17] by the Datalog program P :

ua(a, r1). ua(a, r2). ua(a, r3). ua(b, r2). ua(b, r3). ua(c, r2).
pa(r3, t1). pa(r2, t2). pa(r2, t3). pa(r1, t4). pa(r2, t5).
auth(υ, τ) ← ua(υ, ρ) ∧ pa(ρ, τ).

where r1, r2, and r3 are roles, ua is the user-role assignment (cf. first line of
facts), pa is the role-task assignment (cf. second line of facts), υ is a user variable,
τ is a variable ranging over tasks, and auth is defined as the join of the relations
ua and pa (cf. Datalog clause in the last line). Recall the definition of TA in
Example 2 and notice that P � auth(u, t) iff (u, t) ∈ TA for user u and task t.
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An example run of the monitor derived from the symbolic reachability graph
in Fig. 2 combined with the RBAC policy above is shown in Table 1: column
‘History’ shows which facts are added to the set H and column ‘Answer’ reports
grant (deny, respectively) when the query in column ‘Query’ can (cannot, respec-
tively) be derived from M,P,H. For instance, there are two denied requests: in
line 0, user a requests to execute task t1 but this is not possible since a is
the only user authorized to execute t4, and if a executes t1, he/she will no
more be allowed to execute t4 because of the SoD constraint between t1 and t4
(see Fig. 1); in line 4, user b requests to execute task t2 but again this is not possi-
ble since b has already executed task t1 and this would violate the SoD constraint
between t1 and t2. All other requests are granted, as they violate neither task
execution nor authorization constraints. The scenario resulting from this run
of the monitor is t1(b), t3(c), t4(a), t2(a), t5(b), which is derived from the sym-
bolic execution scenario t1(υ1), t3(υ3), t4(υ2), t2(υ2), t5(υ1) in the graph of Fig. 2
(cf. the path with the blue nodes; see also Example 5) by applying the injective
function μ mapping υ1 to b, υ2 to a, and υ3 to c. ��

3.1 Solving the SFPs

In order to solve B-SFPs and MUB-SFPs (recall Definitions 2 and 3), we need
to decide how the set E of eligible scenarios and the authorization policy TA
are specified as input to the algorithm solving the problems. For TA, we have
already assumed (see paragraph On-line step in previous section) the avail-
ability of a Datalog program P defining the binary predicate auth. For E, we
define the set E(RG , U) of eligible scenarios induced by a symbolic reachability
graph RG and a set U of users as the collection of all the scenarios of the form

μ(t1(υj1), ..., tn(υjn)) where v0
t1(υj1 )−→ · · · tn(υjn )−→ vn+1 is a well-formed path in

RG and μ is an injective function from Υ = {υj1 , ..., υjn} to U . Two observa-
tions are important. First, there are several different sets E(RG∗, U) induced
by a fixed symbolic reachability graph RG∗ and a varying set U of users. Sec-
ond, a symbolic reachability graph—once a set of users is fixed—provides an
implicit and compact representation of the set of eligible scenarios. This is due
to two reasons: one is the sharing of common sub-sequences of task-user pairs
in execution scenarios and the other is the symbolic representation of several
execution scenarios by means of a single symbolic execution scenario. This is
best illustrated through an example.

