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Abstract. Supervised training of a convolutional network for object
classification should make explicit any information related to the class
of objects and disregard any auxiliary information associated with the
capture of the image or the variation within the object class. Does this
happen in practice? Although this seems to pertain to the very final lay-
ers in the network, if we look at earlier layers we find that this is not the
case. In fact, strong spatial information is implicit. This paper addresses
this, in particular, exploiting the image representation at the first fully
connected layer, i.e. the global image descriptor which has been recently
shown to be most effective in a range of visual recognition tasks. We
empirically demonstrate evidences for the finding in the contexts of four
different tasks: 2d landmark detection, 2d object keypoints prediction,
estimation of the RGB values of input image, and recovery of semantic
label of each pixel. We base our investigation on a simple framework with
ridge rigression commonly across these tasks, and show results which all
support our insight. Such spatial information can be used for computing
correspondence of landmarks to a good accuracy, but should potentially
be useful for improving the training of the convolutional nets for classi-
fication purposes.

1 Introduction

There is at least one alchemy associated with deep convolutional networks (Con-
vNets). It occurs when ∼100,000 iterations of stochastic gradient descent (SGD),
in tandem with ∼1 million labelled training images from ImageNet, transform
the ∼60 million randomly initialized weights of a deep ConvNet into the best,
by a huge margin, performing known visual image classifier [7,10,13,17,19,20].
Alongside this high-level alchemy is another related one w.r.t. the image repre-
sentations learnt by the fully connected layers of a deep ConvNet [7,10,17,20].
These representations are explicitly trained to retain information relevant to
semantic classes. But we show in this paper a striking fact, through various
tasks, that these representations also retain spatial information, including the
location of object parts and keypoints of object.
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Fig. 1. How many different local image properties can be predicted from a generic
ConvNet representation using a linear model? In this figure, given the ConvNet rep-
resentation of an image, we have estimated three different local properties. Namely,
semantic segmentation for background (top left) and 20 object classes (bottom left)
present in PASCAL VOC dataset, 194 facial landmarks (top right) and RGB recon-
struction of the original image (bottom right). One can see that a generic ConvNet
representation optimized for ImageNet semantic classification has embedded high level
of local information.

The notion of predicting spatial information using a ConvNet itself is not
new. Recent studies have introduced several approaches to extract spatial infor-
mation from an image with deep ConvNet. Some have trained a specialized
ConvNet to predict specific spatial information such as body parts and facial
landmarks [8,21,24]. Others [9,15,19] have shown that it is possible to extract
spatial correspondences using a generic ConvNet representation. But they con-
sider representations from the ConvNet layers that only describe sub-patches of
the whole image. Then in a similar manner to a sliding window approach they
have an exhaustive spatial search, in tandem with their patch descriptor, to find
the locations.

Unlike those works, we show that a global image representation extracted
from the first fully connected layer of a generic ConvNet (i.e. trained for pre-
dicting the semantic classes of ImageNet) is capable of predicting spatial infor-
mation without doing an explicit search. In particular, we show that one can
learn a linear regression function (with results ranging from promising to good)
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from the representation to spatial properties: 2d facial landmarks, 2d object key-
points, RGB values and class labels of individual pixels, see figure 1. We chose
these experiments to highlight the network’s ability to reliably extract spatial
information.

Why do we concentrate on the fully connected layers? Prior work has shown
that these layers correspond to the most generic and compact image representa-
tion and produce the best results, when combined with a simple linear classifier,
in a range of visual recognition tasks [2]. Therefore the starting point of this work
was to examine what other information, besides visual semantic information, is
encoded and easily accessible from these representations.

The results we achieve for the tasks we tackle indicate that the spatial infor-
mation is implicitly encoded in the ConvNet representation we consider. Remem-
ber, the network has not been explicitly encouraged to learn spatial information
during the training.

The contributions of the paper are:

– For the first time we systematically demonstrate that spatial information
is persistently transferred to the representation in the first fully connected
layer of a generic ConvNet (section 3).

– We show that one can learn a linear regression function from the ConvNet
representation to both object parts and local image properties. In particular,
we demonstrate that it is possible to estimate 2d facial landmarks (section
3.1), 2d object keypoints (section 3.1), RGB values (section 3.1) and pixel
level segmentations (section 3.1).

– By using a simple look-back method we achieved accurate predictions of
facial landmarks on a par with state of the art (section 3.1).

– We qualitatively show examples where semantically meaningful directions in
the ConvNet representation space can be learned and exploited to accord-
ingly alter the appearance of a face (section 4).

