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Abstract. The increasing complexity of industrial processes leads to complex
process visualizations. Amongst other things, this is often due to the fact that a
visualization engineer does not have deep knowledge of all physical and logical
relations inside a plant. Additionally, different operators have to work with the
same visualization despite the fact, that their personal preferences, abilities and
needs differ. Having to work with unclear and confusing visualizations leads to
an increased workload for plant operators and thus to higher error rates. Due to
cost and time constraints, creating better or user-specific visualizations manually
is not possible, especially because taking the operators’ specific knowledge and
experience into account is difficult.

This paper presents a concept to automatically generate process visualiza-
tions and support systems by the usage of a knowledge base and an influence
model. This allows for operator-specific visualizations, considering preferences,
abilities and needs. It also eases the visualization engineer’s work by auto-
matically choosing suitable diagrams and their properties. Additionally, by
providing a system to acquire the operator’s knowledge, complex relations
inside a plant can be made accessible and utilized for optimizing the production
process and visualization.
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1 Introduction

Nowadays, visualizations of industrial processes need to display more and more data,
as processes get more complex and devices offer more data. These visualizations are
used by different personnel, e.g. technicians and process operators, for monitoring
tasks. While working with such complex visualizations, the operator needs to closely
monitor all relevant data, basing decisions on his observations, while performing
additional tasks, such as administrative tasks. Consequently, the operator’s workload
and mental demand is increased. Operator’s tasks are challenging and can only be
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accomplished by skilled and trained personnel. An appropriate and elaborated mental
model, which is developed through experience, is required to handle these complex
tasks. This is the base for the operator’s assessment of the current situation in process
monitoring and leads to a selection of operator actions. Additionally, in case of critical
situations, the operator’s actions are often highly time-critical and errors while handling
these situations may have extensive consequences, such as environmental pollution.
Taking these points into account, the human-machine interface between the plant and
the operator is therefore an important part for any industrial process that has to be
designed thoroughly.

Designing visualization for a process is a complex task, done by engineers that
preferably possess deep knowledge of the plant and process. Additionally, the visu-
alization engineer needs deep knowledge of human-machine interaction and pro-
gramming in general. While designing the visualization for a given industrial process,
the engineer needs to decide on how and where the process and all relevant process
values should be displayed within the visualization. In process industry, this is often
solved by simply displaying an abstract 2D representation of the plant’s geometry and
by placing the process values close to the sensors that generate them. This often leads
to cluttered and unclear visualizations that further increase the workload of the oper-
ator, who has to select and integrate the given information according to their mental
model of the process.

However, the operators’ mental models are not only based on monitoring of the
process. Their knowledge of the process is often gathered throughout many years,
enabling the operator to take appropriate actions in critical situations. This allows them
to provide information beneficial to the production process, especially in recurring or
critical situations. This is due to the fact, that operators possess great deals of expe-
rience and system knowledge of their plant, which has not been taken into account
during the engineering of the plant and process. This experience may contain knowl-
edge regarding parameters and their relations, detection of critical plant states, and
general process optimizations. Hence, collecting this knowledge promises great
potential to optimize the production process.

This paper introduces different interactive methods of knowledge acquisition and
provides results of their first evaluation, according to their applicability to the pro-
duction environment. These methods include text based approaches as well as visual
approaches. Combining this collected information and big data from modern intelligent
sensors, existing models of the plant can be optimized. These optimized plant models
provide the foundation for further optimizations, which enhance the production
process.

Additionally, this paper proposes a concept for the architecture of a knowledge-
based approach for automatically choosing and configuring diagrams for process
visualizations in order to help the visualization engineer. The provided algorithm,
which supports choosing adequate diagrams and diagram configurations, can simplify
the process of designing visualizations.

Both concepts can be brought together to form a comprehensive approach to
improve the operator’s integration into the production process and reduce the opera-
tor’s workload. The concept also closes the knowledge-loop between visualization
engineer, process and operator.
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2 State of the Art

As stated above, operators of industrial processes combine information from different
sources in order to understand the current process and the plant’s state.