Example 7. Let us consider the TRW with a set U of 6 users. The graph in
Fig. 2 is, for the sake of readability, an excerpt of the full symbolic reachability
graph showing only a small sub-set of all well-formed paths. The full graph has
46 nodes, 81 edges, and 61 well-formed paths of which 21, 34, and 6 contain 3, 4,
and 5, respectively, symbolic users. For instance, notice how the sub-sequence
t3(υ2), t5(υ1) is shared by 6 distinct (symbolic) execution scenarios induced by
the well-formed paths whose initial node is 24 (left of figure). Additionally,
observe that, from the definition of E(RG , U) above, in order to establish the
number of all eligible paths when |U | = n, we just need to calculate how many
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injective functions there are from a set of cardinality k to a set of cardinality
n—which is known to be J(n, k) = n(n − 1)(n − 2) · · · (n − k + 1)—for n = 6,
k = 3, 4, 5, and take their sum. Thus, the set of all eligible paths in our case is
21 · J(6, 3) + 34 · J(6, 4) + 6 · J(6, 5) = 19, 080. Compare this, with the number
of well-formed paths in the symbolic reachability graph which is only 61: the
blow-up factor is more than 300. Indeed, the increase is even more dramatic for
larger sets of users. ��
We are now ready to describe our technique, depicted in Algorithm 1, to solve
the B-SFP. For the time being, let us ignore the additional input set Γ (by setting
it to ∅); it will be explained later. The main idea underlying the algorithm is to
adapt a standard Depth-First Search (DFS) algorithm to explore all well-formed
paths in the reachability graph RG while checking that the scenario associated
to the path is indeed authorized by using the run-time monitor, synthesized in
the on-line phase of the technique in [5]. Lines 1–2 are the standard initialization
phase of a DFS algorithm in which all nodes in RG (returned by the function
Nodes) are marked as not yet visited. Lines 3–6 invoke the (modified) DFS algo-
rithm on each node without an incoming edge in RG (returned by the function
NoIncoming) until either all such nodes have been considered (this allows us to
consider all well-formed paths) or an authorized scenario (if any) has been found
(line 7). Lines 8–19 show the (modified) DFS recursive function which takes as
input a node v and extends a sequence η of task-user pairs to an authorized
execution scenario (if possible). Line 9 marks as visited the node v under con-
sideration and computes its set OE of outgoing edges (returned by the function
OutGoing). Line 10 checks whether the set of outgoing edges of v is empty: if
this is the case, then we have considered all task-user pairs in a well-formed path
and the sequence η containing them is an authorized execution scenario. If this
is not the case, we have not yet considered all task-user pairs in a well-formed
path of RG and thus we need to consider the possible continuations in OE . This

is done in the loop at lines 12-16: an edge v
t(υ)−→ w in OE is selected (line 12), it

is checked if the node w is not yet visited and if the run-time monitor combined
with the authorization policy P can find a user u capable of executing the task
t in label of the edge in OE under consideration (line 13). The second check
(namely, M,P,H �υ �→u can do(t, υ)) is done by asking a Datalog engine to find
a user u in U to which the user variable υ can be mapped (cf. superscript of �)
without violating the execution and the authorization constraints together with
the authorization policy specified by P . If the test at line 13 is successful, line 14
is executed whereby a recursive call to the DFS function is performed in which
the new node to consider is w, the sequence η of task-user pairs is extended
with t(u) (by invoking the function append), and the set H of facts keeping
track of the tasks executed so far is also extended by h(t, u). In case all edges
in OE have been considered but none of them makes the check at line 13 suc-
cessful, the empty sequence is returned (line 18). Notice that at line 13, instead
of enumerating all suitable users in U to which υ can be mapped, we exploit
the capability of the Datalog engine to find the right user. This permits us to
exploit well-engineered implementations of Datalog engines instead of designing
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Algorithm 1. Solving the B-SFP
Input: RG symbolic reachability graph, U set of users,

P Datalog program defining auth, Γ set of facts
Output: η authorized execution scenario
1: for all v ∈ Nodes(RG) do visited[v] ← false;
2: end for
3: η ← ε; NI ← NoIncoming(RG);
4: while (v ∈ NI and η = ε) do
5: η ← DFSv, ε, Γ; NI ← NI \ {v};
6: end while
7: return η
8: function DFS(v, η, H)
9: visited[v] ← true; OE ← OutGoing(v);

10: if OE = ∅ then return η
11: else

12: for all v
t(υ)−→ w ∈ OE do

13: if (not visited[w] and M, P, H �υ �→u can do(t, υ)) then
14: return DFS(w, append(η, t(u)), H ∪ {h(t, u)}
15: end if
16: end for
17: end if
18: return ε
19: end function

and implementing new heuristics to reduce the time taken to enumerate the
users in U . This concludes the description of the algorithm solving the B-SFP.

