Skip to main content

Robotic Systems in Urological Surgery: Current State and Future Directions

  • Chapter
  • First Online:
Book cover Robotics in Genitourinary Surgery

Abstract

Minimally invasive surgery has ushered in an era of popularized robotic-assistance for numerous urological procedures. There continues to be a great deal of interest in improving robotic technologies further. Concomitant robot-assisted laparoscopic radical prostatectomy and trans-rectal ultrasound has been employed to better visualize the neurovascular bundles and other adjacent critical structures during prostatectomy. There have also been attempts to improve prostate biopsy, brachytherapy and percutaneous renal interventions using robot-guidance. A magnetic resonance-safe robot has been designed and safely used to directly biopsy suspicious. Additionally, robot-guided brachytherapy seed placement for prostate cancer treatment has proven feasible and highly accurate. Lastly, robot-guidance for percutaneous renal access has been shown to be accurate and rapid. The evolution of robotic systems may facilitate the development of targeted therapies in urology. The growing emphasis on precision and reproducibility in medicine will likely put robotic technology at the forefront of future urological procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vecchio R, Macfayden BV, Palazzo F. History of laparoscopic surgery. Panminerva Med. 2000;42:87–90.

    PubMed  CAS  Google Scholar 

  2. Spaner SJ, Warnock GL. A brief history of endoscopy, laparoscopy, and laparoscopic surgery. J Laparoendosc Adv Surg Tech. 2009;7:369–73.

    Article  Google Scholar 

  3. Clayman RV, Kavoussi LR, Soper NJ, Dierks SM, Meretyk S, Darcy MD, et al. Laparoscopic nephrectomy: initial case report. J Urol. 1991;146:278–82.

    Article  CAS  PubMed  Google Scholar 

  4. Kerbl K, Clayman RV, McDougall EM, Kavoussi LR. Laparoscopic nephrectomy: the Washington University experience. Br J Urol. 1994;73:231–6.

    Article  CAS  PubMed  Google Scholar 

  5. Leal Ghezzi T, Campos CO. 30 Years of robotic surgery. World J Surg. 2016;40:2550–7. https://doi.org/10.1007/s00268-016-3543-9.

    Article  PubMed  Google Scholar 

  6. Klingler DW, Hemstreet GP, Balaji KC. Feasibility of robotic radical nephrectomy – initial results of single-institution pilot study. Urology. 2005;65:1086–9.

    Article  PubMed  Google Scholar 

  7. Patel HD, Mullins JK, Pierorazio PM, Jayram G, Cohen JE, Matlaga BR, et al. Trends in renal surgery: robotic technology is associated with increased use of partial nephrectomy. J Urol. 2013;189:1229–35.

    Article  PubMed  Google Scholar 

  8. Tosoian J, Loeb S. Radical retropubic prostatectomy: comparison of the open and robotic approaches for treatment of prostate cancer. Rev Urol. 2012;14:20–7.

    PubMed  PubMed Central  Google Scholar 

  9. Yaxley JW, Coughlin GD, Chambers SK, Occhipinti S, Samaratunga H, Zajdlewicz L, et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomised controlled phase 3 study. Lancet. 2016;6736:1–10.

    Google Scholar 

  10. Lee EK, Baack J, Duchene DA. Survey of practicing urologists: robotic versus open radical prostatectomy. Can J Urol. 2010;17:5094–8.

    PubMed  Google Scholar 

  11. Robertson C, Close A, Fraser C, Gurung T, Jia X, Sharma P, et al. Relative effectiveness of robot-assisted and standard laparoscopic prostatectomy as alternatives to open radical prostatectomy for treatment of localised prostate cancer: a systematic review and mixed treatment comparison meta-analysis. BJU Int. 2013;112:798–812.

    Article  PubMed  Google Scholar 

  12. Ukimur O, Gill IS, Desai MM, Steinberg AP, Kilciler M, Ng CS, et al. Real-time transrectal ultrasonography during laparoscopic radical prostatectomy. J Urol. 2004;172:112–8.

    Article  Google Scholar 

  13. Ukimura O, Magi-Galluzzi C, Gill IS. Real-time transrectal ultrasound guidance during laparoscopic radical prostatectomy: impact on surgical margins. J Urol. 2006;175:1304–10.

    Article  PubMed  Google Scholar 

  14. Stoianovici D, Kim C, Schäfer F, Huang CM, Zuo Y, Petrisor D, et al. Endocavity ultrasound probe manipulators. IEEE/ASME Trans. Mechatron. 2013;18:914–21.

    Article  Google Scholar 

  15. Han M, Kim C, Mozer P, Schäfer F, Badaan S, Vigaru B, et al. Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: a feasibility study. Urology. 2011;77:502–7.

