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Abstract. Indata-centric crowdsourcing, it is well known that the incen-
tive structure connected to workers’ behavior greatly affects output data.
This paper proposes to use a declarative language to deal with both of
data computation and the incentive structure explicitly. In the language,
computation is modeled as a set of Datalog-like rules, and the incentive
structures for the crowd are modeled as games in which the actions taken
by players (workers) affect how much payoff they will obtain. The language
is unique in that it introduces the game aspect that separates the code for
the incentive structure from the other logic encoded in the program. This
paper shows that the game aspect not only makes it easier to analyze and
maintain the incentive structures, it gives a principled model of the fusion
of human and machine computations. In addition, it reports the results of
experiments with a real set of data.
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1 Introduction

Much crowdsourcing is data-centric, i.e., we ask workers to perform microtasks
to enter data or to help collect, process, and manage data [5] [20]. In data-
centric crowdsourcing, it is well known that the incentive structure connected to
workers’ behavior greatly affects output data [10]. However, for many existing
data-centric declarative frameworks [6] [19] [22], the design space for the incentive
structure is relatively limited. For example, each worker receives a fixed amount
of payment for each task, and the payment for each task is the only parameter for
the incentive space. The reason for this is that complex incentive structures are
often strongly connected to the logic of applications. In addition, such incentive
structures are difficult to analyze and maintain.

This paper proposes to use a declarative language to deal with both of data
computation and the incentive structure explicitly. In the language, computation
is modeled as a set of Datalog-like (or Prolog-like) rules, and the incentive struc-
tures for the crowd are modeled as games in which the actions taken by players
(workers) affect how much payoff they will obtain. The language can be used to
implement both microtask-based and game-style crowdsourcing applications.
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The language is unique in that it adopts separation of concerns, which is
an important principle in software development. The language introduces the
game aspect that separates the code for the incentive structures from the other
logic encoded in the program. With the game aspect, the code for the incentive
structure is localized and described in terms taken from game theory!'. Game
theory is known to be useful when discussing not just real “games” but any
system that involves incentive structure, and the game aspect makes analyzing
and maintaining the incentive structure easier. In contrast, in traditional pro-
gramming abstractions, it is difficult to find what kind of game is implemented
in the code.

Interestingly, a logic-based language with the game aspect provides us with a
natural and principled model of integration of human and machine intelligence.
In the model, the incentive structure affects workers’ behavior to determine
two things that cannot be determined by the machine. Workers determine: (1)
which rule to execute first when we have multiple rules but the evaluation order
cannot be determined by logic, and (2) what value will be entered when the
values cannot be derived by logic and the stored data. We will show that given
an appropriate incentive, human intelligence can be used to find an effective
ordering for evaluating rules to find good results without exploring the whole
search space.

As a running example, we discuss four variations of a game-style crowd-
sourcing application for extracting structured data from tweets. To show the
potential of the language, some variations are complex: the players (workers)
are asked to not only enter the extraction results, but also to enter extraction
rules to be processed by the machine. Therefore, we obtain the extraction rules
as the result of crowdsourcing. In addition, the obtained rules are used during
the same crowdsourcing process so that the main contributor of the extraction
is gradually changed from humans to the machine. Although there are many
approaches to apply machine learning techniques to find rules [16], there are
many cases wherein we cannot apply machine learning techniques, such as a
case in which the rules are very complex or we need to find rules with a small
set of training data. In such cases, crowdsourcing is a promising approach.

Related Work. There have been many attempts to develop languages for data-
centric crowdsourcing. Most of them are SQL-like languages [6] [19] [21]. Other
approaches to help develop crowdsourcing applications include toolkits (e.g.,
TurKit [15]) and abstractions for crowdsourcing [13][17]. Existing languages
have no explicit component to describe the incentive structure, and how workers
behave is out of their scope.

