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Abstract. Ensemble clustering approaches have been recently applied,
in a variety of ways, in order to enhance the quality and/or the execution
time of community detection tasks. The quality gain that can be obtained
from applying ensemble approaches is known to be tightly linked to both
quality and diversity of the applied clusterings. However, most of existing
work simply ignore this important issue of ensemble selection. In this
paper we intend to fill this gap. We propose a graph-based ensemble
selection approach that allow to take into account both criteria of quality
and diversity. Different quality measures are also considered: cluster-
oriented quality and network-oriented quality functions. Experiments on
real network datasets show the validity of our approach.

Keywords: Community detection · Complex networks · Ensemble clus-
tering · Ensemble selection

1 Introduction

Complex networks are frequently used for modeling interactions in real-world
systems in diverse areas, such as sociology, biology, information spreading and
exchanging and many other different areas. One key topological feature of real-
world complex networks is that nodes are arranged in tightly knit groups that
are loosely connected one to each other. Such groups are called communities.
Nodes composing a community are generally admitted to share common propri-
eties and/or be involved in a same function and/or having a same role. Hence,
unfolding the community structure of a network could give us much insights
about the overall structure a complex network. Comprehensive review of the
state of the art can be found in [6,24]. Different algorithms have different exe-
cution times and yield results of various quality.

The large-size of today available networks makes most of existing algorithms
hard to apply. In addition, most of existing low time complexity algorithms show
generally low robustness. Different executions of the same algorithm on the same
network may leads to detecting highly different partitions of the network. This is
for instance the case of the Louvain approach [2] which is sensitive to the order
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in which nodes of the network are parsed. Another very known exemple is the
high speed label propagation algorithm the exhibits, in its original version [18],
a very high instability.

Ensemble clustering approaches have been proposed as a mean for both
graph coarsening and graph clustering enhancing. Graph coarsening refers to
the process of reducing the scale of a graph by replacing a group of cohesive
nodes in the graph by a single node [22]. High quality community detection
algorithms, with higher computational complexity, can then be applied on the
reduced graph. Results are then expanded to the initial graph. Ensemble clus-
tering can directly be applied in order to merge different clustering obtained
by applying different algorithms or by applying an unstable algorithm several
times [21]. However, the quality gain that can be obtained from applying ensem-
ble approaches is known to be tightly linked to both quality and diversity of
the applied clusterings [1,4]. Most of existing work simply ignore this important
issue of ensemble selection. In this paper we intend to fill this gap.

The remainder of this paper is organized as follows. Next in Sect. 2, we first
define the problem of ensemble clustering, discuss main approaches for consensus
clustering computation and show applications in the field of community detection
in complex networks. In Sect. 3 we define the problem of ensemble selection and
quickly review main ensemble selection approaches. The proposed graph-based
ensemble selection algorithm is presented in Sect. 3.2. Experiments and results
are reported and commented in Sect. 4. Finally we conclude in Sect. 5.

2 Applying Ensemble Clustering to Community
Detection

2.1 Ensemble Clustering Approaches

Let G =< V,E > be a undirected simple graph where V is the set of nodes and
E is the set of edges. Let πi be a partition of the set V . We have by definition
πi = {π1

i , . . . , πl
i} where πj

i ⊆ V , and
⋃

j

πj
i = V and ∀j, k ∈ [1, l]πj

i ∩ πk
i = ∅.

We consider a set of a different partitions P = {π1, . . . , πn} defined over
the same set V . The goal of an ensemble clustering function is to compute a
consensus clustering π∗ that minimize the number of disagreements with each
base partition πi. In a formal way we have:

π∗ = arg min
πi∈P

dist(π∗, πi) (1)

Where dist() is a distance function measuring disagreement between two
partitions. Some exemples of such distance functions are given in Sect. 3.

