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Abstract. Multisensory information processing is a basic feature of neural
systems and has been exploited to facilitate development of Army systems that
augment Soldier performance through multisensory displays. However, the full
potential of these systems has yet to be determined and will require under-
standing fundamental features of the underlying neurophysiology of multisen-
sory processing, the neuroergonomics of multisensory machine interface and
analytical methods for neural signal analysis, dimensionality reduction and
pattern recognition. Here, findings from basic and applied research efforts will
be presented that have focused on various aspects of human (brain)-computer
interfaces to uncover understanding in these areas and mediate recent techno-
logical developments in multisensory display technology, passive mental state
detection, attention/orientation detection, and human activities recognition from
video in general. Based on the knowledge of multisensory processes acquired
from these efforts there are emerging opportunities for creating new human
gesture-controlled recognition systems based upon multimodal data analysis
which will allow for unprecedented human-machine symbiosis.

Keywords: Human-machine interfaces : Brain-computer interface - Data
analysis + Human activity monitoring + Multisensory cueing

1 Introduction

The modern Army is quickly transforming into a highly networked force with inte-
grated platforms that will enable vast amounts of on-demand multimodal data. Indi-
vidual soldiers will be responsible for unprecedented information management duties
while ensuring personal and team situational awareness, decision-making and overall
mission effectiveness. Strategies that mitigate the impact of information overload on the
soldier are vital and must inform future system designs. Head mounted displays for the
dismounted soldier [1], unmanned autonomous aerial and ground sensors [2-5] and
communication platforms [6] could all simultaneously push information to the soldier
through smaller and lighter displays. Therefore, strategies for ideal presentation of
information to a user must continue to be an area of active research. Symbiosis of the
soldier with machines is envisioned as a mutually-interdependent, tightly-coupled
relationship that maximally exploits human and machine strengths in a seamless
interface. Research communities have shown growing interest in this symbiosis due in
part to recent progress in modern computing capabilities combined with the availability
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of ubiquitous sensing modalities for capturing information about the human user in
non-laboratory conditions [7, 8]. In this paper, we highlight a few technologies that
have potential to be important components of human-machine interfaces and present
new scientific opportunities.

2 Multisensory Information Processing

Our brains generate a unified percept of the world through partially redundant sensory
information about an object or event. We watch movies and derive enjoyment even
though we are aware that the sounds from people and objects on-screen originate from
television or movie theater speakers. We readily perceive that voices in the movie are
coming from the actor’s lips. This sensory illusion, the ventriloquist effect, is a result of
our innate ability to integrate auditory and visual information which results in the
perceptual alteration of speech sound location [9]. The McGurk effect [10], another
audio-visual illusion, occurs when lip movements alter the phoneme that is perceived.
Sensory illusions are important tools for elucidating the neural processes underlying
multisensory integration. Behavioral studies have suggested that when two sensory
cues are separated by even 200 ms, the advantage of multisensory integration and
perceptual consequences of ventriloquism are greatly reduced [11]. However, multi-
sensory cells such as those recorded in the superior colliculus [12] and cortex [13] still
show integrative responses to sensory cue separation of 600 ms and longer. The
relationship between the temporal dynamics of single unit responses in the brain to
behavior must be linked with multisensory neural network activity to inform multi-
sensory information presentation and display technology.

2.1 Multisensory Displays

Dynamic and highly adverse operational environments often present scenarios where
sensory information is degraded or obstructed. Multisensory cueing has been demon-
strated as an effective strategy for orienting attention under non-ideal conditions [14,
15]. Multisensory cueing has also shown to be an effective strategy for offsetting
performance decrements due to stress [16]. Delivery of temporally congruent infor-
mation is being actively explored for multisensory displays with combined audio-visual
and other multisensory interactions for augmenting human performance [17-19]. While
some studies have reported less effective impacts of combined sensory cues for specific
tasks [20], the emerging and unified view is that cueing underused sensory streams
provides an overall performance advantage [20, 21]. Human multisensory integration is
suggested to rely upon correlations between converging sensory signals that result in
statistically optimal input to the nervous system and behavioral outputs [22]. However,
the manner in which congruent multisensory information impacts a user’s nervous
system in real world situations has yet to be fully exploited. Emerging applications for
navigation, covert communication and robotic control will benefit by further under-
standing how the underlying neurophysiological mechanisms of multisensory pro-
cessing relate to the statistics of behavior.
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2.2  Multisensory Information Processing in the Brain