The assessment of the current process and plant state requires appropriate sit-
uation awareness. Situation awareness is a model of the dynamic environment,
which is the activated part of the operator’s mental model. It involves the per-
ception of environmental elements, the comprehension of their meaning and the
projection of future states [End95]. The operator’s mental model is a prequisite for
achieving situation awareness [Joh83]. The mental model of operators contains
components, relations and functions of the monitored plant and process. The
operator’s goals determine which mental model is selected for the current situation
and consequently, leads the perception of elements at a given point in time and thus
selection for further processing. The mental model enables the interpretation and
comprehension of the perceived element of the dynamic environment and allows the
projection of future states.

Depending on the task, different visualizations are chosen [VDI3699], this includes
the utilization of different colors and shapes. Multiple guidelines and norms for the
design of visualizations exist, e.g. VDI 3850-1 [VDI3850], VDI 3699 and ISO 9241
[ISO9241], all of them deal with aspects of representing real-world systems. None of
those guidelines and norms deal with aspects of integrated process visualizations that
offer significant benefits according to Wickens’ Proximity Compatibility Principle
(PCP) [WiAn90]].

With the PCP, Wickens defined influences on the generation of mental models and
the effort associated by doing so. According to Wickens, the operator’s workload can
be reduced by following the principles of mental and spatial proximity. The fewer
information sources there are and the better they are mentally and spatially integrated,
the lower the information access costs are. Highly integrated visualizations thus min-
imize the effort needed to create a comprehensive mental model. Creating high spatial
proximity is comparatively easy, as values that should be considered coherently should
also be displayed close to each other on the screen. Integrating multiple values into as
few diagrams as possible maximizes the effect of spatial proximity, because relations
are already clearly displayed and thus do not have to be created by the operator. Mental
proximity means that all relevant data is displayed in such a way that an operator is
relieved by the data prepared for easy access and understanding. This leads to less
frustration and less workload.

The PCP states that integrative tasks, meaning the gathering of information by
combining data, e.g. set different data in relation to each other, benefits from a 3D
representation. Tasks requiring a high level of attention, e.g. reading a value over a
longer period of time, benefit from a 2D representation. Wickens states that even the
integration of undetailed information already produces better results.

According to John et al. [JCSO01], the advantage of a 3D visualization depends on
the given task. In accordance to Wickens, they showed in several experiments that the
identification of specific data is difficult in 3D. In contrast, if integration of various data
is required for specific tasks, 3D facilitates performance and reduces cognitive demand.
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For the task of human information processing using mental models, Rasmussen
[Ras86], Hacker [Hac80], Wickens [WiHo00] and Card et al. [CMN86] created
different sequential, capacitive and quantitative models in order to describe the
complex process by using different views. Those findings, as well as findings con-
cerning three-dimensional visualizations, have to be considered while generating
process data visualizations. Depending on the complexity and integration of the data,
a three-dimensional presentation could be beneficial to the operator’s workload.
Wickens et al. [WML94] defined tasks for three levels of information integration
(low, medium, high) and the suitability of 3D representations for those three levels.
The benefits of 3D visualizations were also shown by Tory et al. [TKAM06]. An
example of integrated 3D process data visualization was given by Mayer et al.
[MPVH13].

Optimizing operator workload while gathering knowledge at the same time is a
difficult task to accomplish, as operators should not be distracted from their work,
especially during the process control task in a plant. With post-tests, important infor-
mation gets lost, as misperceptions can be forgotten. Therefore, data is less reliable as
there is a tendency to overgeneralize and over rationalize [NiWi77]. Consequently, it is
most promising to measure knowledge about causes, actions and relationships right
after a problem is solved [SkAu99].

3 Goals /Requirements

Derived from to the description of the current processes for designing process
visualizations as well as the state of the art, the overall goal for a new concept is to
simplify the initial creation, and its successive adjustment and adaptation. During the
lifetime of industrial plants – typically up to 30 years – the electrical equipment and
especially the software are appended and changed on multiple occasions. The cur-
rent, purely manual processes of (re-)designing and (re-)implementing a visualization
can thus be improved and accelerated by automating them based on specialists’
knowledge, e.g. of engineers and operators. This also includes considering all rel-
evant legal requirements such as colors of buttons and font sizes as well as safety
regulations. Additionally, evolving research findings, e.g. Wickens’ PCP, have to be
taken into account, in order to reduce the operators’ workload, which in turn reduces
failure rates.

