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Abstract. With the growing popularity of social networks, extremely
large amount of users routinely post messages about their daily life to
online social networking services. In particular, we have observed that
family related information, including some very sensitive information, are
freely available and easily extracted fromTwitter. In this paper, we present
a hybrid information retrieval mechanism, namely FamilyID, to identify
and extract family related information of a user from his/her microblogs
(tweets). The proposed model takes into account part-of-speech tagging,
pattern matching, lexical similarity, and semantic similarity of the tweets.
Experiment results show that FamilyID provides both high precision and
recall. We expect the project to serve as a warning to users that they may
have accidentally revealed too much personal/family information to the
public. It could also help microblog users to evaluate the amount of infor-
mation that they have already revealed.

1 Introduction

With the growing popularity of online social networks, the data that is publicly
available has increased by numerous folds. This data includes personal, employ-
ment, education, relationship, and family-related information. Figure 1 shows a
microblog example – a tweet message that was broadcasted to the public, and
effectively reveals his mother’s Twitter ID, birthdate and last name.

Numerous commercial products or research projects have been developed to
discover user information from online social networking data. Such information
is used to improve the accuracy of advertisement delivery, to make sensible sug-
gestions to users, and to predict events or trends. Moreover, the media industry
(radio, movie, television) now highly depends on feedback from public OSN data
for market study, user preference analysis, hot topic identification, etc. Although
such products/projects may benefit both OSN providers and end users, they
pose significant privacy threats to all users, while many of them are unaware of

S. Huang and B. Luo—This work was partially supported by NSF CNS-1422206,
NSF IIS-1513324, NSF OIA-1308762, and University of Kansas GRF-2301876.

c© IFIP International Federation for Information Processing 2015
P. Samarati (Ed.): DBSec 2015, LNCS 9149, pp. 215–222, 2015.
DOI: 10.1007/978-3-319-20810-7 14



216 J. Gopal et al.

Fig. 1. A Tweet message that reveals sensitive family-related information.

such threats. An online stalker with limited hacking capability but ample time
can effectively figure out lots of details about a targeted user with this pub-
licly available data. For instance, message with birthday or anniversary wishes
exposes users’ age, date of birth and family information.

Extracting family-related information from Twitter is challenging: (1) it is
cumbersome to manually identify such posts, as we have discovered that less than
1 % of the tweets are family-related; and (2) although it is possible to develop an
automated mechanism to identify family-related tweets, the task is nontrivial,
due to the size of data, the use of short text and informal language, and large
amount of synonyms. In this paper, we present FamilyID, a multi-phase approach
that automatically identifies family-related information from publicly available
Twitter data. Our algorithm considers multiple features of tweets, including
part-of-speech tagging, term distribution similarity, and semantic similarity.
Experimental results show that FamilyID produces good accuracy.

The key contributions of this paper are: (1) We make the first attempt to
automatically identify family-related microblogs – they usually disclose sensitive
personal information, and they are the primary targets for both adversaries and
defenders. (2) The proposed mechanisms exploit multiple lexical and semantic
features, with a good balance of efficiency and precision. Our approach could
handle large amount of data and provide relatively high accuracy.

2 Related Work

Private Information Disclosure. People may publicize private information for
social advantages [7]. Users’ privacy settings violate their sharing intentions,
and they are unable or unwilling to fix the errors [11,13] explores three types
of private information disclosed in the textual content of tweets. Impersonation
attacks are proposed in [2] to steal private (friends-only) attributes.

Information Aggregation Attacks. Information aggregation attacks were intro-
duced in [8,10,17]: significant amount of privacy is recovered when small pieces
of information submitted by users are associated. [1] confirms that a significant
amount of user profiles from multiple SNSs could be linked by email addresses.

Inference Attacks. Hidden attributes are inferred from friends’ attributes with a
Bayesian network [4,5] developed a model to predict user’s birth year (i.e., age).
Unknown user attributes could be accurately inferred when as few as 20 % of
the users are known [14]. Friendship links and group membership information
can be used to identify users [16] or infer sensitive hidden attributes [18].

Microblog Mining. Knowledge discovery in social networks is a hot research area.
For instance, methods have been proposed to identify user attributes, such as
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gender, age, location [12], location type [9], activities [6], personalities [15], etc.
There are also proposals to make predictions based on information and activities
in social networks, e.g., to predict stock rates based on user tweets [3].

3 The FamilyID Approach

3.1 Problem Definition and Solution Overview

The goal of this research is to identify family-related posts from microblogs.
Due to the volume of the data, manually reading each tweet and classifying it
is an almost impossible task. Formally, the objective of the research is: For each
tweet, efficiently and accurately identify whether it is related to one or more
family members of the message owner (the user who posted the message).

Fig. 2. Overview of the FamilyID approach

As illustrated in Fig. 2, we first use a customized crawler to collect user
information and messages from Twitter. Each message is pre-processed to remove
all the special characters and other unwanted contents, such as multimedia data
(images, audio and video files). Each message from a user (denoted as the owner
of the account/tweet) is processed through three steps: pattern matching, lexical
(phrase) similarity measurement, and semantic similarity measurement. These
steps are used to predict the likelihood of each tweet being family-related.