There are several crowdsourcing systems that introduce the notion of games.
Verbosity [4] is a Game-With-A-Purpose system (GWAP) [2] that collects
common-sense knowledge during gameplay. The ESP Game [1] collects tags for

1 Strictly speaking, the game aspect localizes the code required to define the unit
of games and compute feedback to workers, regardless whether the feedback serves
as a meaningful incentive or not. However, the game aspect helps us analyze and
maintain the incentive structure. Detail is given in Section 4.
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images, wherein each player is shown an image and guesses the tag another
player would enter for the image. Our paper shows that declarative languages
with the game aspect description offer a simple and powerful approach to help
analyze the behavior of the code.

Recently, integration of human and machine computations is a hot issue [9]
[14]. This paper shows that we can use a logic-based formalization to bridge the
gap between human-only and machine-only computations in a unique way.

There have been many attempts to investigate connections between game
theory and logic [12]. Our language is unique in that games are defined in the
code, and that the games are used to not only define the semantics of the code,
but leverage human intelligence to solve problems efficiently. The literature on
algorithmic game theory has addressed various aspects involving both algorithms
and games, such as complexities of computing equilibrium of games [23]. We hope
that results from the area are helpful in discussing computational complexity of
programs involving human activities.

This paper proposes an implementation language for crowdsourcing.
Applying the research results on higher-level issues [7][8] to our language is
an interesting challenge. Aspect oriented programming were first introduced in
[11]. Applying various results on AOP to our context, such as finding aspects
(in our case, games) in the early stages of software development [25], is also our
interesting future work.

Summary of Contributions. First, we introduce a declarative framework that
supports the game aspect. The game aspect not only makes it easier to analyze
and maintain the incentive structures, it gives a principled model of the fusion
of human and machine computations. Second, with a running example, we show
that the game aspect allows us to easily apply game theory to prove some proper-
ties of complex crowdsourcing applications. We believe that this is an important
first step to discuss the semantics of the code involving human behavior, although
the assumption that workers are rational is not always true. We also conducted
experiments with a real set of data. The results show that appropriately designed
complex crowdsourcing applications obtain good results, especially in terms of
the quality of data extraction rules. The results are consistent with the results
of theoretical analysis using the game aspect.

2 Running Example: TweetPecker

As a running example, we explain TweetPecker [18], a game-style Web applica-
tion to crowdsource extracting structured data from a set of tweets to populate
a relation.

Figure 1 shows the dataflow in TweetPecker. It takes as inputs (1) a set
of tweets and (2) the relation (table) schema St(tw,ai,as,...,an) to store
extracted values (Figure 1(1)) where tw is a mandatory attribute to store tweets,
and a;s are attributes to store values extracted from the tweet tw. Then, Tweet-
Pecker shows workers each tweet one by one and asks them to enter values
for attributes a;s for the tweet. Each result is represented as a tuple (row)
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Fig. 1. Overview of TweetPecker Fig. 2. Interface for entering values (top)

entering extraction rules (bottom)

and inserted into the Output relation (Figure 1(2)). Workers receive feedbacks
(Figure 1(3)) according to their inputs.

We can design variations of TweetPecker by changing what workers do and
how they receive feedback. The following are four variations of TweetPecker:
VE, VE/I, VRE, and VRE/I.

(1) Value-Entry (VE) crowdsources workers directly extracting values from
tweets. Figure 2 (top) is the interface for workers. In VE (and VE/I we explain
next), the radio buttons in Figure 2 (¢) do not appear. In VE, the player (worker)
is given a tweet “It rains in London” (Figure 2 (a)) and is asked to enter values
for weather and place attributes into the text form (Figure 2 (b)). If she enters
the values, the next tweet shows up. Each attribute value of an Output tuple is
determined when two distinct workers give the same value. Each worker receives
a fixed score (e.g., 1) whenever she performs a task regardless of the entered
value.

(2) Value-Entry with Incentive (VE/I) is the same as VE except that
workers receive positive scores only if their entered values match with each other
(Section 4 for details).

