
Biologically Inspired Vision
for Human-Robot Interaction

Mario Saleiro(B), Miguel Farrajota, Kasim Terzić, Sai Krishna,
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Abstract. Human-robot interaction is an interdisciplinary research area
that is becoming more and more relevant as robots start to enter our
homes, workplaces, schools, etc. In order to navigate safely among us,
robots must be able to understand human behavior, to communicate,
and to interpret instructions from humans, either by recognizing their
speech or by understanding their body movements and gestures. We
present a biologically inspired vision system for human-robot interaction
which integrates several components: visual saliency, stereo vision, face
and hand detection and gesture recognition. Visual saliency is computed
using color, motion and disparity. Both the stereo vision and gesture
recognition components are based on keypoints coded by means of corti-
cal V1 simple, complex and end-stopped cells. Hand and face detection
is achieved by using a linear SVM classifier. The system was tested on a
child-sized robot.

Keywords: Hand gestures · Human-robot interaction · Biological
framework

1 Introduction

It is expected that, in the future, robots will employ a growing number of roles
in society. Currently robots are mainly used in factory automation, but they
are also deployed in service applications, medical assistance [1], schools [2] and
entertainment, among other application fields. As they start to roam among us,
there will be a need to interact with them in easy and natural ways. Human-
robot interaction (HRI) research is therefore attracting more and more attention.
Researchers are trying to develop new, easy and natural ways of programming
robots, either by teaching them by manipulating a robot’s hardware manually [3]
or by creating programming interfaces so simple that even children can use them
at school [2]. However, programming a robot still requires some skill that must
be learned. In a world where robots navigate next to us, it will be necessary to be
possible to interact with them effortlessly, using voice commands or gestures. In
an ideal situation, robots should even be able to perceive some of our intentions
by analysing the motions of our body.
c© Springer International Publishing Switzerland 2015
M. Antona and C. Stephanidis (Eds.): UAHCI 2015, Part II, LNCS 9176, pp. 505–517, 2015.
DOI: 10.1007/978-3-319-20681-3 48



506 M. Saleiro et al.

The analysis and recognition of static hand gestures for HRI has been an
interesting research area for some time and there have been many approaches.
Some are intrusive, requiring the user to use specially designed gloves [4], while
others are less intrusive, but still require specific hardware like Leap Motion
[5] or Microsoft Kinect [6]. Other approaches rely on simple cameras and com-
puter vision methods. A simple solution can be based on skin color segmentation
and matching of previously stored gesture templates [7]. More complicated is to
extract the skeleton of the hand [8] and use this for matching. For dynamic
gestures there are methods that perform tracking and motion detection using
sequences of stereo color frames [9], or gestures are characterized by using global
properties of trajectories described by a set of keypoints [10]. Although many
solutions may work quite well for a specific type of application, they are too
simple for more complex gestures. In addition, they are often limited by fixed
hardware devices or lighting conditions. In order to use gesture analysis and
recognition for human-robot interaction, a system that is able to work under
most lighting conditions and almost anywhere is needed.

In our previous work [7] we developed a biological and real-time framework for
detecting and tracking both hand and head gestures. In this paper we present
an extension of the system and also add new features to improve the system
for human-robot interaction. The previously developed framework is based on
multi-scale keypoints detected by means of models of cortical end-stopped cells
[11,12]. We have improved the previous annotation of keypoints by using a fast
binary descriptor that allows for fast and robust matching. We also added a
combined disparity and motion saliency process so that the robot can initially
focus on the hands of the user and track them. Gesture recognition is performed
by matching the descriptors of the detected keypoints with the descriptors of
previously stored templates. We also integrated a head and hand detector based
on a linear SVM classifier.