Different consensus clustering functions have been proposed in the litera-
ture. Existing functions can be roughly classified into two classes: evidence accu-
mulation based functions [7] and graph-based functions [23]. The first family of
approaches is based on computing a clustering-based similarity between nodes
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of the graph. One widely applied method is based on constructing a consen-
sus graph out of the set of partitions to be combined [5,23]. The consensus
graph Gcons is defined over the same set of nodes of the initial graph G. Two
nodes vi, vj ∈ V are linked in Gcons if there is at least one partition P y

Qx
where

both nodes are in a same cluster. Each link (vi, vj) is weighted by the frequency
of instances that nodes vi, vj are placed in the same cluster. Notice that the
obtained graph is not necessarily a connected one. Different approaches can be
applied in order to compute the aggregated clustering out from the consensus
graph:

– In [23], authors transform the graph into a complete one by adding missing
links with a null weight, then nodes are finally partitioned into clusters using
agglomerative hierarchical clustering with some linkage rule, or by using a
classical graph partitioning method such as the Kernighan-Lin algorithm [16].

– In [3] a similar approach is applied but with enforcing that nodes in the same
result clusters should be connected in the initial graph by a sufficiently short
path.

– In [20] authors propose a simple but effective method that consists on pruning
links in the obtained consensus graph whose weights (frequency) is under a
given threshold α ∈ [0, 1]. The set of obtained connected components is taken
to be the aggregated partition. The main problem of this approach is the
problem of defining the value of the threshold α to use.

2.2 Ensemble Clustering-Based Community Detection

Ensemble clustering approaches have been used for various goals in the field
of community detection in complex networks. One first direct application is to
allow merging different partitions of the same graph obtained by applying a fast
but low quality community detection algorithm, such as the label propagation
algorithm [20]. Another application, to reduce the size of large-scale graphs.
Let G =< V,E > be a large)scale graphe. The idea is compute a set of n
different low quality partitions of a graphe : Π = {π1, . . . , πn}. A strict consigns
graph is defined over the set of nodes V such that, v ∈ V are linked if and
only if they are grouped together in a same cluster in all partitions πi ∈ Π.
The obtained graph is usually composed of a large number of small connected
components. Nodes composing each connected component are reduced to form
only one node reducing hence the scale of the whole graph. The reduction phase
can allow applying high quality community detection algorithms to the reduced
graphe [22]. In [12] ensemble selection approaches are proposed in order to relaxe
the constraint on connecting nodes if the frequency of being clustered together
in all n partitions is higher than a given threshold 0 < δ < 1.

In [11], ensemble clustering approaches have been applied in order to imple-
ment multi-objective local community identification. In [10] an ensemble clus-
tering approach is applied in order to compute a graph partition out of a set
of bi-partitions of the graph computed after identifying local-communities of a
set of seed nodes carefully selected to represent different points of view on the
target graph.
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Few work has addressed the problem of ensemble selection before applying
the ensemble clustering process. In next section we introduce the problem of
ensemble selection and we show how this can enhance the output of the ensemble
clustering process.

3 Ensemble Selection

3.1 Problem Definition

Different works have showed that the quality of the output of an ensemble clus-
tering is tightly related to both the quality of each partition in the base partitions
set and diversity of these partitions.

Let Π be a set of n base clusterings. An ensemble selection function ES
aims at selecting a subset of Π̃ ⊆ Π such that all partitions πi ∈ Π̃ are of
high quality and diverse. The diversity of partitions can be measured applying
clustering comparison metrics such as the Adjusted Rand Index (ARI) [9], or
information-based metrics such as the NMI [15].

The ARI index is based on counting the number of pairs of elements that
are clustered in the same clusters in both compared partitions. Let Pi =
{P 1

i , . . . , P l
i }, Pj = {P 1

j , . . . , P k
j } be two partitions of a set of nodes V . The

set of all (unordered) pairs of nodes of V can be partitioned into the following
four disjoint sets:

– S11 = {pairs that are in the same cluster under Pi and Pj}
– S00 = {pairs that are in different clusters under Pi and Pj}
– S10 = {pairs that are in the same cluster under Pi but in different ones under

Pj}
– S01 ={pairs that are in different clusters under Pi but in the same under Pj }
Let nab = |Sab|, a, b ∈ {0, 1}, be the respective sizes of the above defined sets.
The rand index, initially defined in [19] is simply given by :

R(Pi, Pj) =
2 × (n11 + n00)

n × (n − 1)

In [9], authors show that the expected value of the Rand Index of two random
partitions does not take a constant value (e.g. zero). They proposed an adjusted
version which assumes a generalized hypergeometric distribution as null hypoth-
esis: the two clusterings are drawn randomly with a fixed number of clusters
and a fixed number of eleme nts in each cluster (the number of clusters in the
two clusterings need not be the same). Then the adjusted Rand Index is the
normalized difference of the Rand Index and its expected value under the null
hypothesis. It is defined as follows:

ARI(Pi, Pj) =

l∑

x=1

k∑

y=1

(|P x
i ∩ P y

j |
2

)

− t3

1
2 (t1 + t2) − t3

(2)
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where:

t1 =
l∑

x=1

(|P x
i |
2

)

, t2 =
k∑

y=1

(|P y
j |
2

)

, t3 =
2t1t2

n(n − 1)

This index has expected value zero for independent clusterings and maximum
value 1 for identical clusterings.