(3) Value-Rule-Entry (VRE) allows workers to not only directly extract
values from tweets but give extraction rules to be used by the machine with the
interface in Figure 2 (bottom) (Section 5.1).

(4) Value-Rule-Entry with Incentives (VRE/I) is the same as VRE except
that workers receive scores according to their behaviors (Section 5.2).

3 CyLog

CyLog [18] is an executable abstraction for crowdsourcing. It is a rule-based
language whose syntax is similar to Datalog. CyLog is adopted by Crowd4U [27],
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rules: Prel: TweetOriginal(tw:"It rains in London", loc:"London");
Pre2: ValidCity(cname:"London"); Pre3: Tweet(tw) <-
TweetOriginal (tw, loc), ValidCity(cname:loc); Pre4: Worker(pid:1,
name:"Shun"); Pre5: Worker(pid:2, name:"Ken");

VE1: Input(tw, attr:"weather", value, p)/open[p] <- Tweet(tw), Worker(p);
VE2: Output(tw, weather:value) <- Input(tw, attr:"weather", value, p:pl),
Input(tw, attr:"weather", value, p:p2), pl!=p2;

Fig. 3. Fragment of a CyLog program

an open crowdsourcing platform being developed and operated by universities.
Crowd4U is similar to Amazon Mechanical Turk but workers (most of them are
students and faculty members of universities) perform tasks voluntarily. This
section first summarizes the basics of CyLog. Then, it explains the code for VE,
the simplest variation of TweetPecker.

Overview. The basic data structure in CyLog is a relation, which is a table to
deal with a set of tuples that conform to the schema of the relation. A program
written in CyLog consists of four sections. The schema section describes the
schema of relations. The rules section has a set of rules each of which fires (is
executed) if its condition is satisfied. The views section describes the interface
with workers in HTML (e.g., the ones in Figure 2). The games section describes
the game aspect of the program (Section 4). In the following discussions, we
explain only the rules section and the games section. The schema and views
sections are straightforward and we assume that they are appropriately given.

Facts and Rules. The main component of a CyLog program is the set of
statements written in the rules section. Figure 3 shows a set of statements,
each of which is preceded by a label for explanation purposes. A statement is
either a fact or a rule. In the figure, Prel, Pre2, Pre4, and Preb are facts, and
Pre3, VE1, VE2 are rules. A rule has the form of head «— body. Each fact or
head is given in the form of an atom, while each atom consists of a predicate
name (e.g., Tweet) followed by a set of attributes (e.g., loc). Optionally, each
attribute can be followed by a colon with a value (e.g., : "London") or an alias
name (e.g., :pl). Each body consists of a sequence of atoms.

A fact describes that the specified tuple is inserted into a relation. For exam-
ple, Prel is a fact that inserts a tuple whose values for attributes tw and loc
are ‘ ‘It rains in London’’ and ‘‘London’’ into relation TweetOriginal?.

A rule specifies that, for each combination of tuples satisfying the condition
specified in the body, the tuple described in head is inserted to a relation. Atoms
in the body are evaluated from left to right and variables are bound to values
that are stored in the relation specified by each atom. For example, Pre3 is
a rule that inserts a tuple having a tweet tw into relation Tweet if tw is in
the TweetOriginal and its location is a valid city contained in ValidCity. In
other words, for each combination of a tuple in TweetOriginal and a tuple in

2 CyLog adopts the named perspective [3] which means that variables and values in
each atom are associated to attributes by explicit attribute names, not by their
positions in the attribute sequence.



8 S. Fukusumi et al.

ValidCity whose loc attributes match to each other, it inserts a tuple having
tw value into relation Tweet.

