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Abstract. In this paper, we present a haptics-enabled surgical training system
integrated with deep learning for characterization of particular procedures of
experienced surgeons to guide medical residents-in-training with quantifiable
patterns. The prototype of virtual reality surgical system is built for open-heart
surgery with specific steps and biopsy operation. Two abstract surgical scenarios
are designed to emulate incision and biopsy surgical procedures. Using deep
learning algorithm (autoencoder), the two surgical procedures were trained and
characterized. Results show that a vector with 30 real-valued components can
quantify both surgical patterns. These values can be used to compare how a resi-
dent-in-training performs differently as opposed to an experienced surgeon so that
quantifiable corrective training guidance can be provided.

Keywords: Virtual surgical training system - Haptic device - Machine learning -
Deep learning algorithm - Autoencoder - Motion tracking and quantification

1 Introduction

Patient safety is a fundamental issue in medical and health care. It was estimated by The
Office of Inspector General for Health and Human Services that approximately 440,000
patients suffer some types of preventable harm due to medical errors in hospitals every
year, which becomes the third leading cause of deaths in U.S. Behind heart disease and
cancer [1]. The surgical skill of a surgeon is one of the important attributes to patient
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safety. The current master-apprentice style of training in operation room seems not to
fully prepare medical students since they do not have enough time to practice within the
period of their training. Also, it is recognized that residents-in-training need to be
exposed to various surgical emergency situations to be prepared psychologically and
skill-wise. One of the important questions is: how are medical students expected to be
well trained and not make costly mistakes given the limited amount of practice time on
patients? To resolve this dilemma, one approach is to design a realistic surgical simulator
system, which may provide a training platform for basic skill practices as well as emer-
gency response. The advantages to use surgical simulator include (1) motion tracking
and quantification of hand motion, (2) integration of haptic device to quantify force
feedback, and (3) use of machine learning algorithm to compare hand motion between
experienced surgeons and medical residents-in-training.

Although the concept of using visualization for skill training may be traced back
to the 1970s and 1980s with videogames and primitive flight simulators [2, 3], only
in the 1990s (with 3D graphics) and the 2000s (with the use of motion sensors for
motion control) has visualization become a tool to construct incredibly realistic
virtual reality (VR) based training. One of the successful VR applications is training
pilots using flight simulators [4—6]. Similar to a flight simulator, VR simulators also
play an important role in medical education [7-9]. A VR surgical training simulator
is a computer system with certain human/machine interface to simulate surgical
procedures in a virtual world for the purpose of training medical professionals,
without the need of a real patient, cadaver or animal. A surgical training simulator
can provide the capability to learn and practice specific techniques in a controlled
setting allowing emphasis on specific aspects of these techniques. Reported evidence
shows that VR-based training leads to faster adaptation of novel psychomotor skills
and improved surgical performance [10]. It can also save time to be trained in the
operating room that may reduce training cost and improve the risk to the patient.

In spite of surgical simulators emergence more than twenty years ago, the quest for
their effectiveness has continued up to recently [11]. The challenge to teach a set of
complicated surgical skills involves translating a heuristic experience from a skillful
surgeon to a trainee who needs to comprehend the given oral instructions and convert
to hand motions.

In this paper, we present a haptics-enabled surgical training system integrated with
deep learning algorithm for characterization of particular procedures of experienced
surgeons to guide medical residents-in-training with quantifiable patterns. We have
developed a realistic prototype of VR surgical system for open-heart surgery with
specific steps and biopsy operation. Two abstract surgical scenarios are designed to
emulate incision and biopsy operational patterns. Using a version of deep learning
algorithm [12] proposed by Hinton et al., we demonstrate that a vector with 30 real-
valued components can quantify both surgical patterns. These values can be further
used to compare how a resident-in-training performs differently as opposed to an
experienced surgeon so that more quantifiable corrective training guidance can be
provided.
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2 Haptics-Enabled Virtual Surgery Training System

In the process of learning, visualization as a cognitive skill plays a central role in navi-
gating different modes of representation. Visualization allows one to make cognitive
connections between imaged and observed reality and acts as a bridge for disseminating
and accepting knowledge between theory and reality [13]. The same principles also
apply to medical education [14]. With enhancement of haptic devices, the virtual surgery
training system can be designed to be more realistic by providing “touch-and-feel” when
performing on the virtual system.