3.2 Data Collection

Using the twitter4j API, we have collected 150 twitter users’ information, includ-
ing username, screen name, friends (follower and following) list, tweets and tweets
time-stamp. Twitter does not have the concept of friends. Hence, we considered
the intersection of the followers list and the following list as the friends list. We
have randomly selected users with the following criteria: (1) Users with more
than 1500 followers are omitted as they have higher chances of being celebri-
ties. Tweets of celebrities are not used in this research, since they demonstrate
significantly different styles and contents from tweets of regular users. (2) Users
with fewer than 2000 tweets are not crawled. (3) Users with majority of tweets
in foreign languages (anything other than English) are discarded.

3.3 Pre-Processing

Messages from Twitter are extremely noisy. We develop several heuristics to pre-
process raw tweets: (1) Term Expansion. Twitter users like to use abbreviations
and very informal terms that do not exist in the dictionary. Certain steps in
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Fig. 2 cannot process irregular words. Hence, we construct a table for Twitter
term expansion for family-related terms (some examples are shown in Table 1).
(2) URL Truncation. Tweets sometimes have URLs embedded in them. Since
these URLs are not utilized in pattern matching, lexical similarity or semantic
similarity assessments, we truncate all URLs. (3). Stop Words. FamilyID does
not remove stop words, since words like “my”, “our” are important in predicting
family relationships. (4) Special Characters. All special characters other than the
English words and numbers are truncated. Although we do not process numbers,
we keep them for future use, e.g., to identify patterns related to year.

Table 1. Term expansion examples

Base word Expanded word Base word Expanded word

mum mother sissy sister

gf girlfriend bro brother

3.4 Pattern Extraction and Matching

In Sects. 3.4–3.6, we present a series of operations to identify family-related
tweets. The design philosophy is to first employ computationally inexpensive
methods to eliminate the majority of irrelevant tweets, and then refine the results
with methods that are more effective but expensive.

Iterative Pattern Discovery. The first step in family-related tweet identifi-
cation is to discover natural language patterns that are highly likely to mention
family member(s). We first employ the Stanford NLP tagger for part-of-speech
tagging on all crawled tweets. Next, we extract N-Gram histograms (N = 2, 3, 4)
across the dataset to collect the common patterns containing family terms. Pat-
tern discovery is performed in an iterative manner: for each discovered pattern,
we attempt to relax it, and validate the relaxed pattern on the dataset.

Example 1: In our dataset, POS-tagged text snippet
my PRP$ little JJ sister NN

has repeated 48 times, while text snippet
my PRP$ little JJ sister NN @UserName NN

has appeared 32 times. Therefore, we have extracted the following pattern:
PRP$ JJ NN

Pattern Matching. Every POS-tagged tweet is matched against the seed pat-
terns. With a matched pattern, the tweet has the potential to contain family-
related information. Note that pattern matching is the first filter in the whole
process, it leads to lot of noise outputs since many phrases could match one of
our seed patterns. For instance, phrases such as “my dear dog”, “my sweet neigh-
bor” are matched to the PRP$ JJ NN pattern, although they have nothing to
do with family members.
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3.5 Lexical Similarity Assessment

This phase finds if a pattern-matched tweet contains family-related words. We
first create a seed tweet set covering all possible relationships and frequent non-
relationship components from the patterns. We then employ the UMBC ebiquity
text similarity system to calculate the lexical similarities for pairs of tweets.
Stanford WebBase Corpus is used to find possible synonyms of the given words.
Table 2 shows some examples of similarities computed in FamilyID.

Lexical similarity assessment effectively eliminates most of the noise from pat-
ternmatching. In particular,messages such as “mydog”, “myneighbors”, are effec-
tively eliminated. However, tweets such as “my dear dog is my best companion”
pass the pattern matching phase (“my dear dog” matches PRP$ JJ NN), and the
lexical similarity assessment phase, due to the existence of terms “dear”, “best”,
“companion”. Since such tweets are clearly not family-related, we need another
layer of semantic analysis to handle them.

Table 2. Lexical similarity examples

Text compared Score

Happy birthday mother vs. happy birthday father 0.902

Happy anniversary sister vs. birthday wishes sister 0.749

Grandma is the best vs. my life is boring 0.033

I love you the most father vs. Jesus is great 0.122

3.6 Semantic Similarity Assessment

Semantic similarity assessment, which is relatively slower, is the last step to
remove irrelevant tweets that have passed through the first two filters.