    Article  PubMed  Google Scholar 

  16. Shuhaiber JH. Augmented reality in surgery. Arch Surg. 2004;139:170–4.

    Article  PubMed  Google Scholar 

  17. Carmigniani J, Furht B, Anisetti M, Ceravolo P, Damiani E, Ivkovic M. Augmented reality technologies, systems and applications. Multimed Tools Appl. 2011;51:341–77.

    Article  Google Scholar 

  18. Hughes-Hallett A, Mayer EK, Pratt P, Mottrie A, Darzi A, Vale J. The current and future use of imaging in urological robotic surgery: a survey of the European Association of Robotic Urological Surgeons. Int J Med Robot. 2015;11:8–14.

    Article  PubMed  Google Scholar 

  19. Ukimura O, Gill IS. Imaging-assisted endoscopic surgery: Cleveland Clinic experience. J Endourol. 2008;22:803–10.

    Article  PubMed  Google Scholar 

  20. Borghesi M, Ahmed H, Nam R, Schaeffer E, Schiavina R, Taneja S, et al. Complications after systematic, random, and image-guided prostate biopsy. Eur Urol. 2016;pii:S0302–2838(16)30471–7. https://doi.org/10.1016/jeururo201608.004.

    Article  Google Scholar 

  21. Daneshgari F, Taylor GD, Miller GJ, Crawford ED. Computer simulation of the probability of detecting low volume carcinoma of the prostate with six random systematic core biopsies. Urology. 1995;45:604–9.

    Article  CAS  PubMed  Google Scholar 

  22. Fink KG, Hutarew G, Lumper W, Jungwirth A, Dietze O, Schmeller NT. Prostate cancer detection with two sets of ten-core compared with two sets of sextant biopsies. Urology. 2001;58:735–9.

    Article  CAS  PubMed  Google Scholar 

  23. Chang D, Chong X, Kim C, Jun C, Petrisor D, Han M, et al. Geometric systematic prostate biopsy. Minim Invasive Ther Allied Technol. 2017;26(2):78–85.

    Article  PubMed  Google Scholar 

  24. Han M, Chang D, Kim C, Lee BJ, Zuo Y, Kim HJ, et al. Geometric evaluation of systematic transrectal ultrasound guided prostate biopsy. J Urol. 2012;188:2404–9.

    Article  PubMed  Google Scholar 

  25. Logan JK, Rais-Bahrami S, Turkbey B, Gomella A, Amalou H, Choyke PL, et al. Current status of magnetic resonance imaging (MRI) and ultrasonography fusion software platforms for guidance of prostate biopsies. BJU Int. 2014;114:641–52.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Siddiqui M, Rais-Bahrami S, Turkbey B, George AK, Rothwax J, Shakir N, et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA. 2015;313:390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang EY, Polsani VR, Washburn MJ, Zang W, Hall AL, Virani SS, et al. Real-time co-registration using novel ultrasound technology: ex vivo validation and in vivo applications. J Am Soc Echocardiogr. 2011;24:720–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stoianovici D. Multi-imager compatible actuation principles in surgical robotics. Int J Med Robot. 2005;1:86–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu N, Gassert R, Riener R. Mutual interferences and design principles for mechatronic devices in magnetic resonance imaging. Int J Comput Assist Radiol Surg. 2011;6:473–88.

    Article  PubMed  Google Scholar 

  30. Krieger A, Susil RC, Ménard C, Coleman JA, Fichtinger G, Atalar E, et al. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng. 2005;52:306–13.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stoianovici D, Song D, Petrisor D, Ursu D, Mazilu D, Muntener M, et al. ‘MRI Stealth’ robot for prostate interventions. Minim Invasive Ther Allied Technol. 2007;16:241–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stoianovici D, Kim C, Srimathveeravalli G, Sebrecht P, Petrisor D, Coleman J, et al. MRI-safe robot for endorectal prostate biopsy. IEEE/ASME Trans Mechatron. 2014;19:1289–99.

    Article  Google Scholar 

  33. Krieger A, Csoma C, Iordachital II, Guion P, Singh AK, Fichtinger G, et al. Design and preliminary accuracy studies of an MRI-guided transrectal prostate intervention system. Med Image Comput Comput Assist Interv. 2007;10:59–67.

    PubMed  PubMed Central  Google Scholar 

  34. Hambrock T, Hoeks C, Hulsbergen-van de Kaa C, Scheenen T, Fütterer J, Bouwense S, et al. Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur Urol. 2012;61:177–84.