Another family of partitions comparisons functions is the one based on the
notion of mutual information. A partition P is assimilated to a random variable.
We seek to quantify how much we reduce the uncertainty of the clustering of
randomly picked element from V in a partition Pj if we know Pi. The Shanon’s
entropy of a partition Pi is given by:

H(Pi) = −
l∑

x=1

|P x
i |
n

log2(
|P x

i |
n

)

Notice that |Px
i |
n is the probability that a randomly picked element from V be

clustered in P x
i . The mutual information between two random variables X,Y is

given by the general formula:

MI(X,Y ) = H(X) + H(Y ) − H(X,Y ) (3)

This can then be applied to measure the mutual information between two par-
titions Pi, Pj . The mutual information defines a metric on the space of all clus-
terings and is bounded by the entropies of involved partitions. In [23], authors
propose a normalized version given by:

NMI(X,Y ) =
MI(X,Y )

√
H(X)H(Y )

(4)

The evaluation of the quality of a clustering is much harder, than the diver-
sity, in unsupervised settings. In [1] authors propose to evaluate the quality of a
partition πi ∈ Π by computing its distance (using ARI or NMI) from the con-
sensus partition computed over the whole set Π. In [5], the quality of a partition
πi ∈ Π us computed as follows: Q(π) =

∑
π∈Π NMI(π, πi).

In graph settings, external partition quality functions can be used to measure
the equity of a partition. The well known modularity function is one option [8].

3.2 Proposed Approach

We propose here an original graph-based approach to cope with the problem
of cluster ensemble selection. Algorithm 1 sketchs the general outlines of the
proposed approach.

The algorithm is structured into four main steps. Having as an input a set
of r base clusterings, we first compute an r × r pair-wise clustering similarity
matrix M . An entry M [i, j] = sim(ri, rj) gives the similarity between two base
clusterings ri and rj . Different similarity functions can be used such as the
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Algorithm 1. Graph-based cluster ensemble selection algorithm
Require: G < V, E > a connected graph
Require: Π = {π1, . . . , πr} a base clusterings
Require: Q A partition quality function
1: Π∗ ← ∅
2: M ← compute pairwise similarity Matrix(Π)
3: GV ← construct graph(M)
4: C = {c1, . . . , ck} ← community detection(GV)
5: for all c ∈ C do
6: π̂ ← arg max

π∈c
Q(π)

7: Π∗ ← Π∗ ∪ {π̂}
8: end for
9: return Π∗

normalized mutual information (NMI), Adaptive Rand index (ARI) index or
information variation (IV) [15,17]. The obtained matrix is then used to define a
similarity graph GV over the set of base clusterings. Different kinds of similarity
graphs can be defined. These include:

– ε-Neighborhood Graph: Here we connect all points whose pairwise dis-
tances are smaller than ε. As the distances between all connected points are
roughly of the same scale (“at most”), weighting the edges would not incorpo-
rate more information about the data to the graph. Hence, the ε-neighborhood
graph is usually considered as an unweighted graph.

– k-Nearest Neighbor Graph: Here the goal is to connect vertex vi with
vertex vj if vj is among the k-nearest neighbors of vi. However, this definition
leads to a directed graph, as the neighborhood relationship is not symmetric.
There are two ways of making this graph undirected. The first way is to
simply ignore the directions of the edges, that is we connect vi and vj with an
undirected edge if vi is among the k-nearest neighbors of vj or if vj is among
the k-nearest neighbors of vi. The resulting graph is what is usually called the
k-nearest neighbor graph. The second choice is to connect vertices vi and vj if
both vi is among the k-nearest neighbors of vj and vj is among the k-nearest
neighbors of vi. The resulting graph is called the mutual k-nearest neighbor
graph. In both cases, after connecting the appropriate vertices we weight the
edges by the similarity of their endpoints.