Our ultimate goal is to develop a comprehensive VR surgical training system with
multiple features and human-machine interfaces including 3D immersive visualization,
haptic devices with three and six degree of freedoms, free-hand haptic device and
motion tracking backed controllers. We have chosen to train for the surgical scenarios
of cardiac surgery and the common cancer operation of a biopsy. We have designed
the system with the following considerations: (1) setting difficulty levels for each
surgical task, (2) incorporating rationale for each difficulty setting, (3) designing
assessment methodology based on learning proficiency, and (4) providing feedback
based on performance criteria of expert proficiency. By using advanced visualization
to recreate the immersive surgical environment and realistic human-computer interface,
a surgical simulator can provide virtual training environment for medical students as
what a flight simulator offers to train pilots.

One of the benefits to use a realistic simulator for surgical training is, to certain extent,
that it could take the place of “cadaver labs,” and make it much easier for surgeons to
have access to high fidelity training on “virtual live tissues” that could be made to bleed
excessively and provide various anatomical variations that complicate the procedures.
It is tremendously advantageous to use a surgical simulator with digital patient over
“dead tissue” simulation with a cadaver. This would also allow us to teach not just the
procedure, but how to deal with complications of the procedure that require immediate
decisions and changes in management. To offer realistic training simulation, it requires
both a virtual environment and a realistic haptic interface. This interface needs to be
able to track hand movements and allows the user to “grab and use” surgical tools in a
virtual environment to actually perform the procedure.

Our design of surgical simulator consists of three major components: (1) integrated
immersive virtual patient/environment visualization module, (2) haptic interface
module, and (3) motion tracking and machine learning feedback module. The integrated
immersive virtual patient/environment visualization provides a realistic environment for
the trainee. Also, given that surgical rooms can vary within hospitals as well as between
hospitals, the virtual surgical rooms can be customized to mirror a specific room in order
to better prepare the trainee on where screens, certain tools, and lights may be oriented.
Haptic interface provides trainees with “touch and feel,” which is necessary for their
skill training and transfer to real surgical. The motion tracking records their hand motion
and quantify each surgical step to be analyzed and categorized by machine learning
algorithms to distinguish the level of skillfulness for certain tasks. The comparative
analysis will show the difference of a resident-in-training and an experienced surgeon.
Using machine learning algorithms (e.g., [15]), the feedback will be provided for
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Fig.1. Prototype of surgical simulator with organ removal function on a digital patient in a virtual
surgical room: (a) Virtual surgical room environment with a covered digital patient laying on the
surgical table and surgical lighting fixtures (not shown). (b) The digital patient with clamped open
heart and connected to the tubes of a perfusion pump. (c) A realistic digital patient with detailed
muscle group and bone structures. (d) A digital patient laying down on his side along with a digital
nurse checking his vital signs, (e) a digital patient on tan operation table. A user can use two-hand
haptic control for virtual operation. Both biopsy needle and scalp are shown in the figure. (f) A
digital patient with exposed internal organ for virtual biopsy operation.

designing the next practice set. Figure 1 shows a preliminary model of a digital patient,
a typical section procedure with haptic interface and associated surgical environment.

We have developed a 3D modular virtual system that can be visualized by immersive
visualization devices such as Oculus Rift [16] that allows a user to perform incision and
organ removal operation (see Fig. 1e). The visualization framework we developed is
based on the open source Processing programming language. Processing is a set of
libraries (http://processing.org) that can be considered as an extension of Java language.
The Processing language offers capability of rapid development of visualizations while
providing an environment that is easy to learn. We chose this environment to make the
development of custom scientific visualizations easy for researchers, to minimize the
time spent on visualization development. In addition, the platform also has the added
benefit of being suitable for real-time rendering to any platform running Java. In addition
to Processing language and the MPE library, we have added our own framework for
programmable data-driven visualizations, integration with the Oculus Rift Virtual
Reality headset, and integration with the motion and orientation controller the Sixense
Razer Hydra, OMNI/Phantom, and Quanser/HD2 haptic devices.