The robot uses stereo vision for navigation, which also allows it to detect
obstacles. Every time it finds an obstacle in front of it, it looks up and searches
for the user’s head in order to start the interaction. The robot attempts to center
its own camera on the user’s face, and then starts performing hand detection
and gesture recognition. To detect a face/hand we employ a modified HOG
(Histogram of Oriented Gradients) descriptor combined with responses of com-
plex cells and a linear SVM to code the shape. The face and hand detectors
were trained and evaluated on the FaceScrub dataset [13] and the Oxford hand
dataset [14], respectively. The developed HRI system does not need any prior
calibration and has been designed to run in real time.

2 Biologically Inspired HRI System

In this section we describe all components of the developed system: (a) keypoint
descriptor, (b) stereo vision for navigation and obstacle detection, (c) visual
saliency, (d) face and hand detection, and finally (e) gesture recognition.
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2.1 Keypoint Descriptors for Gesture Recognition

In cortical area V1 there are simple, complex and end-stopped cells [12], which
are thought to be responsible for part of the process of coding the visual input:
they extract multi-scale line, edge and keypoint information (keypoints are
line/edge vertices or junctions and also blobs). In this section we briefly describe
multi-scale keypoint detection and the fast binary descriptor that we designed
for matching keypoints. The descriptor is also based on V1 cell responses.

Keypoint Detection: Responses of even and odd simple cells, which corre-
spond to the real and imaginary parts of a Gabor filter [12], are denoted by
RE

s,i(x, y) and RO
s,i(x, y), i being the orientation (we use 4 ≤ Nθ ≤ 12). The

scale s is defined by λ, the wavelength of the Gabor filters, in pixels. We use
4 ≤ λ ≤ 12 with Δλ = 4. Responses of complex cells are obtained by comput-
ing the modulus Cs,i(x, y) = [{RE

s,i(x, y)}2 + {RO
s,i(x, y)}2]1/2. The process of

edge detection is based on responses of simple cells: a positive or negative line
is detected where RE shows a local maximum or minimum, respectively, and
RO shows a zero crossing. In the case of edges the even and odd responses are
swapped. Lateral and cross-orientation inhibition are used to suppress spurious
cell responses beyond line and edge terminations, and assemblies of grouping cells
serve to improve event continuity in the case of curved events. On the other hand,
keypoints are based on cortical end-stopped cells [11] and they provide impor-
tant information because they code local image complexity. Since keypoints are
caused by line and edge junctions, they are usually located at interesting loca-
tions of the image. When combined with a proper descriptor, they can be very
useful for object categorization [15]. There are two types of end-stopped cells,
single and double. These are applied to Cs,i and are combined with tangential
and radial inhibition schemes to obtain precise keypoint maps Ks(x, y). For a
detailed explanation with illustrations see [11,15].

Binary Keypoint Descriptors: Creating a biological descriptor for keypoints
is not a trivial task, mainly because responses of simple and complex cells, which
code the underlying lines and edges at vertices, are not reliable due to response
interference effects [16]. Therefore, the responses in a neighbourhood around
a keypoint must be analyzed, the neighbourhood size being proportional to the
scale of the cells. In our approach we developed a 128-bit binary keypoint descrip-
tor based on the responses of simple cells, each bit coding the activation level
of a single cell. Also, from a computational point of view, a binary descriptor is
much faster to compute and to match than a floating-point one. This method
is an improvement of the previous method [17]. We start by applying maximum
pooling in a circular region around each keypoint, followed by zero-mean nor-
malization and extraction of the maximum cell responses in 8 filter orientations.
Then we combine the extracted values by a weighted sum, using a weight matrix
previously learned using LDAHash [18] on the Notredame dataset [19]. Finally,
we apply a threshold vector, also previously trained on the Notredame dataset,
to set each of the 128 bits to 1 or 0. The resulting descriptor is a huge improve-
ment of the previous one [17]. It is comparable to the SIFT-based LDAHash
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descriptor in terms of performance when tested on the Yosemite dataset [19].
The developed descriptor significantly outperforms other biologically-inspired
descriptors. In terms of processing time, the descriptor is also very fast to com-
pute and to match. Figure 1 (left) shows one example of matching using the
present descriptor. The right graph shows a comparison between our descrip-
tor(128 bits), BRISK(512 bits) and BRIEF(128 bits) and LDAHash (128 bits)
over 200,000 patches of the Yosemite dataset.