Before describing our experiments and results in the next section we explain
why spatial information can be ever retained and so easily accessed in the first
fully-connected layer of a generic ConvNet.

2 Flow of Information Through a ConvNet

A generic ConvNet representation extracted from the first fully-connected layer is
explicitly trained to retain information relevant to semantic class. The semantic
classes in the training data are independent of spatial information and therefore
this information, as it is deemed unnecessary to perform the task, should be
removed or at least structured in such a manner that it does not conflict with
the task.

The weights of a ConvNet’s convolutional layers encode a very large num-
ber of compositional patterns of appearance that occur in the training images.
Thus, the multiple response maps output by a convolutional layer indicate which
appearance patterns occur in different sub-patches (a.k.a. receptive fields) of
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a fixed size in the original image. The size of these sub-patches increases as
we progress through the convolutional layers. When we come to the first fully-
connected layer the network must compress the set of response maps (13×13×256
numbers assuming an AlexNet [13] ConvNet) produced by the final convolu-
tional layer into a mere 4096 numbers. The compression performed seeks to
optimize the ability of the network’s classification layer (with potentially some
more intermediary fully-connected layers) to produce semantic labels as defined
by the ImageNet classification task.

The weights of the first fully connected layer are, in general, not particularly
sparse. Therefore the what and where explicitly encoded in the convolutional
layers are aggregated, merged and conflated into the output nodes of this first
fully connected layer. At this stage it is impossible to backtrack from these
responses to spatial locations in the image. Nevertheless, we show it is possible
to predict from this global image descriptor, using linear regressors, the spatial
locations of object parts and keypoints and also pixel level descriptors such as
colour and semantic class.

3 Experiment

We study two families of tasks to explore which spatial information resides in
the ConvNet representation:

– Estimate the (x, y) coordinate of an item in an image.
– Estimate the local property of an image at (x, y).

Given the ConvNet representation of an image for the first task, we i) esti-
mate the coordinates of facial landmarks in three challenging datasets [3,14,18],
and ii) predict the positions of object keypoints. We use the annotations [4] from
the Pascal VOC 2011 dataset as our testbed. While for the second task, given a
ConvNet representation, we i) predict the RGB values of every pixel in the orig-
inal image (we use the ImageNet validation set as our test set), and ii) predict
the semantic segmentation of each pixel in the original image (VOC 2012 Pascal
dataset).

3.1 Experimental Setup

In all our experiments we use the same ConvNet. It has the AlexNet architecture
[13] and is trained on ImageNet [1] using the reference implementation provided
by Caffe [11]. Our image representation then corresponds to the responses of
the first fully connected layer of this network because of its compactness and
ability to solve a wide range of recognition tasks [2,7,10,17,20]. We will denote
this representation by f . Then the only post-processing we perform on f is to l2
normalize it.

For every scalar quantity y we predict from f , we do so with a linear regression
model:

y ≈ wT f + w0 (1)
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Table 1. Evaluation of facial landmark estimation on three standard face datasets and
comparison with baslines and recent state of the art methods. The error measure is the
average distance between the predicted location of a landmark and its ground truth
location. Each error distance is normalized by the inter-occular distance.

Helen [14] LFPW [3] IBUG [18]

Dataset Bias 0.501 0.242 0.352

RGB + ridge 0.096 0.074 0.160
STASM [16] 0.111 - -
CompASM [14] 0.091 - -

ConvNet + ridge 0.065 0.056 0.096

RCPR [5] 0.065 0.035 -
SDM [22] 0.059 0.035 0.075
ESR [6] 0.059 0.034 0.075
ETR [12] 0.049 0.038 0.064

ConvNet + look-back 0.058 0.049 0.074

We use a ridge regularised linear model because of its simplicity and for the
following reason. All the class, pose and semantic information does exist in the
original RGB image, as the human vision proves, but it is not easily accessible
and especially not through linear models. However, we want to study if all this
information is still encoded in the ConvNet representation, but in a much more
accessible way and this is demonstrated by the use of a linear model compared
to a much more capable prediction algorithm.