The developed programmable data-driven visualization framework - Immersive Data
Visualizer (IDV), consists of eight components: (1) a Wavefront.obj file loader, (2) an XML
data file loader, (3) a 3D force-directed graph algorithm, (4) a rendering module, (5) an
animation module for time series visualization, (6) a Oculus Rift VR headset integration
module, (7) a Sixense Hydra Razor controller integration, and (8) a VizWall (large tiled
screen) integration module. The IDV can also be used for finite-element simulation and
visualization in engineering applications. In fact, real-time finite element simulations can
be programmed in Processing and displayed on the VizWall and Oculus Rift. Alterna-
tively, MATLAB can be used to generate finite-element simulations and the data can be
saved as.csv point cloud file, and an optional.csv link file. The visualization can then,
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optionally, be programmatically manipulated and combined with other external data loaded
by the XML file. To achieve visual realism, both professional version of 3ds Max (http://
www.autodesk.com/products/3ds-max/overview) and UNITY (http://unity3d.com/unity)
software are used to create digital patients and surgical room environment.

3 Surgery Training and Pattern Quantification by Deep
Learning Algorithm

3.1 Abstraction of Surgical Procedures

As discussed previously, the challenge to train medical students to be a future surgeon
is how to effectively transfer knowledge and experience from a skillful surgeon to a
resident-in-training. The current practice heavily relies on oral instructions with heuristic
commends. If typical surgical procedures can be quantitatively described, it would be
much easier to teach surgical steps and correct mistakes with precise instructions and
commands. To that end, we took two surgical procedures and made two abstract
scenarios so that machine learning can be applied. The first scenario is chosen to be
incision procedure, which is usually performed by cutting through tissues by following
marked line segments. We designed a template with six letters that represent various
curves and sharp turns (Fig. 2). The participants were asked to trace the letter accurately
with a time limit in mind. Also, the elbow of the drawing hand cannot touch the desk
for support while tracing the letters.

Fig. 2. First abstract surgical procedure for machine learning: tracing six letters C, S, A, H, P, S.

The second surgical abstraction emulates biopsy operation. In Fig. 3, three circles
represent an organ with embedded tumor (top), a nerve bundle (bottom left) and a blood
vessel (bottom right), respectively. To increase the level of difficulty of emulated
surgical procedure, various sizes and distances are designed so that different biopsy path
needs to be chosen in order not to damage either the nerve bundle or the blood vessel.
The participants were asked to draw a straight line from the bottom of the square to the
black spot representing the tumor. It is required that the line has to be drawn as straight

5,

Fig. 3. Second abstract surgical procedure for biopsy tumor tissue embedded in a normal organ
(top circle with black spot). The biopsy path cannot penetrate either the nerve bundle (the circle
to the bottom left) or the nearby major blood vessel (the circle to the bottom right).
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as possible with a time limit in mind. Also, the elbow of the drawing hand cannot touch
the desk for support while drawing.

3.2 Data Generation and Imaging Processing

The imaging data for the first abstract surgical scenario are generated by tracing the letters
to mimic the incision procedure. One set of images are treated as the master patterns and
used as references for comparison (Figs. 2 and 3). Fifteen sets of images that constitute 7,200
letter-tracing images were made. The imaging data for the second abstract are generated by
drawing 6,000 biopsy line images. There were fourteen participants who represent fourteen
inexperienced residents. The original template is treated as work from the experienced
surgeon. Six letters are chosen to represents both smooth and sharp turns. Five biopsy
images are designed to represent various sizes and distances for tumor, nerve bundle, and
blood vessel. As instructed, the biopsy line needs to be drawn from the bottom and reach to
the tumor (black spot in the middle) without touching the nerve bundle (circle on the bottom
left filled in with small dots) and the blood vessel (circle on the bottom right filled with big
dots). Otherwise, the image will be considered as surgical accident. All images are scanned
and processed for machine learning (see detailed processing steps in Sect. 4.2).

3.3 Deep Learning Algorithms for Pattern Comparison and Feature Extraction

Machine learning algorithms are a set of methodology that automatically detects features
and patterns in the data, which can be used either for classification and decision-making.
Machine learning, as a scientific discipline, is widely used in many areas [17]. It is even
more so after Hinton et al. demonstrated that training process can be accelerated by using
deep belief network and efficient gradient calculation by contractive divergence [12]. In
this paper, we are interested in exploring applications of deep learning algorithm to
quantify features and patterns of surgical procedure illustrated by two abstract scenarios
so that surgical outcomes between an experienced surgeon and a resident-in-training so
that identified patterns can be objectively compared.