The integration of information from multiple senses was originally thought to occur in
high level processing areas in the frontal, temporal or parietal lobes [23-25]. More
recent anatomical, neurophysiological and neuroimaging studies in non-human pri-
mates and functional brain studies in humans lead to the emerging view that multi-
sensory processing involves a diversity of cortical and sub-cortical neural networks
[26-28]. Based on behavioral studies with multisensory cueing, the neural coding
strategy within multisensory integrative neural networks must be biased by the extent
of spatial and temporal congruency of incoming sensory information [29]. Preliminary
findings suggest that converging synaptic signaling by pre-cortical sensory integrating
neurons of the thalamus show augmented output to the primary auditory cortex [30].
Both excitatory and inhibitory signals are strengthened by these congruent sensory
inputs and highlight the diversity of computational modifications occurring within
multisensory integrating networks [31]. Decoding multisensory neural network activ-
ities could potentially serve as feedback commands for closing the human-machine
interaction loop.

The underlying neural codes of multisensory processes must be considered within
the context of mathematical and theoretical models in order to best define pathways for
improving multisensory interfaces. Feed-forward convergence of information from
simultaneous senses (sensory organ to cortex) is accompanied by feed-back input from
unisensory processing cortical areas onto lower-level multisensory integrating sites
[32]. This view of multisensory processing builds upon the modality appropriateness
hypothesis which offers the proposal that the greater acuity sensory modality for a
particular discrimination task, ultimately dominates perception in a winner-take-all
competition [33]. A similar, and complementary, view is that multisensory integration
obeys Bayesian probability statistics [34, 35] and most closely resembles the properties
of a maximum likelihood integrator [22, 36, 37]. An alternative view is that multi-
sensory enhancement of information processing is a result of temporal or spectral
multiplexing, where, for example, spike timing information from single neurons and
activity from network oscillations interact in time and lead to an enhanced multiplexed
code [38]. The complexity of multisensory integration-induced modifications of the
neural code require improved signal processing approaches for decoding multiscale
neural activity combined with appropriate theoretic frameworks and mathematical
modeling to fully realize the potential of multisensory information processing for
informing advanced display technologies.

3 Complementary Approaches

Three areas of active research are utilizing methods and creating technologies that can
support multisensory information display technologies.

e Brain State Awareness
e Human Activity Monitoring
e Direct Brain-Computer Interfaces
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Together, these areas lay foundations for next-generation systems that exploit princi-
ples of human cognition to mediate ergonomically enhanced human-system interfaces
that maximally augment performance. Here we review example technologies by
superficially highlighting potential opportunities.

3.1 Brain State Awareness

Performing tasks under complex, dynamic, and time-pressured conditions is trouble-
some for maintenance of operational tempo. Mental workload is a topic of increasing
importance to human factors and significant effort has been devoted to developing
innovative approaches to objectively assessing cognitive load in real-time. Stress is
another topic of significant importance for the deleterious impact on performance of the
user of any display technology [14]. Strategies are sought to offer fatigue offsetting
interventions like selecting the best information content and format for presentation of
information to the human operator. Data relevant for mental state detection include
facial features, involuntary gestures, tactile signals, brain neural signals, and physio-
logical signals (e.g., speech, heart rate, respiration rate, skin temperature, and perspi-
ration). Mental states such as anxiety or fatigue often lead to temporal changes in
biophysiological signals that might be classified by machine learning algorithms. For
example, anxiety may result in increased rate of heartbeat and increased blood pressure
relative to physiological signals of an individual’s “normal” mental state. A major
challenge is the lack of precise quantitative metrics that define mental states and the
difficulty for cross-subject validation.