Fig. 1. Top: Example of matching. Bottom: comparison between our descriptor(blue),
BRISK(green), BRIEF(red) and LDAHash(pink) over 200,000 patches (Colour figure
online).

2.2 Stereo Vision for Robot Navigation and Obstacle Detection

Stereo vision is a fundamental process for robot navigation: it allows the robot
to detect open spaces, obstacles on its path and estimate the distance to those
obstacles. It can also be useful for computing visual saliency. The algorithm
we used to generate the disparity maps is the same as previously used in [17]:
(a) resize the left and right images to a small size (160×120); (b) extract complex
cell responses on circles around each pixel; (c) compare each pixel P in the left
image to the next K pixels in the right image on the same line and starting from
the same position P as in the left image (we used K = 35); (d) use the Hamming
distance to find the best-matching pixels; and (e) apply median filtering (5 × 5
kernel) to reduce noise due to wrong matches. The computed disparity maps
are then thresholded to find nearby obstacles (td = 70). Whenever the robot
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detects an obstacle by using the thresholded disparity maps, it looks up and
evaluates if it is a person by trying to find a human face using a linear SVM
classifier, as described in Sect. 2.4. Figure 2 (top) row shows one example of an
image acquired by the robot and the respective disparity map.

2.3 Visual Saliency

Visual saliency is also an important component of the real-time vision system,
since by using it the robot can select important regions to process instead of
processing entire images. The generated saliency maps are also useful to segre-
gate hands from the background, to reduce clutter and to improve gesture recog-
nition rates. The visual saliency algorithm we developed is an improvement of
the one described in [17] and combines three different features: color, disparity
and motion. The three features are processed separately and then merged into
a single saliency map with equal weights. The top row of Fig. 2 shows an image
of a person in front of the robot (left and right frames), the resulting disparity
map, and the middle row shows the motion (left), color (middle) and dispar-
ity(right) saliency maps. The bottom row shows the resulting saliency map the
thresholded map and the selected regions. Details are explained below.

Fig. 2. Top row: stereo images acquired by the robot camera and the disparity map.
Middle row, from left to right: motion saliency, color saliency and disparity saliency.
Bottom row, from left to right: resulting saliency map, thresholded saliency map (tf =
200) and selected regions after blob detection and region growing (Color figure online).

Color Saliency: We build a stack of 6 retinotopic maps representing different
channels in CIE L*A*B color-opponent space, which is based on retinal cones
and provides a standard way to model color opponency. The first three channels
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code white, green and blue. The remaining three channels complement the first
ones and represent black, red and yellow. After computing the maps, a stack of
bandpass Difference-of-Gaussians (DoG) filter kernels with σ+ ∈ {5, 10, 20} and
σ− = 2σ+ are used for blob detection. Since a saliency map does not need to be
detailed, we compute them using subsampled color images for faster processing.

Disparity Saliency: To generate the disparity-based saliency map, we use the
disparity and map computed in Sect. 2.2, and extract a single disparity layer
where pixels with disparity d = 100 get the maximum value M = 20 and pixels
bigger or smaller than d get smaller values according to their difference from d.
After this step we apply the same filtering used for the colour-based saliency
maps.

Motion Saliency: To compute the motion-based saliency map, we first cal-
culate the optical flow using Farneback’s method for every pixel [20]. Then we
process the flow’s magnitude and direction separately, creating a feature stack of
magnitudes and orientations of motion. The feature stack has 3 maps represent-
ing the magnitude (speed) of motion and also has 8 maps representing 8 different
directions of motion with either 0 or the value itself. In practice, 0 occurs when
a pixel is not moving in the preferred direction or with preferred speed. When a
pixel is moving in the preferred direction or with preferred speed we consider the
value to be the value of the pixel at that location. Objects moving in a certain
direction with certain speed will thus cause large coherent regions in one of the
maps of the stack.