Open Predicates. CyLog allows predicates to be open, which means that the
decision as to whether a tuple exists in the relation or not is performed by
humans when the data cannot be derived from the data in the database. For
example, the head of VEL1 is followed by /open and is an open predicate. If a
head is an open predicate, CyLog asks humans to give values to the variables
that are not bound to any values in the body (e.g., value in VE1)3. Optionally,
each /open can be followed by [..] (e.g., [p]) to specify the worker CyLog
asks for the values through the interface. Therefore, VE1 means that for each
combination of a tweet tw and a worker p, the code asks the worker p to enter
a value for the value attribute.

Evaluation Order. Each rule fires when its condition is satisfied. If more than
one rule are ready to fire at the same time because all of their body conditions
are satisfied, logic cannot determine in which order the rules should be executed.
As with many languages, CyLog evaluates all such rules with a default ordering
if the rules have no open predicates: a rule that appears earlier in the code with
tuples appearing at earlier rows in relations is given higher priority. However,
evaluation of any rule with an open predicate is suspended until a worker enters
values for the open predicate, even if its body condition is satisfied. This allows
workers to determine which rule to or not to fire, under the control by the
incentive mechanism we explain in Section 4.

Block Style Rules. Each rule P < Py, P», ..., P, can be written in the block
style PL{Px{...{P,{P;}...}. For example, Pre3 in Figure 3 can be written as:
TweetOriginal(tw, loc) {

ValidCity(cname:loc) {

Tweet (tw) ;

}
}
where Tweet (tw) is the head of the rule. The block style provides a concise
expression when we have many rules that have the same body atoms, because
we can write more than one atom inside each bracket (e.g., Pi{Ps; Ps;} for
Py — Py; Py — Pp3).

Value-Entry: A Variation of TweetPecker. The code in Figure 3 imple-
ments VE. we assume that the relation generated by TweetPecker is Output (tw,
weather)*. Prel to Pre3 construct a set of tweets. Pre4 and Pre5 define two
workers. VE1 and VE2 implement the essential part of VE. VE1 asks the two
workers to extract values for attribute weather from tweets (there is only one
tweet in the code) and generates tuples for relation Input, an intermediate rela-
tion to store the workers’ inputs. The omitted code in the view section shows

3 If all variables in the head are bounded to values in the rule body, CyLog asks
workers whether the tuple should exist in the relation.

4 For simplicity, we deal with only one attribute for extracted values. It is straightfor-
ward to deal with more than one attribute.
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Fig. 4. Payoff matrix for a game and its extensive form

workers the tweet (Figure 2(a)) and the text input form (Figure 2(b)). VE2
states that if two different workers enter the same value for weather attribute
of the same tweet, the agreed value is stored in the Output.

4 Game Aspect

Semantics of Open Predicates. Open predicates make it difficult to define
the semantics of the code. First, we have no clue on what value each worker
gives for open predicates. Second, the order in which we evaluate rules with
open predicates is undefined. CyLog introduces a mechanism to support for
describing the incentive structure at the language level to give the code a clear
semantics using game theory.

The idea is to model the incentive structure as “games” in which the behav-
iors of players (workers) determine payoffs to them. We use VE/I (Section 2)
to explain this concept. VE/I can be seen as having a collection of games, each
of which is associated to one tweet: In each game, a tweet is shown to players,
and each player is required to predict a term to represent the weather written
in the tweet, which others would give for the same tweet. If two players give the
same term, the players are rewarded, and the matched term will be stored into
Output as the value of the weather attribute of the tuple for the tweet.

In game theory, a game is often written as a payoff matriz; Figure 4 (left)
shows a part of the payoff matrix of the game (only two terms are shown in
the matrix). The Y and X axis show the possible actions of Player A and B,
respectively. The matrix shows that each player can enter fine or rainy for
a given tweet. It also describes how payoffs are given to players. In each cell,
(v1, v2) means that Players A and B receive v; and vy as their payoffs when they
choose the actions on the X and Y axes. In the game, if they give the same term,
they receive the payoffs. Such an incentive structure is known as a coordination
game [24] in game theory.