Stress, Anxiety, Uncertainty and Fatigue (SAUF). Recent attempts have been made
to detect stress, anxiety, uncertainty and fatigue from visual and infrared images of a
human face [39, 40]. An infrared image, either long wave or mid wave IR, captures the
thermal signatures of the skin. Mental states, like stress or anxiety, generate subtle
changes in local blood flow beneath the skin, reflected as changes in skin temperature.
Thermal imagery is rather sensitive to such physiological changes although the changes
may be invisible to the naked eye in certain groups of individuals [39, 41].
Non-invasive detection methods are highly desirable and offer a simple and affordable
computer interface solution. State detection from imaging modalities allow for a pas-
sive means of detection without interfering with the operator’s normal activities or
requiring operator cooperation, which could be amenable to real-world applications.
For visual/thermal video based SAUF detection, the first step is to determine facial
landmarks such as mouth corners, eye inner and outer corners, nasal tip, eyebrow start
and end points. These landmark points are algorithmically tracked so that spatial and
temporal information, called features, can be extracted from both the visual and thermal
videos and subsequently used in pattern classification. Features include eye and/or
mouth movement and physiological features such as the temperatures of these facial
points. The data size is typically huge: Frame rates for visual and thermal videos can be
30 fps or higher. Recording from hours of thermal and visible videos are needed for
algorithm training. In [40], the authors described the development of a computer
system for SAUF detection using both visual and thermal videos in real-time. The
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system achieved detection errors in the range of 3.84 %-8.45 % for anxiety detection.
In addition to algorithmic accuracy, errors may also be due to view changes (resulting
in face deformation), full or partial occlusion, or individual variation. While this
approach may not serve as a single source solution, non-invasive imaging provides an
alternative and complementary approach for brain state detection that can accompany
brain signal-based detection of mental states [42].

3.2 Human Activity Analysis and Prediction

The objective of human activity analysis and prediction is to understand the physical
behavior of a human operator. Near term activity analysis focuses on understanding
what the operator is doing and predicting the operator’s intention for imminent action.
Long term activity analysis aims at recognizing an operator’s habits and personality
such as right-handed person or left-handed person, or patterns of keyboard strokes for
identity confirmation. Intention recognition and high level activity recognition are
active research areas in artificial intelligence [43—49]. The methods for visual data
analysis are general and applicable to a wide range of applications including
human-machine interfaces as well as surveillance across a wide-span geographical
region.

Visual data contains rich information for activity analysis and understanding. An
adult can recognize activities from an image or a video segment with little effort.
However, visual activity analysis and understanding by a computer has proven
extremely difficult. The key challenges are that spatiotemporal features in imagery or
video are typically high dimensional, noisy, ambiguous, and lie on (unknown) non-
linear manifolds. There is a lack of robust methods for detecting the underlying pat-
terns. Human activities occur in a wide variety of contexts and at wide range of scales.
In many cases, contextual information is essential for understanding human activities
but often unavailable. Conceptually, vision based human activity analysis and under-
standing consists of several components: action representation, action recognition,
activity recognition and prediction although the boundary between action and activity
may not be analytically definable.

Action Representation. Activity analysis and understanding is typically carried out in
a general hierarchical framework. The low-level, atomic components are “actions” or
“actionlets”, i.e. primitive motion patterns typically lasting for a short duration of time,
such as turning of the head or lifting the left arm. An activity is a temporal, typically
complex composition of multiple actions. For example, “making a phone call” can be
decomposed into four actions. At the low signal level, actions are characterized by
spatiotemporal features and potentially distinguishable through pattern classification of
the features. A component based hierarchical model was proposed to account for
articulation and deformation of the human body due to factors such as view change or
partial occlusion [48, 50, 51].

Action Recognition. Motion is a critical attribute for action recognition and spatio-
temporal features can be extracted from multiple sequential frames in a video.
Examples of spatial features include Scale-Invariant Feature Transform points,
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Histograms of Oriented Gradients and Histograms of Optical Flow. Algorithms are
used for frame registration and landmark or object tracking in video to extract temporal
motion information. The spatial features and temporal information are combined to
feed into pattern analysis and classification algorithms for action recognition.