In order to be able to also include the knowledge of stakeholders that do not have
engineering knowledge, the new approach should not depend on any programming
language but should instead be model-based to reach a greater number of users.

Regarding interactive operator knowledge acquisition, the main goal is to maximize
production potentials by optimizing the existing models of the plant, based on existing
operator knowledge on causes and relations of process components. In order to not
distract the operator from controlling the plant, the knowledge collection has to be
unobtrusive. To automate the collection, seamless integration into the existing mod-
eling environment is required. Since human inputs might be erroneous or imprecise, the
knowledge acquisition must be able to handle uncertainties and consist of an inherent
validation process for error detection.
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4 Concept

The proposed architecture consists of two systems: the visualization generator and the
knowledge acquisition system, designed to help the operator as well as the engineer and
technical personnel. Both systems can be viewed separately but unfold their true
potential only in conjunction with each other and aim at significantly reducing the
overall workload of all stakeholders.

In Fig. 1, the comprehensive approach of the visualization generator and the
knowledge elicitation system are displayed. In short, both subsystems share a central
knowledge base (1). The visualization generator thereof generates a customizable
influence model (2) that is afterwards processed by an algorithm (3), taking into
account the operator’s profile (4) and generating the final visualization code (6) to be
displayed (7) by using inherent criteria (5). The knowledge elicitation system, sur-
rounded by the dotted line, extracts part of the operator’s (8) mental model (9), checks
for validity (11) and stores the information in the central knowledge base.

Based on this concept, plants are able to support all human operators, which are in
turn able to provide beneficial knowledge about their plant. Both systems are described
in detail in the following.

4.1 Acquisition of Operator Knowledge

Operators (8) often possess valuable knowledge and experience of ‘their’ machine or
plant, which can be utilized to improve the quality of existing knowledge bases (1) and
optimize production processes (12). Therefore, it is beneficial to collect existing
operator knowledge (9) with the goal to gain knowledge about causes and relations
between different process components as well as corrective information in specific

Fig. 1. Overview of the proposed architecture
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situations in addition to the system model. In order to avoid unnecessary distractions
from plant operation and to avoid operator’s frustration, the knowledge collection must
be unobtrusive and intuitive to use while also considering time efficiency.

For this purpose, different concepts for the acquisition of knowledge during plant
operation are introduced in the following. In Fig. 2, an overview of the proposed
concepts is given. Therein, problem trees, cause and effect graphs and input based on
text blocks are illustrated exemplarily.

Problem Trees (PT) visualize causes and problem chains. Consequently, PTs aid
the operator in detecting problem causes and, thereby, in performing maintenance
tasks. To enable knowledge collection, the operator is able to enter additional problem
causes within the existing problem tree, based on his experience and mental model of
the plant.

Cause-Effect graphs (CEG) illustrate relations between different parameters of the
production. Such a CEG is based on the existing knowledge base (1). In this context,
the knowledge acquisition is enabled by allowing the operator to increase or decrease
the influence one parameter has on another, thereby, the quality of the knowledge base
is improved. In order to extend the existing knowledge base, the operator is also
allowed to add additional parameters and further influences.

Text Blocks (TB), similarly to CEGs, depict dependencies between causes and
effects. Furthermore, they also define the correlation between problems and their
causes. For this purpose, text blocks of different characters are combined. The
combination of a cause (e.g. Pump X clogged) with a specific value or intensity (e.g.
high, low) with a problem (e.g. product viscosity) and its specific value through a
correlation (e.g. causes, increases) enables a description of a problem and its cause.
The combination of TBs regarding different parameters, their correlation and inten-
sity, enables input and visualization of cause and effect correlations. As a result of
the predefined TB-structure, the application of speech recognition technologies is

Fig. 2. Knowledge acquisition concepts
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simplified and can be utilized to further reduce distractions for the operator during
knowledge acquisition.