Figure 4 (right) illustrates the same game in a tree style called the extensive
form [24]. Each path from the root to a terminal node corresponds to each cell in
the payoff matrix and represents a possible play of the game. The leaf nodes are
associated with payoffs to the players. The dotted circle means that the player B
does not know the choice Player A took for her action. Then, we can define the
semantics of open values as actions in the solutions of the game, which are the
paths taken by rational workers. For example, the solution of the game in Figure
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games:
VEI(tw,attr){ // Skolem function
/* Path definition */
VEI1: Path(action:["value",value],player:p)
<- Inputs(tw,attr,value,p);
/* Payoff definition */
VEI2: Path(action,player:pl),
Path(action,player:p2),

pit=p2 { [Order[Date [Player[Action |
VEI2.1: Payoff [pl+=1,p2+=1] 1 10:10am|Kate ["value", "fine"]
} ¥ 2 10:11am|Pam ["value", "rainy"]
3 10:12am|Ann ["value", "fine"]
Fig. 5. Game aspect of VE/I Fig. 6. Path table

4 (right) is the paths in which the players provide the same term (bold lines),
because the best strategy for them is to choose the same one that the other
player would choose. To compute the payoff values for them, it is important to
maintain the information on the path in each game play.

Separation of Concerns by the Game Aspect. If we write code to maintain
paths of the game and to compute payoffs to players in existing programming
languages, the code fragments related to the games are implicitly encoded in
many different places in the code. Therefore, analyzing and changing the incen-
tive structure will be a cumbersome task. As our example will show, the incentive
structure is often complicated, which makes it almost impossible to analyze and
maintain the incentive structure.

An important principle in software development is the separation of concerns.
We propose the game aspect, which separates the code for the incentive structures
from the other logic encoded in the program, by allowing the code to be localized
and described in terms taken from game theory. Therefore, the game aspect
makes analyzing and maintaining the incentive structure easy.

Figure 5 shows the game aspect of VE/I. The whole code for VE/I is the
combination of the rules section (Figure 3) and the game aspect. Therefore, the
code clearly shows that VE/I is the same as VE except its incentive structure.

A game aspect consists of three parts: a Skolem function, the path definition,
and the payoff definition.

1. Skolem Function. The first line has a function named a Skolem function to
create a game for each specified parameters. Intuitively, it defines the unit of
games. For example, VEI (tw,attr) creates a VEI game for each combination
of a tweet and one of its attributes (e.g., weather). We call each game a game
instance.

For each game instance, a special table called a path table is automatically
constructed (Figure 6). The path table maintains the path (i.e., a line from the
root to a leaf in Figure 4 (right)) of the play of the game instance to show how the
game reached the last state. Its schema is Path(QOrder,Date,Player,Action),
where each tuple records when and who took what action on the executed path.
Figure 6 shows an example of the path table. Here, ["value",value] is a list
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Fig. 7. VRE and VRE/I

containing two strings, which means that the action is to enter value for the
“value” attribute.

2. Path Definition. The rule whose head is Path (i.e., VEI1) supplies tuples
inserted to the path table of a game instance created for the parameters of the
Skolem function (i.e., a combination of tw and attr). VEI1 states that the inputs
to the value attribute of the relation Inputs are inserted into the table to be
recorded as actions of players.

3. Payoff Definition. The rule whose head is Payoff (i.e., VEI2 to VEI2.1. Note
that VEI2.1 is the head in the block style rule) computes the payoffs to play-
ers. Payoff is a relation that maintains payoff values to players. The head
Payoff [pl+=1, p2+=1] is a syntactic sugar of a rule to update the values of
payoffs for players (we can write rules without the syntactic sugar by writing a
more complicated rule). The rule implements the same game as that in Figure 4
except that it extends the payoff matrix with an infinite number of players and
terms (values).