Final Saliency Map: The final saliency is the equally-weighted sum of the three
normalized saliency maps. After computing this map we threshold it (tf = 200)
to get only the nearest regions and then apply the fast blob detection algorithm
from [21]. After blob detection, only the two biggest blobs are kept. Each blob
is converted into a square region that afterwards is grown by 15 pixels in all
directions, so that there is enough margin to apply the Gabor filters to extract the
simple cell responses used to extract keypoints and build keypoint descriptors.

2.4 Face and Hand Detection

Detection of faces and hands is achieved by coding responses of cortical complex
cells within a region into a feature vector and by using a classifier (linear SVM)
to predict whether a face/hand is inside the detection region or not. The process
is similar to [22], but in our case the detection process employs a single Gabor
filter scale (λ = 6) and 8 orientations (Nθ = 8) for the complex cells (see
Sect. 2), but also in combination with several scales of the HOG-like features
(several sizes) over the entire image, and then a sliding window (6 × 6 blocks)
to scan all blocks inside the sliding window’s region. At each layer, the pooling
cell size is increased, but the detection window size and the block’s size remain
the same. To this purpose, we use between 6× 6 and 10× 10 pixels per cell with
a stride of 1 pixel. Finally, non-maximum suppresion is applied to eliminate
multiple detections of the same face/hand (see below). We used the FaceScrub
dataset [13] and the Oxford Hand dataset [14] to train and evaluate our face
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and hand detectors. For each detector we train an initial classifier using the
positive and a random set of negative examples, then we use it to scan over
images not containing faces or hands and collect false positives, and then we
do a second round of training by including these hard false positives into the
negative training set. The FaceScrub dataset consists of 107,818 face images
of 530 celebrities (265 male and 265 female), although only 80,659 faces could
be downloaded successfully and a few samples being unusable for training. For
negative samples we took 100,000, 42 × 42 pixel patches from random images
of the SUN database [23]. For training our hand classifier we used the Oxford
hand dataset which contains 13,050 annotated hand instances (26,100 mirrored
samples). Again, we took 30,000 random 42 × 42 pixel patches from the SUN
database as negative samples.

Fig. 3. (Left to right) a person in front of the robot in gray scale (left) coded by
HOG-like features (middle) with detected face and hands (right).

HOG-like Features: A modified version of the Dalal and Triggs HOG features
is used here for person detection. In their implementation [22] they use the RGB
colour space with no gamma correction, 1D gradient filters, linear gradient voting
into 9 orientation bins, 16 × 16 pixel blocks of four 8 × 8 pixel cells, a Gaussian
spatial window with σ = 8 pixels, L2-Hys block normalization, a block spacing
stride of 8 pixels, and a 64 × 128 detection window for training the linear SVM
classifier for pedestrian detection. Here we use an adapted and slightly modified
version of the previous procedure for face and hand detection: (a) we use only
grayscale information for speed purposes, (b) complex cell responses are used
as gradient information, (c) no Gaussian window is applied, (d) the L2-norm is
used instead of L2-Hys and (e) a 42×42 detection window for training. Complex
cell responses provide a good alternative for gradient information since they are
also robust to noise. In addition, linear gradient voting can be skipped because
of the cells’ oriented responses. We use 12×12 pixel blocks of four 6×6 pixel cells
with 50 % block overlap; see below for parameter assessment and evaluation. Our
selection ensures optimal performance while also complying also with Dalal and
Triggs’ recommendations [22] of having many orientation bins in combination
with moderately sized, strongly normalized and overlapping descriptor blocks.
See Fig. 3 (middle) for the bio-inspired HOG-like features.

Classification: To detect a face or a hand, features in a detection window are
classified using a linear SVM. The face and hand classifiers are trained using



512 M. Saleiro et al.

the FaceScrub dataset and the Oxford hand dataset, respectively, with a soft
linear SVM (C=0.01) using LIBLINEAR [24]. As mentioned above, we used a
42 × 42 pixel detection window for training both classifiers, since the sizes of
hands and faces in the image relative to the robot are similar. This results in
6×6 blocks to be used by the classifiers across the image at all scales. We found
that a detection window of 42×42 pixels for training constitutes a good trade-off
between performance and running speed. Increasing the detection window’s size
beyond 42 × 42, although increasing detection performance, has a significantly
higher computational cost due to more features being used for classification.