– Relative Neighborhood Graph: Relative neighborhood graph (RNG) has
been initially proposed in [25]. The choice of RNG graph is motivated by
the topological characteristics of these graphs that are connexe and sparse.
To build an RNG graph, we first compute a similarity matrix between couple
of items in the dataset. This results in a symmetric square matrix of size n×n
where n is the number of items in the dataset. A RNG graph is defined by
the following simple construction rule: two points xi and xj are connected by
an edge if they satisfy the following property:

d(xi, xj) ≤ max
l

{d(xi, xl), d(xj , xl)},∀l �= i, j (5)
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where d(xi, xj) is the distance function. A community detection algorithm is
applied on the obtained graph in order to cluster the given examples. Clus-
tering evaluation criteria can then be used to compare different algorithms.

In this work, we have selected to build a relative neighborhood graph since it is
the only approach that guarantee having a connected and sparse graph.

4 Experiments

In this section we evaluate the utility of the proposed ensemble selection app-
roach for enhancing community detection in real world complex networks. The
evaluation process is the following: given a network for which we know a ground
truth partition into communities we apply first the label propagation approach
100 times. We then compute a consensus partition applying a CSPA ensemble
clustering approach on the whole set of obtained partitions and on the set of
partitions selected by applying our approach. The quality of obtained commu-
nities is evaluated using the ARI and NMI metrics with respect to the ground
truth partition.

A set of three widely used benchmark networks for which a ground-truth
decomposition into communities are known are used. These are the following:

– Zachary’s Karate Club: This network is a social network of friendships
between 34 members of a karate club at a US university in 1970 [26].
Following a dispute the network was divided into 2 groups between the club’s
administrator and the club’s instructor. The dispute ended in the instructor
creating his own club and taking about half of the initial club with him. The
network can hence be divided into two main communities.

– Dolphins Social Network: This network is an undirected social network
resulting from observations of a community of 62 dolphins over a period of
7 years [14]. Nodes represent dolphins and edges represent frequent associa-
tions between dolphin pairs occurring more often than expected by chance.
Analysis of the data revealed two main groups.

– American Political Books: This is a political books co-purchasing net-
work. Nodes represent books about US politics sold by the online bookseller
Amazon.com. Edges represent frequent co-purchasing of books by the same
buyers, as indicated by the “customers who bought this book also bought
these other books” feature on Amazon. Books are classified into three disjoint
classes: liberal, neutral or conservative. The classification was made separately
by Mark Newman based on a reading of the descriptions and reviews of the
books posted on Amazon.

Next figure shows the structure of the selected networks with real communities
indicated by the color code. In Table 1 we summarize basic characteristics of
selected benchmark real networks (Fig. 1).

For all three datasets, the ensemble selection process enhance the quality of
the obtained final partition (Table 2).
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Zachary Karate Club Network [26] US Politics books network [13]

Dolphins social network [14]

Fig. 1. Real community structure of the selected benchmark networks

Table 1. Characteristics of some well-known benchmark networks

Network # nodes # edges # com reference

Zachary club 34 78 2 [26]

Political books 100 441 3 [13]

Dolphins 62 159 2 [14]

Table 2. Evaluation if he proposed graph-based ensemble selection

Dataset Approach NMI ARI Q # Communities

Zachary Ensemble clustering without selection 0.57 0.46 0.40 5

Ensemble clustering with selection 0.77 0.69 0.34 2

US Politics Ensemble clustering without selection 0.55 0.68 0.51 5

Ensemble clustering with selection 0.68 0.67 0.42 6

Dolphins Ensemble clustering without selection 0.55 0.39 0.51 5

Ensemble clustering with selection 0.58 0.59 0.53 3

5 Conclusion

Ensemble clustering approaches are proposed as mean to cope with the robust-
ness issue. of high speed community detection algorithms. In this work, we have
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proposed a new approach for enhancing the output of ensemble clustering by
applying an ensemble selection process. An original graph-based ensemble selec-
tion approach is studied. Results show that the overall quality of detected com-
munities is enhanced when applying ensemble selection process. Experiments
on large-scale datasets are planned in order to confirm these first but promising
results. Comparisons with other ensemble selection approaches based on implicit
quality estimation are also scheduled.
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