There are, of course, numerous ways we can estimate the coefficients
(w, w0) from labelled training. Assume that we have labelled training data
(y1, f1), . . . (yn, fn) where each yi ∈ R and f ∈ R

d (d = 4096). The optimal
values for (w, w0) are then found solving this optimization problem

(w∗, w∗
0) = arg min

w,w0

n∑

i=1

(yi − wT fi − w0) + λ‖w‖2 (2)

The closed form solution to this optimization problem is easily shown to be:

w∗ =
(
XTX + λI

)−1
XTy and w∗

0 =
1
n

n∑

i=1

yi (3)

where

X =

⎛

⎜⎜⎜⎝

← fT1 →
← fT2 →

...
← fTn →

⎞

⎟⎟⎟⎠ and y =

⎛

⎜⎜⎜⎝

y1
y2
...

yn

⎞

⎟⎟⎟⎠ (4)
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(a) Fig. 2(a) The normalized prediction
error for different subsets of the land-
marks after look-back (see the caption of
table 1 for the error measure). The error
is shown for three different face datasets.
Since the bounding box around the chin is
bigger than the bounding box around the
other parts, the error for chin is higher
than the rest of facial landmarks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

α

PCK

airplane
bike
bird
boat
bottle
bus
car
cat
chair
cow
table
dog
horse
motorbike
person
plant
sheep
sofa
train
tv

(b) Fig. 2(b) PCK evaluation for key-
point prediction of 20 classes of PASCAL
VOC 2011

and it is assumed the columns of X have been centred. In all our experiments
we set the regularization parameter λ with four-fold cross-validation.

Facial Landmarks. The first problem we address is the popular task of 2d
facial landmark detection. Facial landmark detection is interesting since a large
body of work has been applied to it. To train our landmark estimation model,
for each landmark we estimate two separate linear regression functions, one for
the x-coordinate of the landmark and one for the y-coordinate. Therefore we
estimate the (x, y) coordinates of all the L landmarks from the image’s ConvNet
representation, f , with

x̂ = Wlandmarksf + wlandmarks,0 (5)

where Wlandmarks ∈ R
2L×d and wlandmarks,0 ∈ R

2L. Remember each row of
Wlandmarks is learnt independently via the ridge regression solution of equation
(3). For the rest of the tasks explored in this section we use a similar formulation
to the one just described so we will not introduce new notation to describe them.

Table 2. Quantitative evaluation of our keypoint estimation for general objects on
VOC11. The performance measure is the average PCK score with α = 0.1.

airplane bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

SIFT 17.9 16.5 15.3 15.6 25.7 21.7 22.0 12.6 11.3 7.6 6.5 12.5 18.3 15.1 15.9 21.3 14.7 15.1 9.2 19.9 15.7
SIFT+prior 33.5 36.9 22.7 23.1 44.0 42.6 39.3 22.1 18.5 23.5 11.2 20.6 32.2 33.9 26.7 30.6 25.7 26.5 21.9 32.4 28.4

ConvNet + ridge 21.3 25.1 22.7 16.4 47.3 27.2 29.9 25.4 19.7 26.3 22.0 27.1 25.5 21.8 33.8 41.0 28.2 23.0 23.9 47.3 27.8

Conv5 + sliding window [15] 38.5 37.6 29.6 25.3 54.5 52.1 28.6 31.5 8.9 30.5 24.1 23.7 35.8 29.9 39.3 38.2 30.5 24.5 41.5 42.0 33.3
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Fig. 3. The landmarks predicted by our linear regressors for eight different images from
the Helen Dataset. The leftmost image in each triplet shows the ground truth. The
middle image shows the landmarks predicted by the linear regression functions from
the ConvNet representation of the whole image to landmark coordinates. In the middle
image the bounding boxes, defined by the initial predictions for the landmarks, used
by look-back method are also shown. The rightmost image shows the final landmark
predictions made by the look-back method.

Table 1 details the average errors, of our approaches and other methods, in
the predicted location of the landmarks on three standard datasets: Helen [14],
LFPW [3] and IBUG [18]. The reported errors are normalized by the distance
between two eyes in the image according to the standard practice in the field
[12]. The table reports the performance of both the baseline predictors of linear
ridge regression from RGB and a random predictor and recent high performing
systems [5,6,12,22] which generally involve learning a complicated non-linear
function from RGB to the landmarks. Our predictor, ConvNet+ridge, produces
a significantly better estimate than the baselines and its performance is compa-
rable with state-of-the-art methods specifically designed to solve this problem.
Our result indicates that the locations of landmarks can be reliablly extracted
from the ConvNet representation.