Value-Entry with Incentive (VE/I). To summarize, the combination of the
codes in Figures 3 and 5 implements VE/I. Each VRI game is instantiated for
each combination of a tweet and an attribute. If people behave rationally, it is
expected that values are computed by the solution of the coordination game.
Assume that we have the path table shown in Figure 6 for a game instance,
which was constructed by the game aspect in Figure 5. Then, the payoff values
for Kate, Pam, and Ann, are 1, 0, and 1, respectively, because Kate and Ann agreed
on the value. The players can see their accumulated payoff values as the scores
shown in the screen (the code is omitted) (Figure 1(3)).

5 Complex Crowdsourcing

5.1 Value-Rule-Entry (VRE)

In contrast to VE and VE/I, VRE allows each worker to take two types of actions
in arbitrary order (Figure 7):
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rules:

VRE1: Rules(cond,attr,value,p)/openlp]l <- Workers(p);

VRE2: Extracts(tw,attr,value,rid) <- Tweets(tw), Output(tw,weather:null),
Rules(rid,cond,attr:"weather",value),
matches(cond, tw);

VRE3: Tweets(tw), Workers(p){

VRE3.1: Inputs(tw,attr:"weather",value, p)/open([p];
VRE3.2: Inputs(tw,attr,value,p)/open[p]l <- Extracts(tw,attr:"weather",value);
}
VRE4: Output(tw, weather:value) <- Inputs(tw,attr:"weather",value,p:pl),
Inputs(tw,attr:"weather",value,p:p2), pl!=p2;

Fig. 8. The code for VRE

Action 1: directly enter values extracted from tweets as in VE and VE/I. The
default interface of VRE is the same as that for VE (Figure 2 (top)) in which
the worker takes Action 1, except that it shows workers the candidate values
extracted by the machine (Figure 2(c)).

Action 2: give extraction rules to be used by the machine. If the worker chooses
to take Action 2, the interface is changed to the one shown in Figure 2 (bottom),
in which she enters extraction rules. We allow regular expressions in the condition
part.

The entered rules are used by the machine to extract values from the tweets
whose values have not been determined yet. The values extracted from a tweet by
the machine using the extraction rules are shown to other workers who are taking
Action 1, as possible candidates for attribute values of the tweet (Figure 2(c)).
This allows the workers to choose a shown value, instead of directly extracting
and typing values in the text input form in Figure 2 (b).

Note that workers take Actions 1 and 2 in arbitrarily order. As we will explain
in Section 5.1, the two actions are implemented by two independent CyLog
rules with open predicates. And as explained in Section 3, the rules with open
predicates are suspended until workers enter values, even if the both rules are
ready to fire (i.e., logically, they have the same priority in the evaluation order).
Therefore, the order of user’s taking actions determines the order of evaluating
such rules. Here, we want to utilize the intelligence of workers, because we expect
that workers are able to determine whether they should directly extract values
or enter extraction rules for future tweets, for efficient extraction of values. We
will be back to this issue in Section 5.2.

Extraction Rules. In VRE, workers enter extraction rules in an HTML form
(Figure 2 (bottom)). Logically, each extraction rule is a triple ( condition, attribute,
value). It means that if a tweet matches with the condition, the value of attribute
will be value. For example, extraction rule (“clear”, “weather”, “sunny”) means
that if a tweet contains “clear”, the value of weather will be “sunny”.

CyLog Description. Figure 8 is the CyLog code for VRE. We assume that
we already have valid tweets and workers. Compared to the code of VE (Figure
3), Figure 8 has two additional rules for relations Rules (VRE1) and Extracts
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(VRE2). However, VRE3 and VRE4 are similar to VE1 and VE2, respectively.
Details are shown below.

VRE1. The rule asks workers to enter extraction rules. The Rules relation
maintains the extraction rules entered by workers. Its schema is Rules(rid,
cond, attr, value, p). Here, we have two additional attributes for manage-
ment purposes: rid is an auto-increment key and p is the worker who entered
the rule.

VRE2. The rule extracts a value if Output records no value for the weather
attribute of a tweet tw and there is an extraction rule that matches with the
tweet. Relation Extracts(tw, attr, value, rid) records the values extracted
by the machine. Each tuple records the fact that an extraction rule with id rid
extracted value as the value for attribute attr of tweet tw. In the omitted
schema section, we define the key of the Extracts as a combination of tw, attr,
value attributes. Hence the machine can extract value for an attribute attr of
a tweet tw only once.

VRES3. The rule from VRE3 to VRE3.1 is the same as VE1 except that it is
written in the block style. The rule from VRE3 to VRE3.2 deals with the case
wherein the machine extracted a value and shows it in the interface in Figure 2
(c): if Extracts has a tuple that records value for “weather” attribute of tw,
we ask the worker if the value is correct or not.

VREA4. This is the same as VE2.

5.2 Value-Rule-Entry with Incentives (VRE/I)

In VRE, there was no theoretical guarantee that the workers use their intelligence
to take actions so that the results are generated efficiently and effectively, and
we left the results up to fate. VRE/I is a solution to the problem. It is the same
as VRE but implements the VREI game that defines the incentive for workers
that affects workers’ decision on how to interleave and take Action 1 (encoded
as VRE3) and Action 2 (encoded as VREL).

Incentive Structure of VRE/I. The incentive structure for VRE/I is as
follows:

Payoffs related to Action 1: As with VE/I, the worker receives w; if she
entered a value for a tweet in the interface in Figure 2 (top) and the value
matched with the value entered by another worker. Note that if the machine
used extraction rules to extract values for the tweet, candidate values show up
as in Figure 2 (c). Regardless which interface the worker uses ((b) or (c)), she
receives payoffs if another worker gives the same value. We call this payoff 1.

Payoffs related to Action 2: The worker receives ws if all of the following con-
ditions hold: (1) she enters an extraction rule in the form of Figure 2 (bottom),
(2) the machine uses the extraction rule to extract a value for a tweet, and (3)
the value is adopted as an agreed value by two other workers with the interface
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in Figure 2 (top). We call this payoff 2a. If there are more than one worker that
satisfy the conditions above, the worker who entered the extraction rule earliest
receives wy. However, she loses ws if the value extracted by her extraction rule
is not adopted as an agreed value. We call this payoff 2b.

In VE/I, we defined one game for each combination of a tweet and an
attribute. However, the incentive structure of VRE/I involves all tweets and
extraction rules in the process. Therefore, we cannot divide VRE/I into many
small independent game instances. Instead, we define only one game for VRE/I
as explained below.

CyLog Description. Figure 9 shows the game section of VRE/I (the rule
section is the same as that of VRE in Figure 8). Note that since VREI has no
parameter, there is only one VREI game instance in VRE/I.

As the incentive structure of VRE/T contains that of VE/I, the game aspect
VREI naturally contains that of VEI. In the path definition, VREI1 is the same as
VEI1 except that each action records tw and attr, which are used to differentiate
the action from the ones for other tweets. We need to do so because VREI has
only one game instance for all tweets and attributes. In the payoff definition, the
rule from VREI3 to VREI 3.1 is the same as the rule from VEI2 to VEI2.1, and
computes payoff 1.

Other lines deal with the case where extraction rules are involved. In the
path definition, VREI2 means that the path table records an action if a worker
enters an extraction rule. In the payoff definition, the rules VREI3 and VREI3.2
implement payoff 2a: if a worker entered an extraction rule to extract a value
and other two workers agreed on the value, she receives wq. Similarly, the rules
VREI3 and VREI3.3 implement payoff 2b.

Note that in VREI3.2, the key of Extract relation is a combination of tw,
attr and value. As explained in Section 3, the evaluation priority of CyLog rules
guarantees that the extraction rule entered earliest will be used for extracting the
value. Therefore, payoff is given to the worker who entered the first extraction
rule that extracted value for attr of tw.