Activity Recognition and Prediction. Activity recognition typically requires behavior
modeling and high level reasoning, which is essential for activity or near real-time
intention prediction. Parametric models like Hidden Markov Model or Petri Nets and
non-parametric models such as Bayesian methods for inference require the incorpora-
tion of prior knowledge learned from past data or to be manually coded. Such frame-
works are flexible to allow the incorporation of novel action dependencies for human
activities. A general framework for human activity analysis and prediction has been
developed [49, 52, 53] and supplemented by a hierarchical framework that can auto-
matically detect contextual information and incorporate it in activity understanding [54].

3.3 Direct Brain-Computer Interface

Machines and humans, unfortunately, do not have an inherent common language for
engaging in the human-computer interaction loop. In order for the human in the loop to
derive maximal benefit from the interface the computational framework on the other
end must be able to accurately determine user intent in real-world settings. This
includes when the user is under duress and is placed into a dynamic physiological
and/or neural state. Software specifications like those used in Controlled Natural
Languages may provide a possible solution [55, 56]. However, these methods have
mainly been tested for simple interfaces. Complex operational environments will
require other complementary solutions.

Brain-Computer Interface Methods. Brain-computer interfaces permit direct com-
munication of user intent to machine interfaces. The general framework for open-loop
brain-computer interface system control originates from the detection of brain activity
related to user intent. Electroencephalography (EEG), electrocorticography (ECoG)
and intracortical (single unit) recording configurations are some of the technologies
currently in use for brain-computer interfaces. Other sensing modalities include mag-
netoencephalography (MEG), Positron Emission Tomography (PET), functional
magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy
(fNIRS). These imaging modalities together are complementary in information attri-
butes, spatial-temporal resolution and degree of invasiveness. For example, EEG
provides high temporal but low spatial resolution while fMRI provides low temporal
but high spatial resolution. ECoG is a semi-invasive technique and intracortical
recordings are invasive. Following analog to digital conversion, advanced signal pro-
cessing and machine learning algorithms can then be deployed to classify neural
activity information and derive user intent or state.

Detection of Silent Speech. A recent effort attempted to develop a brain-based com-
munication and orientation system using EEG and ECoG signals [57, 58]. The
objective was to create signal processing methods that allow detection of imagined
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speech for communication and determining directional attention for orientation from
brain signals. One key challenge was a lack of understanding how imagined speech
related to overt speech brain function. In order to be successful this study also had to
overcome the limited understanding about the interaction among networked neurons in
speech processing pathways, the difficulty of determining a baseline for imagined
speech and the existence of noise in the neural recording. Based upon the existing
real-time software system BCI2000, algorithms were generated that are capable of
extracting electrophysiological features on a single-trial basis. Based on chance
accuracy of 25 %, ECoG-based decoding showed overall ~40 % performance levels
for detection of vowels and consonants during both overt and covert speech [57, 58].
The results indicate higher than chance likelihood of correctly decoding imagined
consonants and vowels.

For detecting attention and orientation, the setup is similar to that for imagined
speech detection. Each subject was presented with visual cues and stimuli on a com-
puter screen with built-in eye tracker, which verified ocular fixation on the central cross
during data acquisition. The system achieved average detection accuracy of 84.5 % for
attention engagement and 48.0 % for attention locus [59, 60] from ECoG data. While
this line of work has only been able to achieve recognition of phonemes, a multisensory
information processing approach may be taken to improve algorithm performance.
Communication inherently involves multisensory processes which may be exploited to
elucidate a new regime of neural network activity that might drive classification
schemes of future brain-computer interfaces. Exploration of this idea may offer an
opportunity to advance research in fundamental mechanisms of the neural processing
of speech and close the loop in brain-computer interface design to facilitate perfor-
mance for applications like covert communication and device control.