ConvNet+ridge inherently loses around ±10 pixel accuracy due to the pool-
ing and strides in the first and second convolutional layers of the ConvNet.
However, we can overcome this limitation in a simple manner which we term
the look-back trick. We partition the landmarks into different subsets (such as
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Fig. 4. RGB information linearly predicted from the ConvNet representation. For each
pixel we train 3 independent linear regressors to predict the pixel’s RGB value from the
image’s global ConvNet representation. We used the first 49K images from ImageNet’s
cross validation set for training and visualized the result for the last 1k images. Shown
above are the results for 25 random images (left) taken from the test set and their
reconstructions (right).

chin, left eye and left eyebrow, right eye and right eyebrow, and then mouth and
nose), figure 3 shows some examples. We let the predicted position of each set
of landmarks, using equation 5, define a square bounding box containing them
with some margin based on the maximum prediction error for the landmarks in
the training set. We then extract the ConvNet representation for this sub-image
and use linear regression, as before, to estimate the coordinates of the landmarks
in the bounding-box. This simple trick significantly boosts the accuracy of the
predictions, and allows us to outperform all the s.o.a. methods except for the
recent work of [12]. The more sets we have in the partition the better results we
get. We used six sets for each dataset. See figure 3 for qualitative examples of
the result of this method on sample images from the Helen dataset. Figure 2a
also shows the prediction errors for different parts after look-up for three face
datasets.

Object Keypoints. In our next task we predict the location of object key-
points. These keypoints exhibit more variation in their spatial location than
facial landmarks. We use the keypoint annotations provided by [4] for 20 classes
of PASCAL VOC 2011. We make our predictions using exactly the same basic
approach as for facial landmarks. The classes of PASCAL task include many
deformable objects (dog, cat, human, etc.) and objects which have high intra-
class variation (bottle, plant, etc.) which makes the problem of key point



Persistent Evidence of Local Image Properties in Generic ConvNets 257

Table 3. Evaluation of Semantic Segmentation on the validation set of VOC12 mea-
sured in mean Average Precision (mAP)

background airplane bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

ConvNet 79.12 16.01 0.02 12.93 9.26 13.69 37.29 33.75 40.01 0.01 8.62 12.24 30.89 9.43 24.94 44.03 6.22 18.77 1.64 25.33 11.05 20.73

detection extremely difficult. In order to model these keypoints a separate set of
regressors is learnt for each object.

Table 2 reports the accuracy of our results for keypoint prediction, together
with those achieved by other methods [15]. The accuracy is measured using mean
PCK [23]. A keypoint is considered to be correctly estimated if the prediction’s
Euclidean distance from the ground truth position is α ∈ [0, 1] times the maxi-
mum of the bounding box width and height. Our simple approach outperforms
SIFT by a huge margin on localizing landmarks and is only slightly below the
performance of SIFT+prior [15]. Figure 2b shows the plot of PCK vs α for 20
classes.

RGB Reconstruction. The results from the previous tasks show that our Con-
vNet representation does encode some levels of spatial information. The natural
question is then what does it actually remove? To investigate this we try to eval-
uate if it is possible to invert the ConvNet mapping. First, we try to estimate
the RGB values of the original input image from our ConvNet representation.
For this, again, we simply learn 3 × np linear regressors where np is the number
of pixels in the image. In other words we learn an independent regressor for each
pixel and each colour channel.

We use ImageNet as our testbed. We used the first 49k images from Ima-
geNet’s validation set for training and the last 1k images for testing. We resized
each image to 46×46×3 and trained 6348 independent linear regressors. Some
examples of the resulting RGB reconstruction are illustrated in figure 4. The
mean absolute error of image reconstruction is 0.12. It is rather surprising that
RGB values of an image can be extracted with this degree of accuracy from the
ConvNet representation.

Semantic Segmentation. We applied the same framework which we employed
for RGB reconstruction further to recover semantic labels of each pixel instead of
its RGB values. The procedure is as follows: we resized each semantic segmenta-
tion map of VOC 2012 segmentation task down to a 30×30×21 image. We train
a separate linear regressor to predict whether the pixel at position (x, y) belongs
to class c or not encoded as 1 and 0. We have x ∈ {1, 2, . . . , 30} and similarly for
y and c ∈ {1, 2, . . . , 21}. Therefore a total of 18900 linear regressors are trained
with ridge regression. Solving a classification problem via regression is not ideal.
But the qualitative results shown in figure 5 are visually pleasing. They show
the semantic segmentations produced by our approach for some images from the
VOC12 validation set.
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Fig. 5. Semantic segmentation results for images from PASCAL VOC. For each block
of pictures, the top left hand picture is the original image and the one directly to its
right is the probability map for the background class. The brighter the pixel the higher
the probability. The bottom set of smaller images in the block display, in the same
manner, the probabilities for the 20 classes of PASCAL VOC 2011. The probability
masks are computed independently of one another though the scaling of the intensities
in the displayed masks is consistent across all the masks. The learning is based on
linear regression, the details of which are found in the main text.