Since user interactions might be erroneous, the collected data must be verified and
validated (11) before resulting process enhancements may be implemented into the
production process. In order to allow verification of the collected knowledge and to
continuously optimize the knowledge base and production processes, the individual
operator interactions with the physical system are recorded and correlated to the col-
lected knowledge. To avoid data privacy issues, the data collection is anonymized.

This approach to knowledge acquisition is aimed at closing the knowledge-support
loop (cp. Fig. 1). Consequently, through adequate visualizations, plants are able to
support human operators, which are in turn able to provide beneficial knowledge about
their plant, further improving plant models and, thereby, recommended actions pro-
vided by the visualization. As plant safety is a major concern, the changes proposed by-
and collected from human operators need to be verified for accuracy first, before
comprehensive changes to the model of a plant or the production process can be
propagated.

4.2 Visualization Generator

The visualization generator consists of different components, as displayed in Fig. 1.
The overall state of a system, i.e. the current state of all actuators, sensors and products,
can be extracted by combining different process values. This is normally done by the
operator.

In this concept (Fig. 1), a knowledge base (1) is used to store all known interre-
lations between the technical system and its process, represented by process data of
sensors and actuators. Thus, it can be used to deduce, which process values should be
combined in order to extract additional information from a given set of process data.
This state of the system can then be presented with different degrees of abstraction for
different user roles. An operator e.g. needs more specific and detailed insight, than the
management.

The knowledge base is directly linked to an influence model (2) that makes the
knowledge base’s contents accessible to humans. It also serves as one way to alter
those contents, e.g. by adding new relations. Each influence model’s nodes are either a
data node (lowest layer), or an aggregation node (upper layers), connected by transi-
tions without properties. Data nodes represent raw process data, whereas aggregation
nodes are used to combine data from other nodes, i.e. aggregate and integrate data in
order to provide more in depth information regarding the automation system. Clearly,
also the amount of abstraction increases with each aggregation step. Aggregation of
data can be performed in different ways, e.g. by logical functions in case of Boolean
values. Each degree of abstraction calls for different means of visualization. One
example of an influence model with implications is displayed in Fig. 3. The example
consists of three abstraction layers, with raw process data at the bottom layer. When
viewing this detailed first layer, the visualization could e.g. be done using a helix
diagram (bottom right). The second layer, consisting of already aggregated data, has a
different type of visualization, e.g. a radar chart. The third layer is even more abstract,
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e.g. consisting solely of a simple number. That way different information for different
roles is created and visualized.

The decision of what type of diagram is used to display certain nodes is not
performed by the influence model, but an algorithm (3) that also considers the user’s
characteristics (4). The user’s characteristics include its profile, e.g. color blindness,
age, personal preferences, e.g. for specific diagrams and his role, e.g. operator or
technical personnel. With the help of this information as well as the influence model,
the algorithm chooses suitable visualization diagrams and their configuration, i.e.
which colors to use, which axis to use for what value, etc. The algorithm uses a sets of
rules (5) for this task, e.g. normally a temperature is displayed from blue (cold) to red
(hot) in contrast to the green-to-red color gradient for other process data. Therefore,
whenever a user starts using the visualization, the algorithm can create diagrams
suitable for this user, as long as its characteristics are known. Afterwards it is possible
to switch between the generated visualizations, based on the user.

The last step, before finally displaying the visualization on a screen (7), is to fill the
diagrams with actual data from the industrial process (6). This last step differs from
other visualization systems as it also applies the configured aggregations to the raw
data.

Because visualizations for specific users can automatically be created after the
initial model has been created, each user can thus have a customized visualization that
fits its needs and preferences, thus lessening the workload.