An interesting extension of the algorithm is provided by considering a set
Γ of facts, which can be used to drive the search for a scenario with particular
characteristics. For instance, one can be interested in authorized scenarios in
which a certain user only, say u∗, executes a given task, say t∗. It is possible to
steer the search towards such scenarios by setting Γ to the singleton containing
the fact h(t∗, u∗). Another use of Γ is guiding the search towards scenarios in
which the tests of certain conditionals are either true or false. Again, it is possible
to add the facts encoding the truth or falsity of the condition to Γ in order to drive
the algorithm and find scenarios with such conditions. The flexibility provided
by Γ is illustrated in Sect. 4 below.

It is possible tomodifyAlgorithm1 following the idea discussed afterExample 4
in order to solve the MUB-SFP. This requires to avoid returning the authorized
scenario as soon as we find one (line 10) so that all well-formed paths in RG are
considered. Moreover, a global variable ηM is maintained in which a candidate
scenario with a minimal user base is stored and updated according to the strategy
discussed above comparing the users occurring in ηM and those in the currently
considered scenario. Also the search of this modified algorithm can be driven by
a set Γ of facts as it was the case for the algorithm solving B-SFP.

The complexity of both algorithms can be derived from that of the standard
DFS algorithm, which is O(n+m) for n the number of nodes and m the number of
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Fig. 3. ITIL 2011—IT Financial Reporting (abbreviated ITIL)

Fig. 4. ISO9000—Budgeting for Quality Management (abbreviated ISO)

edges, when using an adjacency list to represent the graph. Notice that the most
computationally intensive operation is the invocation of the Datalog engine at
line 13, which takes polynomial time as the only part that changes over time
is the set H of facts whereas the Datalog programs M and P are fixed; cf.
the results on data complexity of Datalog programs in [6]. It is easy to see that
we invoke O(n + m) times the Datalog engine (at most) in line 13 for both the
Algorithm 1 and its modified version described above for solving the MUB-SFP.
This is much better than the upper bounds discussed in Sect. 3.1. To see this,
consider the situation in Example 7: �max = 5 and |E| = 19, 080 so that the
check for authorization (modulo constant factors) is invoked at most 95, 400
times whereas in Algorithm 1 (or its modified version for the MUB-SFP) the
same check is invoked at most n + m = 46 + 81 = 127 times.

4 Validation of the Technique

We consider two real-world examples, shown in Figs. 3 and 4, derived from
business processes available in an on-line library provided by Signavio,2 which
contains more than 120 models inspired by the ISO9000 standard for quality
management and the ITIL 2011 set of best practices for IT service management.

ITIL. The goal of this workflow is to report costs and revenues of an IT Service.
It is composed of 7 tasks and 2 SoD constraints. Tasks t1, t2, t3, t6 and t7 are
for the checking and correction of bookings, compilation of the financial report,
and its communication; tasks t4 and t5 are for checking and defining corrections.
The execution of tasks t2 and t5 depends on the conditions associated to two
exclusive gateways: correct1? (abbreviated with c1) and correct2? (abbreviated

2 Available at http://www.signavio.com/reference-models/.

http://www.signavio.com/reference-models/
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with c2), respectively. The SoD constraints forbid that the same user compiles
a draft report and checks for errors (t3, t4, �=) or compiles the draft and defines
the corrections (t3, t5, �=).

ISO. The goal of this workflow is to plan for enough financial resources to fulfill
quality requirements. It is composed of 9 tasks and 3 SoD constraints. Tasks t1,
t2, ..., t6 involve the detailed preparation and consolidation of a draft budget,
whereas tasks t7, t8 and t9 are for the approval of the previous activities, the
integration into the total budget, and the communication of the results. The
execution of tasks t8 or t9 depends on the exclusive gateway approved? (abbre-
viated with appr). The SoD constraints forbid that the same user prepare and
consolidate a budget (t1, t6, �=), prepare and approve a budget (t1, t7, �=), or
consolidate and approve a budget (t6, t7, �=).