After we apply the linear regressor for each class to each pixel, we get 21
responses. We then turn these responses into a single prediction using another
linear model. We multiply the response vector by a matrix M ∈ R

21×21 and
then choose the class which corresponds to the highest response in the output
vector. Ideally M should model the relations between different class responses at
a single pixel. We learn M , once again with ridge regression, and during training
it tries to return a binary vector of length 21 with only one non-zero entry.

As our segmentation masks only have size 30×30 we resize the them back
to their original size. We used the VOC12 training-set as the training data and
augmented this set tenfold to get a better estimate and reported the result on
the cross-validation set. Quantitative results for our segmentations are given
in table 3. Although this result itself is not as good as s.o.a. on semantic
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segmentation task (mean average precision of 20.7 compared to 47.5 of s.o.a.
method), it is intriguing to see that the global ConvNet representation contains
this level of information. It is easy to envisage that such a segmentation could
be incorporated into an object classifier or detector.

Fig. 6. Semantically altering a face
using its generic ConvNet representa-
tion and semantically meaningful direc-
tions in the representation space. Given
an image of a face and its ConvNet
representation each row above shows
the effect of altering the face’s repre-
sentation by moving in one direction
of the representation space and then
regressing from the resulting ConvNet
representation back to its RGB repre-
sentation. Each direction was learned
from labeled training data and corre-
sponds to a specific semantic concept:
gender, glasses/no-glasses, head angle
and head tilt. For gender we can see that
the left-most image which corresponds
to male has dark patches correspond-
ing to a beard while the right-most
image is clearly female. The glasses/no-
glasses clearly alters the region around
the eyes. The last two rows show vari-
ations caused by changes in head pose.
Both the head angle and the tilt (last
row) are clearly visible.

male −→ female

no glasses −→ glasses

right in-plane rot. −→ left in-plane rot.

head down −→ head up

4 Semantic Directions in Representation Space

The ConvNet is trained with one objective in mind, to learn a representation
where every pair of classes is linearly separable. The representation space is thus
carved into different volumes corresponding to the different classes. The results
of the paper so far show each class volume retains significant intra-class vari-
ations. In this section we make a first step towards understanding how these
variations are structured. To proceed we learn a separate linear regressor from
the representation to each of the following variates for the LFW data-set gender,
have-glasses, and pose. Each linear regressor specifies a direction in the repre-
sentation space along which a semantic concept varies.

What happens with the images if we alter the representation along this direc-
tion? Can we change the gender or add glasses or continuously change the pose
of the face in the image? We can achieve this if we extrapolate along an identified
direction and then regress back to the RGB image as described in section 3.1. In
more detail: the ConvNet representation, f , of a face can be written in terms of
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its projection onto a semantic direction, such as gender wgender, found via linear
regression and its component orthogonal to wgender

f = (wT
genderf)wgender + f̃ (6)

Then we can create a new ConvNet representation where the gender attribute
of the face has been altered but not the other factors in the following simplistic
manner.

f ′ = f̃ + λwgender (7)

with λ ∈ [λmin, λmax]. We then regress from f ′ back to the RGB image to visualize
the result of the alteration, see figure 6 for some sample results.

What do the results of our small scale experiment convey? We can see that
altering the pose direction in the representation does correspond well to the
actual image transformation and that changing the gender corresponds to an
altering of the face’s color composition. Similarly glasses/no-glasses alters the
appearance of the region around the eyes. However, it is easy to read too much
into the experiments as it is severely limited by the linear structure of the regres-
sors. And the fear of hallucinating experimental evidence for the elephant in the
room - the concept of disentanglement - means we will leave our speculations to
these comments. However, as such a simple approach is capable of finding some
structures it would be interesting to investigate if the representation factorizes
the variations according to semantic factors.

5 Conclusion

In this paper we have shown that a generic ConvNet representation from the first
fully connected layer retains significant spatial information. We demonstrated
this fact by solving four different tasks, that require local spatial information,
using the simple common framework of linear regression from our ConvNet rep-
resentation. These tasks are i) 2d facial landmark prediction, ii) 2d object key-
points prediction, iii) estimation of the RGB values of the original input image,
and iv) semantic segmentation, i.e. recovering the semantic label of each pixel.
The results demonstrated throughout all these tasks, using diverse datasets,
show spatial information is implicitly encoded in the ConvNet representation
and can be easily accessed. This result is surprising because the employed net-
work was not explicitly trained to keep spatial information and also the first
fully connected layer is a global image descriptor which aggregates and conflates
appearance features, extracted from the convolutional layers, from all spatial
locations in the image.
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