4 Vision for Future Multisensory Information Displays

Advances in functional neuroimaging combined with signal processing capabilities
have led to new opportunities to identify spatial and temporal features of neural pro-
cessing during real world experimentation [7, 8]. Research on human-machine inter-
faces has also considered methods for combining physiological data (e.g., respiration
rate, heart rate, blood pressure and temperature) and behavioral information (e.g.,
posture, eye movements, gesture, and visual/thermal facial expression). The larger
neural real estate devoted to multisensory processes and the diversity of signaling
mechanisms available open new opportunities for human machine interfaces. Signal
processing and data analytic advances can be devoted to decoding information related
to this complex signaling and modification as a result of presentation of sensory
information through multisensory displays. Brain-computer interface research has
largely focused on the presentation of information to one of a user’s senses while
decoding brain activity with open-loop pattern classification, i.e. using electroen-
cephalography while watching a visual display. The research has demonstrated utility
in direct brain-computer communications for simple choices like user control of a
cursor on a screen but state-of-the-art pattern classification algorithms only show
limited performance for complex tasks such as decoding intended speech. Recent
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advances point to an emerging opportunity for a paradigm shift. To understand how
simultaneous information presentation modifies behavioral response we need to
determine where and how information from different senses is combined in the brain
and what are the neural computational advantages rendered by these processes.

4.1 A Lesson from Sensory Deprivation

Sensory deprivation can lead to improvements in perceptual abilities in the intact
senses for the blind or deaf. For example, individuals with early onset blindness show
improved temporal and spectral frequency discrimination when compared to those with
late-onset blindness or those who are sighted [61]. The early-blind have also been
demonstrated to show enhanced sound localization ability relative to sighted individ-
uals [62]. Surprisingly, in the study of Lessard et al., a group of blind subjects that had
maintained some level of residual peripheral vision showed degraded sound localiza-
tion ability relative to the completely blind. These observations together highlight the
complicated mechanisms mediating multisensory processing when information is
missing or corrupted in one sensory stream. This may be relevant to situations when
only degraded sensory information is available in a high attentional load operational
environment to a person with full sensory capabilities. A more recent study showed that
by depriving normal sighted mice of light for as little as two days was enough to elicit
potentiation of specific pre-cortical inputs from the thalamus into the auditory [30] or
somatosensory cortices [63]. More work is needed in this area but the underlying
neurophysiological mechanisms that mediate responses to sensory deprivation, not
from disease or injury, may be relevant and provide inspiration for novel
neuroplasticity-based approaches to advanced human-machine interfaces capabilities
and augmented cognition.

5 Conclusion

The state-of-the-art view of multisensory displays has shown advantages of multi-
sensory stimulation and has highlighted the need to understand the underlying neural
bases mediating cueing-induced behavioral improvements. New approaches leading to
higher resolution multimodal data as a result of developments in sensor technologies
are an enabling tool but pose significant computational challenges. However, statistical
modeling approaches and advancing computational analysis capabilities are providing
new methodologies to facilitate the availability of neural information for direct
human-computer interaction. There is a fundamental need to study human cognitive
behavior under real-world conditions and multisensory information displays offer a
unique capability to engage humans while they perform outside the laboratory.
State-of-the-art advances have not completely approached the vision of closed-loop
human-machine symbiosis, but have paved the way for more sophisticated theories and
technologies that will enable the attainment of this vision. Here we have described
example technologies that provide emerging opportunities to exploit advances in
understanding the underlying principles governing neural processing of information
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from simultaneous sensory streams to create systems that interface with the human in
intuitive and, potentially, seamless ways. Multisensory displays show great potential to
support future soldier-machine technologies and future designs should be created based
on principles grounded in data and theory from basic cognitive neuroscience and
neurophysiology. The future military operational environment will be more complex
and require more from the human operator as she interacts with soldier systems. In
order to take full advantage of scientific opportunities presented by multisensory
information processing, a deep understanding of how the human brain, body, and
sensory systems work in concert to accomplish tasks is required in order to close the
loop in human-systems interactions.

6 Disclaimer

The views and opinions contained in this paper are those of the authors and should not
be construed as an official Department of the Army position, policy, or decision.
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