Although none of the workflows comes with an authorization policy, swim-
lanes (not shown in Figs. 3 and 4) suggest that a controlling manager executes
tasks t1, t2, t3, t6 and t7 while a financial manager executes tasks t4 and t5
for ITIL and that a quality manager executes tasks t1, ..., t6 and a controlling
manager executes tasks t7, t8 and t9 for ISO. These indications are taken into
consideration for designing the authorization policies (based on the RBAC model
and encoded in Datalog) in various scenarios with a fixed set U = {u1, ..., u9}
of users. For the TRW, we consider two policies P0 and P1: the former is that in
Example 6 and the latter is derived from the former in such a way that no user
is authorized to execute t1 (thus no authorized scenario should be found). For
ITIL, we have policies P2 and P3, each one with 3 users as financial managers,
3 users as controlling managers, and 3 with both roles; P3 is derived from P2 by
preventing users to be able to execute task t6. For ISO, we consider policies P4

and P5, each one with 3 users assigned to the role of quality manager, 3 users
as controlling managers, and 3 users assigned to both roles; P5 is derived from
P4 by preventing users to be able to execute task t3.

Before executing our techniques for solving SFPs, we need to build the sym-
bolic reachability graph (and the run-time monitor) for each example. We did
this by running the implementation of the off-line step (described in Sect. 3)
from [5]. For the TRW, the symbolic reachability graph is computed in around a
second and contains 46 nodes with 81 edges. For the ITIL, the graph is computed
in around 3.5 s and has 78 nodes with 72 edges. For the ISO, graph building takes
around 10.5 s and has 171 nodes with 669 edges. These timings, as well as all
those that follow below, have been obtained by using a MacBook Air 2014 with
Mac OS X v10.10.2. The time for deriving the monitor M from the symbolic
reachability graph of each example is negligible and thus omitted.

We have implemented Algorithm 1 for solving B-SFPs and its modification
for solving MUB-SFPs (described towards the end of Sect. 3.1) in Python v2.7.9.
The invocation to the Datalog engine at line 13 in Algorithm 1 is implemented
with the Datalog engine pyDatalog v0.15.2. Table 2 shows the findings of our
experiments.

Each entry in column ‘Instance,’ describing the input to Algorithm 1 (or its
modification to solve the MUB-SFP), is of the form W + Pi where W is the
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Table 2. Experiments