To generate a seed set for this model, we first take a seed such as “my little
sister”, and ran the sliding window algorithm on it. This is a recurring model
that matches patterns in windows’ length of up to 5. It replaces each word in
the seed, and finds substitutions for the word, as shown below:

my little sister
*** little sister my *** sister my little ***
my *** little sister my little *** sister

To calculate semantic similarity, we employ the UMBC GetStsSim API. This
API takes 2 text snippets and returns a value between 0 and 1 as a similarity
measure. Every candidate tweet is compared with the seed tweets, to measure
the pairwise semantic similarity. As shown in Table 3, similarity score of 0.75 or
above indicates an almost perfect match, while similarity score of 0.6 or above
indicates relatively similar texts. Tweets with the highest similarity scores higher
than the threshold are finally labeled as family-related. As shown in the previous
example, tweet “my dear dog is my best companion” passes first two phases.
When we evaluate its semantic similarity with the seed tweets in this phase, the
highest similarity score is 0.33, which indicates that it is not similar with any of
the seeds. In this way, this message is labeled as non-family-related.
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Table 3. Semantic similarity examples

Compared tweets Scores

Happy birthday mother vs. birthday wishes mother. You are the best 0.611

My sweet little sister vs. my handsome young brother 0.624

My sweet sister vs. my awesome dog 0.21

Long day. I miss you my dear mother. Come back soon vs. feeling
extremely tired. Its a long day

0.38

4 Experimental Results

Tweet Identification. First, we have

Fig. 3. Total number of tweets and
family-related tweets for each user.

performed tweet identification on the col-
lected dataset (150 Twitter users, more
than 450,000 tweets). On average, Fam-
ilyID has identified approximately 30
tweets from each user as family-related,
as shown in Fig. 3 (users are sorted by
total number of tweets crawled). Less
than 1 % of the tweets are identified to be
related to family members. These include
a small amount of false positives (to be
discussed later). With the numbers and by looking into the identified tweets,
we have found that the results reflect our previous observations: (1) for most
of the Twitter users, family-related tweets are very sparse. It is extremely time-
consuming, if not impossible, to manually identify such tweets. (2) The identified
family-related tweets almost always bring additional information about the fam-
ily members, including the relationship, Twitter username, date of birth, age,
interests, etc.

Comparing with Keyword-based Retrieval. To evaluate the effectiveness
of FamilyID in reducing false-positives, we compare it with a keyword-based
approach – identifying family-related tweets with keyword spotting. That is,
when a pre-selected relationship keyword (e.g., “sister”, “mother”, the same as
we used in Sect. 3.4) is found in the tweet, it is labeled as “family-related”.

In order to manually examine the results, we perform keyword-based retrieval
on 75 randomly selected users. We have evaluated 225,886 tweets. Keyword-
based retrieval has found 6,121 tweets to be family-related, while FamilyID has
identified 2301 of them as family-related. Note that due to the selection of the
keywords, each tweet identified by keyword spotting is a candidate tweet in Fami-
lyID. Therefore, more than 62 % of the tweets containing family-related keywords
are identified as irrelevant to family relationships through content-based analysis
in FamilyID. We further manually look into such irrelevant tweets, and find that
more than 90 % of them are true negatives (not relevant to family members).
This also indicates that the precision of the keyword spotting approach is low,
since it has included large amount of non-family tweets.
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Table 4. Examples of true positives and false positives.

True positives (Family-related tweets)

I’m gon be an uncle *smiles* “@Bintah Adam: I can’t imagine my mum having
another baby now”

Oh my god my sister is annoying

False positives

When one of my boys tells me he’s in love

If your not my girl don’t be jealous of my other girls

Precision. We invite human evaluators to examine the tweets identified as
family-related from 50 random users, to determine whether each tweet is truly
related to family members. As the most important performance metric of Fam-
ilyID, the precision is defined as: Precision = TP

P , where TP indicates the
number of true positives (tweets labeled as family-related that are determined
to be family-related by human evaluators), and P indicates the number of posi-
tives (tweets labeled as family-related by FamilyID).

The evaluators have examined 1346 tweets that are identified as family-
related by FamilyID. They have found 1110 tweets to be true positives. There-
fore, the precision of FamilyID is 83%. Table 4 shows examples of true/false
positives. The precision is high, especially consider the difficulty of the task. For
some tweets, the human evaluator could hardly determine if they are family-
related. For instance, for the message “When one of my boys tells me he’s
in love”, the evaluator has referred to many other posts from the user, to find
that she is a teacher and she is very likely talking about a student, instead of a
child. However, the evaluator is less confident about the verdict.

Finally, we would like to point out that we have not evaluated the overall
recall of FamilyID, for two reasons: (1) the size of the data set (450K tweets
in total) makes it infeasible to manually examine all tweets; and (2) due to the
heavy use of urban slang, abbreviations and short texts, it is even difficult for
human evaluators to determine whether some of the tweets are family-related.

5 Conclusion

With the growing popularity of online social networks, large amounts of private
information have been voluntarily posted to the Internet. From attackers’ per-
spective, they could stalk a targeted user and attempt to extract such private
information. However, manually identifying family-related tweets that are scat-
tered in millions of microblog posts is very labor intensive. The FamilyID project
demonstrates the capabilities of an automated mechanism to identify family-
related microblogs and extract family member information from the microblogs.
By utilizing lexical and semantic features in a multi-phase approach, we are able
to achieve high accuracy. Moreover, most of the identified tweets carry addi-
tional (very sensitive) information about the family, such as birthdates, hobbies,
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family events, etc. FamilyID could be used by social network users to self-assess
the amount of family-related information that they have posted to the public.
We also expect the project to serve as a warning to Twitter users who carelessly
disclose too much information in online socialization.
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