The classical deep learning algorithm is built on neural network by stacking single-
layer Restricted Boltzmann Machine (RBM) onto each other to form so-called Deep
Belief Network (DBN) [12]. By recognizing difficulty in training a densely-connected,
directed belief net with many hidden layers, Hinton et al. pointed out that poor approx-
imation of true conditional distribution due to either presumptuous independency or
scalability as number of parameters increases. To overcome this challenge, they
presented the deep belief network (DBN) model in which the two hidden layers form
an undirected associative memory and the remaining hidden layers form a directed
acyclic graph that converts the representations in the associative memory into observable
variables such as the pixels of an image. This algorithm extracts features and patterns
to form of bit vectors. By comparing these vectors, it is possible to adjust model param-
eters to produce predicted data closer to the given training data. Thus, this algorithm can
be used as a form of unsupervised learning. Considering the learning process by a resi-
dent-in-training, it seems that the learning style is very similar - medical students learn
how to perform surgery through a show-and-tell apprenticeship. However, it is very
difficult for a resident-in-training to translate what he/she hear and see into hand motions
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precisely. With machine learning to quantify the difference, it is possible to make this
translation in a more precise manner so that the medical training can be more efficient.

Deep learning perhaps is one of the most rapid growing fields in the areas of machine
learning (see a collection of review papers in [18] and latest review [19]). In this paper, we
have adopted Hinton’s deep learning MATLAB code (http://www.cs.toronto.edu/~hinton/)
with modifications so that it will be applicable to images we obtained from two abstract
surgical scenarios. We used both DBN classifier and autoencoder to process the image data
and seek for features and patterns between the reference images as the surgical outcome
of an experienced surgeon and images generated by fourteen participants. The learning rate
and other parameters in the code are adjusted for optimal learning.

4 Results and Discussion

4.1 Virtual Surgical Simulation Environment

To ensure training effectiveness, our Virtual Surgical Training (VST) System is designed
with built-in advanced features of monitoring, alarming, engineering changes based on
increased knowledge of biomechanical interactions during surgeries. To make the VST
System more useful for medical education, adverse events are designed with built-in
results of unexpected emergency scenarios, which are based on human error or opera-
tional patient risk factors documented in the literature or real surgical cases. In VST
System, when the emergency scenarios do arise, it is expected for a resident-in-training
to take the first step is to recognize the problem, then make assessment of the extent of
the problem, and finally formulate a solution and proceed to perform the surgery with
formulated solution in a systematic step-wise methodical manner. In almost all the
emergency cases, time is a critical factor. All the steps mentioned above have to be
accomplished in a few minutes with or without availability of additional consultation
and assistance from more experienced surgeons.

Our current prototype system (Fig. 1, also [20]) uses the Oculus Rift Virtual Reality
headset provides an immersive 3D visualization environment for guiding and controlling
simulations. Other viewers are able to watch on the large tiled screen called VizWall as
an effective education tool. In addition, the MPE environment (provided by TACC at
the University of Texas at Austin) makes loading data, models, and animations from a
variety of sources easy and intuitive. The data can contain reference to 3D models,
animations, CSV point clouds, CSV link clouds, and CSV/XML topological data. Point
clouds can contain additional metadata such as vectors, colors, scales, rotation, and OBJ
model name or number. Also, data-driven visualization can be expanded with Fruch-
terman-Rheingold force-directed graph algorithm, and parameters of that expansion can
be changed in the data-driven XML file. Furthermore, in addition to data-driven visu-
alization, after the data is loaded, the user can easily program visualizations that dynam-
ically modify point locations and links based.

4.2 Training Results and Applications

To emulate incision procedure, we have participants write on templates to trace the
letters as quickly as possible to introduce some variation in the lines so that they resemble
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scalpel cutting on marked traces. For the biopsy procedure, we have participants start
at the bottom edge of each figure and draw a straight line up towards the black dot (tumor
region), which signifies the presence of some cancer that needs a biopsy or other surgical
intervention. After scanning all marked images, we obtain a dataset of images we number
and group by participant.

Each of our fourteen participants marked on 80 rows similar to those shown in Fig. 4.
The template rows of letters are evenly distributed across 20 sheets of papers with 4 rows
per sheet. Similarly, the biopsy lines were drawn by each of our participants with 4 rows
per sheet and 20 sheets per participant (Fig. 5). The participants used a colored pen that
makes image-processing techniques for marking line extraction process much simpler.