# Instance Γ Solution Scenario Time

B-SFP

0 TRW+P0 ∅ t1(b), t2(a), t4(a), t3(c), t5(b) 0.288

1 ITIL+P2 {c1, c2} t1(u3), t3(u9), t4(u8), t6(u9), t7(u9) 4.267

2 ITIL+P2 {c1, not c2} t1(u3), t3(u3), t4(u7), t5(u8), t6(u3), t7(u7) 4.454

3 ITIL+P2 {not c1, c2} t1(u3), t2(u1), t3(u9), t4(u8), t6(u9), t7(u9) 4.374

4 ITIL+P2 {not c1, not c2} t1(u3), t2(u1), t3(u3), t4(u7), t5(u8), t6(u3), t7(u7) 4.561

5 ISO+P4 {appr} t1(u3), t4(u7), t5(u8), t2(u3), t3(u7), t6(u9), t7(u7), t9(u8) 6.581

6 ISO+P4 {notappr} t1(u3), t4(u7), t5(u8), t2(u3), t3(u7), t6(u7), t7(u8), t8(u6) 6.637

7 TRW+P1 ∅ ε 0.407

8 TRW+P0 {t2(b)} ε 1.554

9 ITIL+P3 ∅ ε 9.562

10 ISO+P5 ∅ ε 44.076

MUB-SFP

11 TRW+P0 ∅ t1(b), t2(c), t3(b), t4(a), t5(a) 2.385

12 ITIL+P2 {c1, c2} t1(u1), t3(u1), t4(u7), t6(u1), t7(u1) 108.819

13 ITIL+P2 {c1, not c2} t1(u3), t3(u3), t4(u7), t5(u7), t6(u3), t7(u3) 116.525

14 ITIL+P2 {not c1, c2} t1(u1), t2(u1), t3(u1), t4(u7), t6(u1), t7(u1) 108.827

15 ITIL+P2 {not c1, not c2} t1(u3), t2(u3), t3(u3), t4(u7), t5(u7), t6(u3), t7(u3) 116.533

16 ISO+P4 {appr} t1(u5), t3(u5), t2(u5), t4(u5), t5(u5), t6(u3), t7(u7), t9(u7) 166.632

17 ISO+P4 {not appr} t1(u5), t3(u5), t2(u5), t4(u5), t5(u5), t6(u9), t7(u6), t8(u9) 166.644

identifier of one of the three security-sensitive workflows and Pi is one of the
authorization policies described above. Column ‘Γ’ shows the facts in the set Γ
that can be used to drive the search of execution scenarios with particular prop-
erties. For instance, ITIL contains two exclusive gateways labeled with conditions
c1 and c2: we may be interested in those scenarios in which c1 and c2 take some
particular truth values (see lines 1–4 and 12–15 of the table). Another use of the
set Γ is shown at line 8: we are interested in finding authorized scenarios of TRW
under the authorization policy P0 in which task t2 is always executed by user
b. There is no such scenario (the ‘Solution Scenario’ column reports the empty
sequence) since when b performs t2, a must perform t1—because of the SoD
constraint (t1, t2, �=)—but if a performs t1, no user can perform t4—because of
the other SoD constraint (t1, t4, �=). Column ‘Time’ reports the running time
(in seconds) taken to find a scenario (if any).

Discussion. Our experiments indicate that the SFPs introduced in this paper
together with Algorithm 1 (and its modification for the MUB-SFP) fit well with
emerging BPM practices for re-use. Whenever a customer wants to deploy a busi-
ness process by re-using a workflow template, some SFP is solved (if possible) to
provide him/her with an authorized scenario showing that a template business
process can be successfully instantiated by his/her authorization policy. The
efficiency of the proposed approach exploits the fact that the eligible scenarios
(resulting from execution and authorization constraints) can be computed once
and re-used with every authorization policy. In this way, multiple changes to a
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policy, which are well-known to be costly [14], become much less problematic to
handle and customers can even explore and evaluate the suitability of variants
of a policy. This is in sharp contrast to the approach discussed in Sect. 2.1 (after
Example 3) that consists of re-invoking an available algorithm for solving the
WSP on every task-user pair in a scenario. To illustrate, consider the instance
at line 4 of Table 2. Recall that the off-line step for ITIL takes around 3.5 s and
observe that this is computed once and for all. If, instead, we use the technique
to solve the WSP in [5] as a black-box (i.e. without being able to retrieve the
symbolic reachability graph computed during the off-line phase), which is com-
mon to almost all techniques available in the literature, solving the same B-SFP
would require almost 30 s resulting from re-computing 7 times (corresponding
to the 7 task-user pairs in the returned scenario) the same symbolic reachability
graph (compare this with the timing of 4.561 s reported in the table). This is a
significant performance gain despite the small size of the example.

5 Conclusions

We have introduced two SFPs, discussed their relationships with the WSP, and
argued that solving them supports the deployment of business processes in the
activity of model reuse. We have also described algorithms to solve two SFPs,
based on a previously proposed technique [5] for the WSP. An experimental
evaluation on two real-world examples shows that our techniques can be used
in practice at deployment time since they perform the computationally heaviest
part (namely, computing the set of eligible scenarios) once and for all when the
workflow is added to a library and re-use it for any possible authorization policy.
Related work. Bertino et al. [4] were the first to present, among many other con-
tributions, a method capable of computing execution scenarios by using logic pro-
gramming techniques. The practical feasibility of the approach is not assessed as
we do for our technique in Sect. 4. Kohler and Schaad [12] introduces the notion
of policy deadlocks (corresponding to situations in which the WSP is unsolv-
able) and propose a graph-based technique to compute minimal user bases to
help policy designers avoid such situations. There are some similarities with our
approach (e.g., the use of symbolic users) but our work is not limited to RBAC
policies as theirs and focuses on business process reuse, which is not considered
in [12]. Solworth [18] uses an approvability graph to describe sequences of actions
defining the termination of a workflow. His technique focus on linear workflows
whereas we support constructs for parallel executions and conditionals. Many
works [2,3,7–10,14,16,21] study the WSP. As discussed above, most of them
cannot be used to solve the SFPs without an unacceptable decrease in perfor-
mances because they are not able to pre-compute the set of eligible scenarios.
The works in [2,7] separate between an off-line and on-line phase as done in [5]
and here but do not exploit it for business process reuse as we do.
Future work. We intend to study the notion of resiliency [21] in SFPs and how
to automatically suggest changes to authorization policies so that solutions of
an SFP are optimal with respect to some criteria, e.g., least privilege.
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