In summary (cp. Fig. 1), all interrelations of a plant and its process are stored inside
a knowledge base (1). Parts of the knowledge can automatically be elicitated and
processed in order to form an influence model (2) between the process, the process
values and the plant geometry. This influence model can be customized, e.g. by the
visualization engineer, in order to be able to handle special situations and requirements.
The influence model is processed by an algorithm (3) that chooses, in accordance to the

Fig. 3. The influence model
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operator’s profile (4) and role, diagrams and diagram configurations based on inherent
criteria (5). The operator’s profile includes all personal preferences and characteristics
and is used to customize the visualization. The visualization’s diagrams are filled by
raw or aggregated process data (6) and are displayed on a screen (7). With the help of
these diagrams, the operator (8) creates a mental model (9) of the process by using the
visual information provided. Aside from obtaining process information, he can also
influence the process (12) through interaction with the visualization system.

The proposed approach allows for easy creation of process visualizations by pro-
viding a model-based approach for visualization engineers. It also simplifies the
alteration of process visualizations during the lifetime of an industrial plant. At
the same time, providing optimized diagrams, the operator’s workload can be reduced.
The approach also enables the integration of the knowledge elicitation system in a neat
way. The extracted knowledge is utilized to extend the knowledge base and thus closes
the knowledge loop.

5 Evaluation Study

As a first evaluation of the proposed concepts and their applicability to plant operation,
a small study with experts from the manufacturing industry was carried out. Within this
study, the application of PTs was seen critical, as the effort to enter new problems and
their derived causes was seen as potentially tedious and, therefore, too distracting for
the operative implementation. CEGs on the other hand, were seen as potentially
applicable, due to their focus on point and click interactions. Regarding the input
mechanisms, TBs were given the best rating, but their visualization was seen lacking.
Therefore, a combination of the CEGs as a visualization tool and input mechanisms
based on TBs were identified as the optimal knowledge collection tools. Therefore, the
authors will focus future works on developing such a combined operator support
system.

6 Benefits

By combining the two presented approaches, a closed knowledge loop is achieved. On
the one hand, the knowledge gathered from the operator by the knowledge elicitation
system is utilized to improve the diagrams and visualizations by altering the underlying
influence model. Interrelations unknown at the time of engineering can be detected,
acquired and implemented during the whole lifetime of a plant. Likewise, erroneous
assumptions made during the engineering-phase can be corrected in later stages of a
plant’s life cycle.

On the other hand, the way in which information is presented by the visualization
aids in extracting the operator’s knowledge and storing it. This knowledge elicitation
supports the identification of hidden plant interrelations, while minimizing interfering
with the operator’s work. The extracted knowledge of plant, process and product can
e.g. be used to generate visualizations that show the required, relevant data, so that
work is easier for new operators, which do not have comprehensive experience and
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knowledge. Providing optimized diagrams in respect to data integration and operator
support reduces, according to Wickens PCP, the operator’s workload and thus leads to
fewer errors while operating a plant. Alternatively, operators are able to handle greater
amounts of data while maintaining the same workload-level. Especially, regarding big-
data aspects, the possibility to automatically aggregate and integrate data for visuali-
zation purposes, provides new possibilities.

All of these benefits can be achieved without having to write code, as the two
approaches are model-based. This does not only influence the complexity to create an
adapted visualization, but also the time required to do so.

7 Summary and Outlook

The work presented in this paper outlines the concept of an improved integration of
the operator and the visualization engineer in day-to-day process control. By pro-
viding a system to automatically generate process visualizations from a knowledge
base, containing physical and logical interrelations within an industrial plant, the
individual needs and preferences of operators, e.g. concerning color-blindness, can
be addressed. Likewise, physical and logical changes of the plant and new findings
concerning the display of data can be taken into account, automatically adjusting
the global knowledge base. In order to support plant evolution during its life cycle,
the operator’s knowledge about the process and the plant, which includes infor-
mation about relations, and critical as well as recurring situations, is continuously
acquired. Consequently, the plants models are constantly adapted, thereby opti-
mizing the plant’s models. This leads to an increased plant efficiency and improved
operator support. To elicitate an operator’s knowledge, multiple approaches were
introduced.

Based on the first performed evaluation by industry experts, these concepts will be
further evaluated in future work. Additionally, future work will consist of creating the
individual modules of the presented approach and implementing the system as a whole.
This also includes the evaluation of the presented approach against current and tradi-
tional approaches.
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