Non-maximum Suppression: The detection window is applied to salient
image regions using a sliding window approach where multiple detections of the
same head or hands often occur. To remove multiple detections due to the sliding
window, a non-maximum suppression technique is applied to discard overlapping
windows: when two windows overlap at least 50 %, the window with the weakest
classification response is discarded. To this purpose, we use the unsigned SVM
classification output in order to determine a window’s classification response.
Figure 3 (right) shows detected regions of face and hands after non-maximum
suppression.

Concerning performance evaluation and optimization, several factors have
been evaluated in the classifier training stage, namely Gabor filter scale (λ),
number of orientations (Nθ), cell size, block size and overlap. Smaller sets of
2000 positive and 2000 negative random samples for training, and 1000 positive
and 1000 negative random samples for testing were used for cross-validation and
parameter optimization for both classifiers. We used detection error trade-off
(DET) and miss rate (better: 1.0 - Recall) measures to quantify the performance.

First, the scale of the cortical cells was analyzed in order to determine the
optimal λ. Figure 4 (top-left) shows the overall performance of seven different
scales λ = [4, 10]. Smaller scales yield better performance than bigger scales,
mainly due to lines and edges being better encoded by smaller filters. Moreover,
by choosing a smaller λ the processing time decreases. Here, λ = 4 performed
best. Figure 4 (top-middle) shows the performance impact of the number of
orientations used (Nθ ∈ [4, 12]) in the HOG-like feature bins. Increasing the
number of orientations beyond 8 does not improve performance significantly.
Therefore, for the final classifier we chose Nθ = 8 orientations which gave a
1.4 % and 8.03 % miss rates for face and hand detection, respectively. Three
other key factors taken into account were the block size vs. cell size vs. block
overlap. Figure 4 (middle and bottom) shows three graphs with 0 % (left), 25 %
(middle) and 50 % (right) block overlap, with block sizes ranging from 1 × 1 to
4 × 4 and pooling cell sizes from 4 × 4 to 10 × 10 for faces (middle) and hands
(bottom). From all tested combinations, block sizes of 2 × 2 with 6 × 6 pooling
cells and 50 % overlap, gives the best performance with a 1.1 % miss rate for face
and 8.6 % for hand detection. Figure 4 (top-right) shows the overall performance
of the two detectors.
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2.5 Gesture Recognition

In order to be able to recognize gestures, the robot keeps in its memory a small set
of templates of different hand gestures. These templates have been prepared prior
to robot operation, and by applying exactly the same processing as done during
real-time robot operation. At the moment we use a set of 7 different gestures for
both hands, with several samples for each gesture with different backgrounds and
sizes. After finding the hand regions, the robot then processes those regions for
keypoint extraction and their descriptors. Descriptor matching is based on the
128-bit Hamming distance: when the distance between two keypoint descriptors
is smaller than 30, a match is accepted. When at least 4 matches between the
acquired hand region and a template are found, the robot assumes that the
gesture that corresponds to the matched template has been detected. For faster

Fig. 4. HOG-like feature parameter performance. Top row: effects of λ (left) and the
number of orientations (middle-left) in face (full lines) and hand (dot lines) detection.
The mid-right and right plot shows the overall performance of our face and hand
detectors. Middle and bottom rows, left to right: block vs. cell size combinations with
0 %, 25 % and 50 % block overlap, and with block size from 1× 1 to 4× 4 and cell size
from 4 × 4 to 10 × 10 (bluer is better) for face (middle) and hand (bottom) detectors.
The best result is given by 2×2 blocks with 6×6 cell size and 50 % overlap with 1.1 %
miss rate for face and 8.6 % for hand detection
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computation time and higher reliability of the system, we extract keypoints at
scale λ = 12 and use simple cell responses at scale λ = 6 for the descriptors. By
extracting keypoints at a coarser scale, they become more stable. By using scale
λ = 6 on extracted keypoint locations, more detail is available to describe the
keypoints.