    Article  PubMed  Google Scholar 

  35. Stoianovici D, Kim C, Petrisor D. MR safe robot, FDA clearance, safety and feasibility of prostate biopsy clinical trial. IEEE ASME Trans Mechatron. 2017;22(1):115–26.

    Article  PubMed  Google Scholar 

  36. Marshall S, Taneja S. Focal therapy for prostate cancer: the current status. Prostate Int. 2015;3:35–41.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chao MW, Grimm P, Yaxley J, Jagavkar R, Ng M, Lawrentschuk N. Brachytherapy – state of the art radiotherapy in prostate cancer. BJU Int. 2015 Oct;116(Suppl 3):80–8. https://doi.org/10.1111/bju.13252.

    Article  PubMed  Google Scholar 

  38. Van Gellekom MP, Moerland MA, Battermann JJ, Lagendijk JJ. MRI-guided prostate brachytherapy with single needle method—a planning study. Radiother Oncol. 2004;71:327–32.

    Article  PubMed  Google Scholar 

  39. Cormack RA, Tempany CM, D'Amico AV. Optimizing target coverage by dosimetric feedback during prostate brachytherapy. Int J Radiat Oncol Biol Phys. 2000;48:1245–9.

    Article  CAS  PubMed  Google Scholar 

  40. Lagerburg V, Moerland MA, Konings MK, van de Vosse RE, Lagendijk JJ, Battermann JJ. Development of a tapping device: a new needle insertion method for prostate brachytherapy. Phys Med Biol. 2006;51:891–902.

    Article  CAS  PubMed  Google Scholar 

  41. Muntener M, Patriciu A, Petrisor D, Mazilu D, Bagga H, Kavoussi L, et al. Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement. Urology. 2006;68:1313–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cleary K, Watson V, Lindisch D, Taylor RH, Fichtinger G, Xu S, et al. Precision placement of instruments for minimally invasive procedures using a ‘needle driver’ robot. Int J Med Robot. 2005;1:40–7.

    Article  CAS  PubMed  Google Scholar 

  43. Masamune K, Fichtinger G, Patriciu A, Susil RC, Taylor RH, Kavoussi LR, et al. System for robotically assisted percutaneous procedures with computed tomography guidance. Comput Aided Surg. 2001;6:370–83.

    Article  CAS  PubMed  Google Scholar 

  44. Solomon SB, Patriciu A, Stoianovici DS. Tumor ablation treatment planning coupled to robotic implementation: a feasibility study. J Vasc Interv Radiol. 2006;17:903–7.

    Article  PubMed  Google Scholar 

  45. Patriciu A, Awad M, Solomon SB, Choti M, Mazilu D, Kavoussi L, et al. Robotic assisted radio-frequency ablation of liver tumors—randomized patient study. Med Image Comput Comput Assist Interv. 2005;8:526–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Solomon SB, Patriciu A, Bohlman ME, Kavoussi LR, Stoianovici D. Robotically driven interactions: a method of using CT fluoroscopy without radiation exposure to the physician. Radiology. 2011;225:277–82.

    Article  Google Scholar 

  47. Bauer J, Lee BR, Stoianovici D, Bishoff JT, Micali S, Micali F, et al. Remote percutaneous renal access using a new automated telesurgical robotic system. Telemed J E Heal. 2001;7:341–6.

    Article  CAS  Google Scholar 

  48. Su L-M, Stoianovici D, Jarrett TW, Patriciu A, Roberts WW, Cadeddu JA, et al. Robotic percutaneous access to the kidney: comparison with standard manual access. J Endourol. 2002;16:471–5.

    Article  PubMed  Google Scholar 

  49. Challacombe B, Patriciu A, Glass J, Aron M, Jarrett T, Kim F, et al. A randomized controlled trial of human versus robotic and telerobotic access to the kidney as the first step in percutaneous nephrolithotomy. Comput Aided Surg. 2005;10:165–71.

    Article  PubMed  Google Scholar 

  50. Chang SL, Kibel AS, Brooks JD, Chung BI. The impact of robotic surgery on the surgical management of prostate cancer in the USA. BJU Int. 2015;115:929–36.

    Article  PubMed  Google Scholar 

  51. Perera M, Krishnananthan N, Lindner U, Lawrentschuk N. An update on focal therapy for prostate cancer. Nat Rev Urol. 2016;13:641–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Stoianovici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ludwig, W.W., Badaan, S., Stoianovici, D. (2018). Robotic Systems in Urological Surgery: Current State and Future Directions. In: Hemal, A., Menon, M. (eds) Robotics in Genitourinary Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-20645-5_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20645-5_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20644-8

  • Online ISBN: 978-3-319-20645-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics