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Abstract. The ordered weighted averaging (OWA) operator uses the
weights assigned to the ordered values of the attributes. This allows one
to model various aggregation preferences characterized by the so-called
orness measure. The determination of the OWA operator weights is a cru-
cial issue of applying the operator for decision making. In this paper, for
a given orness value, monotonic weights of the OWA operator are deter-
mined by minimization of the maximum absolute deviation inequality
measure. This leads to a linear programming model which can also be
solved analytically.

1 Introduction

The problem of aggregating numerical attributes to form an overall measure is
of considerable importance in many disciplines. The most commonly used aggre-
gation is based on the weighted sum. The preference weights can be effectively
introduced with the so-called Ordered Weighted Averaging (OWA) aggregation
developed by Yager [18]. In the OWA aggregation the weights are assigned to
the ordered values (i.e. to the smallest value, the second smallest and so on)
rather than to the specific criteria. Since its introduction, the OWA aggregation
has been successfully applied to many fields of decision making including also
ones modeling risk averse preferences in decisions under uncertainty [9] as well as
those requiring equity and fairness while aggregating several agents gains [10,11].
The OWA operator allows us to model various aggregation functions from the
maximum through the arithmetic mean to the minimum. Thus, it enables mod-
eling of various preferences from the optimistic to the pessimistic one.

Several approaches have been introduced for obtaining the OWA weights
with a predefined degree of orness [2,17]. O‘Hagan [7] proposed a maximum
entropy approach, which involved a constrained nonlinear optimization prob-
lem with a predefined degree of orness as its constraint and the entropy as the
objective function. Actually, the maximum entropy model can be transformed
into a polynomial equation and then solved analytically [3]. A minimum vari-
ance approach to obtain the minimal variability OWA operator weights was also
considered [4]. The minimax disparity approach proposed by Wang and Parkan
[15] was the first method of finding OWA operator using Linear Programming
(LP). This method determines the OWA operator weights by minimizing the
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maximum difference between two adjacent weights under a given level of orness.
The minimax disparity approach was further extended [1,14] and related to the
minimum variance approaches [6]. The maximum entropy approach has been
generalized for various Minkowski metrics [20,21] in some cases expressed with
LP models [16]. The LP model of the mean absolute deviation has been also
considered [8]. In this paper we analyze a possibility to use another LP solvable
models. In particular, we develop the LP model to determine the OWA operator
weights by minimizing the Maximum Absolute Deviation inequality measure. In
addition to the LP model an analytical formula is also derived.

2 Orness and Inequality Measures

The OWA aggregation with weights w = (w1, . . . , wm) of vector y = (y1, . . . , ym)
is mathematically formalized as follows [18]. First, we introduce the ordering
map Θ : Rm → Rm such that Θ(y) = (θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥
θ2(y) ≥ · · · ≥ θm(y) and there exists a permutation τ of set I such that θi(y) =
yτ(i) for i = 1, . . . , m. Next, we apply the weighted sum aggregation to ordered
vectors Θ(y), i.e. the OWA aggregation takes the following form:

Aw(y) =
m∑

i=1

wiθi(y). (1)

The OWA aggregation may model various preferences from the optimistic (max)
to the pessimistic (min) Yager [18] introduced a well appealing concept of the
orness measure to characterize the OWA operators. The degree of orness asso-
ciated with the OWA operator Aw(y) is defined as

orness(w) =
m∑

i=1

m − i

m − 1
wi (2)

For the max aggregation representing the fuzzy ‘or’ operator with weights w =
(1, 0, . . . , 0) one gets orness(w) = 1 while for the min aggregation representing
the fuzzy ‘and’ operator with weights w = (0, . . . , 0, 1) one has orness(w) = 0.
For the average (arithmetic mean) one gets orness((1/m, 1/m, . . . , 1/m)) = 1/2.
A complementary measure of andness defined as andness(w) = 1 − orness(w)
may be considered. OWA aggregations with orness greater or equal 0.5 are con-
sidered or-like whereas the aggregations with orness smaller or equal 0.5 are
treated as and-like. The former corresponds to rather optimistic preferences while
the latter represents rather pessimistic (risk-averse) preferences.

The OWA aggregations with monotonic weights are either or-like or and-
like. Exactly, decreasing weights w1 ≥ w2 ≥ . . . ≥ wm define an or-like OWA
operator, while increasing weights w1 ≤ w2 ≤ . . . ≤ wm define an and-like
OWA operator. Actually, the orness and the andness properties of the OWA
operators with monotonic weights are total in the sense that they remain valid
for any subaggregations defined by subsequences of their weights. Such OWA
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aggregations allow one to model equitable or fair preferences [10,11], as well as
risk aversion in decisions under uncertainty [13].

Yager [19] proposed to define the OWA weighting vectors via the regular
increasing monotone (RIM) quantifiers, which provide a dimension independent
description of the aggregation. A fuzzy subset Q of the real line is called a RIM
quantifier if Q is (weakly) increasing with Q(0) = 0 and Q(1) = 1. The OWA
weights can be defined with a RIM quantifier Q as wi = Q(i/m)−Q((i−1)/m).
and the orness measure can be extended to a RIM quantifier (according to
m → ∞) as follows [19]

orness(Q) =
∫ 1

0

Q(α) dα (3)

Thus, the orness of a RIM quantifier is equal to the area under it.
Monotonic weights can be uniquely defined by their distribution. First, we

introduce the right-continuous cumulative distribution function (cdf):

Fw(d) =
m∑

i=1

1
m

δi(d) where δi(d) =
{

1 if wi ≤ d
0 otherwise (4)

which for any real value d provides the measure of weights smaller or equal to d.
Alternatively one may use the left-continuous right tail cumulative distribution
function Fw(d) = 1 − Fw(d) which for any real value d provides the measure of
weights greater or equal to d.

Next, we introduce the quantile function F
(−1)
w = inf {η : Fy(η) ≥ ξ} for

0 < ξ ≤ 1 as the left-continuous inverse of the cumulative distribution function
Fw, ie., F

(−1)
w (ξ) = inf {η : Fw(η) ≥ ξ} for 0 < ξ ≤ 1. Similarly, we intro-

duce the right tail quantile function F
(−1)

w as the right-continuous inverse of
the cumulative distribution function Fw, i.e., F

(−1)

w (ξ) = sup {η : Fw(η) ≥ ξ}
for 0 < ξ ≤ 1. Actually, F

(−1)

w (ξ) = F
(−1)
w (1 − ξ). It is the stepwise function

F
(−1)

w (ξ) = θi(w) for i−1
m < ξ ≤ i

m .
Dispersion of the weights distribution can be described with the Lorenz

curves and related inequality measures. Classical Lorenz curve used in income
economics as a cumulative population versus income curve to compare equity of
income distributions. Although, the Lorenz curve for any distribution may be
viewed [5] as a normalized integrated quantile function. In particular, for distri-
bution of weights w one gets

Lw(ξ) =
1

μ(w)

∫ ξ

0

F (−1)
w (α)dα = m

∫ ξ

0

F (−1)
w (α)dα (5)

where while dealing with normalized weights wi we have always μ(w) = 1/m.
Graphs of functions Lw(ξ) are piecewise linear convex curves. They are nonde-
creasing, due to nonnegative weights wi. A perfectly equal distribution weights
(wi = 1/m for all i = 1, . . . , m) has the diagonal line as the Lorenz curve.
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Alternatively, the upper Lorenz curve may be used which integrates the right
tail quantile function. For distribution of weights w one gets

Lw(ξ) =
1

μ(w)

∫ ξ

0

F
(−1)

w (α)dα = m

∫ ξ

0

F
(−1)

w (α)dα (6)

Graphs of functions Lw(ξ) are piecewise linear concave curves. They are nonde-
creasing, due to nonnegative weights wi. Similar to Lw, the vector of perfectly
equal weights has the diagonal line as the upper Lorenz curve. Actually, both
the classical (lower) and the upper Lorenz curves are symmetric with respect to
the diagonal line in the sense that the differences

d̄w(ξ) = Lw(ξ) − ξ and dw(ξ) = ξ − Lw(ξ) (7)

are equal for symmetric arguments: d̄w(ξ) = dw(1 − ξ). Hence,

Lw(ξ) + Lw(1 − ξ) = 1 for any 0 ≤ ξ ≤ 1 (8)

Note that in the case of nondecreasing OWA weights 0 ≤ w1 ≤ . . . ≤ wm ≤ 1 the
corresponding Lorenz curve Lw(ξ) is (weakly) increasing with Lw(0) = 0 and
Lw(1) = 1 as well as the OWA weights can be defined with L as wi = Lw(i/m)−
Lw((i−1)/m). Hence, Lw may be considered then as a RIM quantifier generating
weights w [13]. Following Eq. (3), the orness measure of RIM quantifier is given
as orness(L) =

∫ 1

0
L(α) dα, thus equal to the area under Lw. Certainly, for any

finite m the RIM orness orness(Lw) differs form orness(w), but the difference
depends only on the value of m, Exactly,

orness(Lw) =
m∑

i=1

m − i

m
wi +

m∑

i=1

1
2m

wi =
m − 1

m
orness(w) +

1
2m

(9)

In the case of nonincreasing OWA weights 1 ≥ w1 ≥ . . . ≥ wm ≥ 0 the
corresponding upper Lorenz curve Lw(ξ) is (weakly) increasing with Lw(0) = 0
and Lw(1) = 1 as well as the OWA weights can be defined with L as wi =
Lw(i/m)−Lw((i−1)/m). Hence, Lw may be considered then as a RIM quantifier
generating weights w. Similar to (9) the difference between the RIM orness
orness(Lw) and orness(w) depends only on the value of m.

Typical inequality measures are some deviation type dispersion characteris-
tics. They are inequality relevant which means that they are equal to 0 in the
case of perfectly equal outcomes while taking positive values for unequal ones.

The simplest inequality measures are based on the absolute measurement of
the spread of outcomes, like the (Gini’s) mean absolute difference

Γ (w) =
1

2m2

m∑

i=1

m∑

j=1

|wi − wj | (10)

or the maximum absolute difference

D(w) = max
i,j=1,...,m

|wi − wj |. (11)
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In most application frameworks better intuitive appeal may have inequality mea-
sures related to deviations from the mean outcome like the maximum absolute
deviation

Δ(w) = max
i∈I

|wi − μ(w)|. (12)

Note that the standard deviation σ (or the variance σ2) represents both the
deviations and the spread measurement.

Deviational measures may be focused on the downside semideviations or the
upper ones. One may define the maximum downside semideviation Δd(w) and
the maximum upside semideviation Δu(w), respectively

Δd(w) = max
i∈I

(μ(w) − wi) and Δu(w) = max
i∈I

(wi − μ(w)). (13)

In economics one usually considers relative inequality measures normalized
by the mean. Among many inequality measures perhaps the most commonly
accepted by economists is the Gini index, which is the relative mean difference

G(w) = Γ (w)/μ(w) = mΓ (w). (14)

Similarly, one may consider the relative maximum deviation

R(w) = Δ(w)/μ(w) = mΔ(w). (15)

Note that due to μ(w) = 1/m, the relative inequality measures are proportional
to their absolute counterparts and any comparison of the relative measures is
equivalent to comparison of the corresponding absolute measures.

The above inequality measures are closely related to the Lorenz curve [10]
and its differences from the diagonal (equity) line (7). First of all

G(w) = 2
∫ 1

0

d̄w(α)dα = 2
∫ 1

0

dw(α)dα (16)

thus

G(w) = 2
∫ 1

0

Lw(α)dα − 1 = 1 − 2
∫ 1

0

Lw(α)dα. (17)

Recall that in the case of nondecreasing OWA weights 0 ≤ w1 ≤ . . . ≤ wm ≤
1 the corresponding Lorenz curve Lw(ξ) may be considered as a RIM quantifier
generating weights w. Following Eq. (9), one gets

G(w) = 1 − 2orness(Lw) =
m − 1

m
(1 − 2orness(w)) (18)

enabling easy recalculation of the orness measure into the Gini index and vice
versa. Similarly, in the case of nonincreasing OWA weights 1 ≥ w1 ≥ . . . ≥ wm ≥
0, one gets

G(w) = 2orness(Lw) − 1 =
m − 1

m
(2orness(w) − 1). (19)
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3 Maximum Deviation Minimization

We focus on the case of monotonic weights. Following Eqs. (18) and (19), the
Gini index is then uniquely defined by a given orness value. Nevertheless, one
may still select various weights by minimizing the Maximum Deviation (MD)
measure. Although related to the Lorenz curve it is not uniquely defined by the
Gini index and the orness measure. Actually, the MD minimization approach
may be viewed as the generalized entropy maximization based on the infinity
Minkowski metric [16].

Let us define differences

d̄i(w) = Lw(
i

m
) − i

m
and di(w) =

i

m
− Lw(

i

m
) for i = 1, . . . , m (20)

where due to nonnegativity of weights, for all i = 1, . . . , m − 1

d̄i(w) ≤ 1
m

+ d̄i+1(w) and di(w) ≤ 1
m

+ di−1(w) (21)

with d0(w) = d̄0(w) = 0 and dm(w) = d̄m(w) = 0. Thus

d̄m−i(w) ≤ i

m
and di(w) ≤ i

m
for i = 1, . . . , m − 1 (22)

The Gini index represents the area defined by d̄i(w) or di(w), respectively,

G(w) =
2
m

m−1∑

i=1

d̄i(w) =
2
m

m−1∑

i=1

di(w) (23)

while the relative maximum deviation may be represented as [10]

R(w) = mΔ(w) = max{mΔd(w),mΔu(w)} = max{md1(w),md̄1(w)}
= max{md1(w),mdm−1(w)} = max{md̄1(w),md̄m−1(w)} (24)

Note that due to (22) mΔd(w) ≤ 1.
Assume there is given orness value 0.5 ≤ α ≤ 1 and we are looking for

monotonic weights 1 ≥ w1 ≥ . . . ≥ wm ≥ 0 such that orness(w) = α and the
(relative) maximum deviation R(w) is minimal. Following Eqs. (19), (23) and
(24), it leads us to the problem

min max{md̄1(w),md̄m−1(w)}
s.t.

2
m

m−1∑

i=1

d̄i(w) =
m − 1

m
(2α − 1)

(25)

with additional (22) constraints. This allows us to form the following LP model

min md (26)
s.t. d̄1 ≤ d, d̄m−1 ≤ d (27)

d̄1 + . . . + d̄m−1 = (m − 1)(α − 0.5) (28)

0 ≤ d̄i ≤ 1
m

+ d̄i+1 for i = 1, . . . , m − 1 (29)
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with variables d̄i for i = 1, . . . , m − 1, auxiliary variable d and constant d̄m = 0.
Having solved the above LP problem, the corresponding weights can be simply
calculated according to the following formula (with d̄0 = d̄m = 0):

wi = d̄i − d̄i−1 +
1
m

for i = 1, . . . , m (30)

Symmetrically, assume there is given orness value 0 ≤ α ≤ 0.5 and we are
looking for monotonic weights 0 ≤ w1 ≤ . . . ≤ wm ≤ 1 such that orness(w) = α
and the (relative) maximum deviation R(w) is minimal. Following Eqs. (18),
(23) and (24), it leads us to the problem

min max{md1(w),mdm−1(w)}
s.t.

2
m

m−1∑

i=1

di(w) =
m − 1

m
(1 − 2α)

(31)

with additional (22) constraints. Thus leading to the LP problem

min md
s.t. d1 ≤ d, dm−1 ≤ d

d1 + . . . + dm−1 = (m − 1)(0.5 − α)
0 ≤ di ≤ 1

m + di−1 for i = 1, . . . , m − 1

(32)

with variables di for i = 1, . . . , m − 1, auxiliary variable d and constant d0 = 0.
The corresponding weights can be found according to the formula

wi = di−1 − di +
1
m

for i = 1, . . . , m (33)

where d0 = dm = 0.
LP models (26)–(29) and (32) allow for application standard optimization

techniques to solve them. However, their structure is so simple that the problem
of maximum deviation minimization can also be solved analytically. We will
show this in details for the case of 0.5 ≤ orness(w) ≤ 1 and the corresponding
model (26)–(29) (Fig. 1).