C D A S

Fig. 4. One row of images from letters image dataset
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Fig. 5. One row of surgical lines obtained from image dataset
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The extraction process of marked images is straightforward. First we use a SnapScan
S510 M to scan in all of the sheets. Each of the participant markings for both letters and
surgical lines is scanned into one PDF file. We use a GIMP 2 plugin to quickly convert
PDFs into PNG images and save them to separate directories numbered 1 to 14 for each
participant. In addition, some of the template sheets were scanned in upside down. Rather
than flipping them manually, the Matlab flipud() function makes the process simple to
program and the end result is the same. Given images of letter markings each containing
four rows of C, D, A, H, P, and S, we isolate the bounds of each letter on the page and
extract the colored marking. In the process of images of marking extraction, the marking
image is downsampled and converted to a 63 pixel by 70 grayscale image consisting of
double floating point value between 0.0 and 1.0. The purpose of downsampling is to reduce
the total amount of data per image, and thereby reduce the total dataset size. Each of the
isolated grayscale images is added to a MATLAB matrix named “letters”. Similarly, given
images containing four rows of surgical line markings, we isolate the bounds of each box
containing a surgical scenario with line markings, and perform a similar colored pen
extraction tailored for extraction from white backgrounds. For both of these extractions,
we wrote a MATLAB script for preprocessing to obtain the data set. Each of the isolated
grayscale images is added to a MATLAB matrix named “surglines”.

Next, the “letters” matrix was converted to batches of 96 letters and processed with a
Deep Belief Network (DBN). First, we isolate the extent of each letter or surgical line
marking and produce 4 random shifts that keep each marking within the bounds of the
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image. We use an autoencoder DBN and pre-train a series of stacked Restricted Boltzmann
Machines (RBM) with layer sizes 4410-2100-1050-525-30. To train the RBMs we employ
the wake-sleep algorithm with one step of the Contrastive Divergence algorithm per epoch
(CD1). Then, we unroll the neural network into a neural network with layer sizes
4410-2100-1050-525-30-525-1050-2100-4410 and train by applying conjugate gradient
with 4 lines. On an 8 core Intel machine at 3.5 GHz and 32 GB of RAM this training process
takes approximately 18 h to reach a batch test set MSE of 39.28 after 131 epochs (Fig. 6).
However, we expect that the code will run significantly faster on a GPU based computer.
We apply a similar technique with the “surglines” matrix. However, we instead use a batch
size of 100 and a input/reconstruction layer of size of 7007, due to the larger image size of
91 by 77 pixels. After training we obtain a batch test set MSE of 8.59 after 101 epochs of
conjugate gradient.

Fig. 6. The letters during different phases of training using the deep learning algorithm

At the end of training, we obtained the results (Figs. 7 and 8) that letters and surgical
lines can be represented by a series of 30 floating-point values that are strongly correlated
with characteristics of the shapes of the letters involved and the individual characteristics
of the participants.

Fig. 7. Original letters (top) reconstructed (bottom) from 30 floating point values on test MSE
of 39.28 after 131 epochs.

Fig. 8. Original surgical (top) reconstructed (bottom) from 30 floating-point values on test set
with MSE of 8.59 after 101 epochs.
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Fig. 9. Typical plots of the mean of the 30 floating point values for each participant and each of
the six letters as a grayscale bar plot. Each participant has his or her own unique characteristics
and mean pattern that is generally consistent for their tracing patterns (only Participant 1, 2, 3, 4
and 6 shown here).
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Fig. 10. Typical plots of the mean of the 30 floating point values for each participant and each
of the five surgical scenarios as a grayscale bar plot. Each participant has their own unique mean
pattern that is generally consistent for their surgical lines.

The plots below (Figs. 9 and 10) show characteristic vectors of 30 floating point
numbers that can be used to determine unique characteristic of surgical lines that can be
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used to quantitatively assess the characteristics of surgical techniques. Further study
may allow the choice of an optimal surgical line for a surgical scenario based on the
association of characteristic vectors with outcomes by applying a classification based
Deep Belief Network.

5 Conclusions and Future Work

We have demonstrated that the prototype of a virtual reality surgical system is built for
open-heart surgery with specific steps and biopsy operation. We analyzed two abstract
surgical scenarios designed to emulate incision and biopsy surgical patterns using deep
learning algorithm. It is found that two surgical patterns generated by each participant
can be uniquely characterized by a vector with 30 real-valued (floating-point) compo-
nents. These vectors can be used to compare how a resident-in-training performs differ-
ently as opposed to an experienced surgeon. We plan to further investigate the correlation
of these characteristic vectors with the patterns generated by various hand motions. We
will also study the relationship between these vectors with cutting force, surgical path,
duration of each cut, and other surgical factors of interest.
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