3 Tests and Results

To test the developed system we used a child-sized Pioneer 3DX robot, equipped
with a Bumblebee-2 stereo camera, a PhantomX robot turret for pan and tilt
movement of the camera, and ultrasonic and laser rangefinder sensors (see Fig. 5
left). The Bumblebee-2 camera captures images at a resolution of 1024 × 768
pixels. The range sensors are only used for emergency collision avoidance, not
for navigation. A structure has been mounted on the robot in order to make it
taller, providing the point of view of a child with a height of 115 cm and eyes
at 110 cm. The robot has been set up with ROS (Robot Operating System).
Although the robot is of mecanoid type, its pan and tilt system combined with
the stereo camera convey the idea that it has a neck and a head with two eyes.
Since it is programmed to focus on a person’s head in the center of the image, it
seems like it is looking the person in the eyes. This makes it much more engaging
than a robot with static cameras and no neck movements.

Fig. 5. Left: robotic platform used for testing. Middle left: examples of recognition of
two different gestures. Middle Right: some of the gesture templates. Right: detection
of heads and hands using the SVM classifiers.

Figure 5 right shows some results: on the left we can see the mobile robot
platform used for testing; on the middle left column we show two examples of
gesture recognition using the extracted keypoints and their descriptors; on the
middle right column we show some of the gesture templates; and on the right
we show some examples of head and hand detection using the SVM classifiers.
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The system proved to work quite well, being able to recognize the 7 differ-
ent gestures for both hands in most situations. At start it failed to recognize
some of them but as we added more gesture templates with different sizes and
backgrounds the gesture recognition was improved.

As usual with most vision systems, we noticed that under bad illumination
the system can sometimes fail to detect hands or head and thus may not be able
to recognize gestures. Failure in detection of hands and recognizing gestures
could also happen during fast hand movements, since in these cases the image
of the hands is blurred.

4 Discussion

In this paper we presented a biologically inspired vision system for human-robot
interaction. It allows the robot to navigate and to evaluate if an obstacle is, in
fact, a person by trying to find a human face whenever it encounters an obstacle.
The system also allows the robot to direct its attention to important visual areas
using an attention model which is based on color, disparity and motion. The
presented methods allow the robot to identify human hands in salient regions
and then recognize the gestures being made by using keypoints and keypoint
descriptors based on V1 cell responses. Although biologically inspired methods
usually require a high computational power and long computation time, due to
the many filter kernels at several orientations and scales, by choosing only a
few scales the system is able to run in real time. The SVM classifiers showed to
be fast in detecting faces and hands in an image using a sliding window. Faces
had the best performance overall with few false negatives, while hands had less
performance in detection mainly due to the large intra-class variability. The key-
points and their descriptors proved to be quite robust and work quite well for
recognizing the gestures previously stored as templates. Although sometimes few
keypoints were matched to wrong keypoints, most of them were matched to the
correct ones. These wrong matches can easily be eliminated by using some geom-
etry between groups of keypoints to validate or invalidate matches. Experiments
showed that the system can now be programmed to execute different actions
according to specific hand gestures.

As future work we plan to add more gestures to the system, increase the preci-
sion such that individual fingers can be detected, and integrate facial expression
recognition in order to allow the robot to act according to a person’s mood. We
also plan to use the ability of recognizing gestures and facial expressions as a
way to teach the robot simple tasks through reinforcement learning: by using
different gestures or facial expressions it will be possible to tell the robot that
it is doing the right or the wrong thing. Another part of future work consists
of integrating the binary keypoint descriptor into the GPU implementation of
the keypoint extractor in order to free the CPU for other future developments.
Future work will also address motion prediction, a process that occurs in cortical
area MST.
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