One may take advantage of the fact that an optimal solution to the minimax
problem min{max{y1, y2} : y ∈ Q} are perfectly equal values y1 = y2 or one of
them, say y2, reaches its upper bound U2 = max{y2 : y ∈ Q} while the other
takes the larger value y1 > U2. Hence, when the required orness level is small
enough (still not below 0.5), then the optimal solution is defined by

d̄1 = d̄m−1 = h̄

where h̄ is defined by the orness Eq. (28) while leaving inequalities (29) inactive.
The optimal solution is then defined by

m

i
d̄i =

m

i
d̄m−i = h̄ for 1 ≤ i ≤ m

2
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Fig. 1. Areas under Lorenz curve for minimal maximum deviation: even (a) vs. odd
(b) number of weights

In the case of odd m = 2n + 1 one has

d̄i =
i

m
h̄ and d̄m−i =

i

m
h̄ for 1 ≤ i ≤ n

thus leading to the equation

d̄1 + . . . + d̄m−1 = 2
∑

i=1

n
i

m
h̄ =

n(n + 1)
m

h̄ = (m − 1)(α − 0.5)

and h̄ = 4m(α−0.5)
m+1 . Note that following Eq. (30) such a solution is generated by

weights:

wi =
1
m

+
4(α − 0.5)

m + 1
for i = 1, . . . , n

wn+1 =
1
m

wi =
1
m

− 4(α − 0.5)
m + 1

for i = n + 2, . . . , m

In the case of even m = 2n one has

d̄i =
i

m
h̄ and d̄m−i =

i

m
h̄ for 1 ≤ i ≤ n

although d̄n and d̄m−n is the same variable. This leads to the equation

d̄1 + . . . + d̄m−1 =
n∑

i=1

i

m
h̄ +

n−1∑

i=1

i

m
h̄ =

n2

m
h̄ = (m − 1)(α − 0.5)
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and h̄ = 4(m−1)(α−0.5)
m . Note that following Eq. (30) such a solution is generated

by weights:

wi =
1
m

+
4(m − 1)(α − 0.5)

m2
for i = 1, . . . , n

wi =
1
m

− 4(m − 1)(α − 0.5)
m2

for i = n + 1, . . . , m

The above analytical formulae for weights are valid as long as the required orness
level α is small enough (still not below 0.5) allowing constraint (22) to remain
inactive. This is equivalent to the restriction h̄ ≤ 1 thus

α ≤ m + 1
4m

+ 0.5 and α ≤ m

4(m − 1)
+ 0.5

for odd and even m, respectively.
When the required orness level is higher, then constraint (22) becomes active,

thus enforcing zero weights within the second part of the sequence. Exactly, there
exists 1 ≤ κ ≤ m/2 such that

w1 = . . . = wκ−1 ≥ wκ ≥ wκ+1 = . . . = wm = 0

where m
i d̄m−i(w) = 1 for i < m − κ.

4 Conclusion

The determination of ordered weighted averaging (OWA) operator weights is a
crucial issue of applying the OWA operator for decision making. We have con-
sidered determining monotonic weights of the OWA operator by minimization of
the maximum (absolute) deviation inequality measure. This leads us to a linear
programming model which can also be solved analytically. The analytic approach
results in simple direct formulas. The LP models allow us to find weights by the
use of efficient LP optimization techniques and they enable easy enhancement
of the preference model with additional requirements on the weights properties.
The latter is the main advantage over the standard method of entropy minimiza-
tion. Both the standard method and the proposed one do have their analytical
solutions. However, if we try to elaborate them further by adding some auxiliary
(linear) constraints on the OWA weights, then the entropy minimization model
forms a difficult nonlinear optimization task while the maximum deviation min-
imization is still easily LP-solvable.
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