6 Theoretical Analysis

Since the game aspect directly describes the incentive structure embedded in the
program using the terms of game theory, it is easy to analyze the game aspect of
the code. Moreover, it is easy to change the incentive structure because the game
aspect is separated from other logic. In this section, we prove two theorems on
properties of VRE/I, which we cannot guarantee to hold without an appropriate
incentive structure. We can prove the theorems easily by looking at the code
in the game aspect. Due to the space limitation, the complete proofs are given
in [26].

Theorem 1. (Data Quality) Let p1 be a worker of VRE/I who enters an extrac-
tion rule. Let ps and p3 be workers who enter values for an attribute of a tweet
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games:
VREI(){ /* Skolem function */ Proper Payoffs of Expected Payoffs of
/* Path definition */ N oy, PPubs PP Ps
VREI1l: Path(action:["value",tw,attr,value], player:p) 1 — @33). (LB2LL0)= (8)
<- Inputs(tw,attr,value,p);

VREI2: Path(action:["rule",rid], player:p) <- Rules(rid,p);
/* Payoff definition */

VREI3: Path(action:["value",tw,attr,value],player:p2),
Path(action: ["value",tw,attr,value] ,player:p3),

0,0,0) (0,0,0)

(0,0,0) (0,0,0)

p21=p3 { o s / (-1,33) (-0.1,0.3,03) - (B)
VREI3.1: Payoff [p2+=w1l,p3+=wl];
VREI3.2: Payoff [p1+=w2]

<- Extracts(tw,attr,value,rid), T ps ) (133) (0927.2.7) - (&)

Path(action: ["rule",rid], player:pl),
pl!=p2, pl!=p3;
VREI3.3: Payoff [p1-=w3]
<- Extracts(tw,attr,value:vl,rid),
Path(action: ["rule",rid], player:pl),

1= 1= 1= .
- vit=value, pi!=p2, p1!=p3; L —(233) (020303)--- (B)

(0,0,0) (0,0,0)

(0,0,0) (0,0,0)

Fig. 9. Game aspect of VRE/I Fig. 10. Game tree of VRE/I

for which the extraction rule extracted an value. Then, if the workers behave
rationally, all of them enter correct extraction rules or values.

Proof Outline. From the game aspect of VRE/I, we can easily develop the game
tree for VREI (A fragment of the game tree is shown in Figure 10 with expected
payoffs for workers). A simple game-theoretic analysis proves the theorem
holds. |

Theorem 2. (Termination) VRE/I terminates if the number of tweets is finite.

Proof outline. In VREI3.2 of the game aspect, payment is given to only the
worker who entered the first extraction rule that extracted value for attr of tw,
because the key attributes of Extract are tw, attr and value. Thus, the number
of extraction rules that yield payoffs is finite and rational workers eventually stop
entering rules. O

7 Experiment

We conducted an experiment to compare the four variations of TweetPecker.
Workers in our experiment were basically diligent and their extracted values
were generally good in the quality even with variations without incentives for
good data quality (i.e., VE and VRE). This is not surprising, because the theo-
rem 1 does not guarantee that workers without incentives generate bad-quality
data. However, an interesting finding is that even for such diligent workers, the
incentive structure heavily affected the quality of extraction rules and workers’
behavior, as supported by theorems 1 and 2. The result suggests that giving
workers an appropriate incentive structure improves data quality. The compari-
sion of this approach and other approaches such as training workers is an inter-
esting issue but is out of the scope of this paper.

Due to the space limitation, we cannot show all results of our experiments
and detailed analysis. The complete set of results is given in [26].
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Table 1. Quality of acquired data

| Technique | VE] VE/I[ VRE|VRE/]]
Correct 73.5%(72.2%|71.2%| 72.0%
A: Agreed values|Incorrect 6.7%| 7.9%| 7.2%| 7.6%
Neither 19.8%(19.9%(21.6%| 20.4%
B: Average confidence of rules - -160.9%| 77.0%
C: Average support of rules - -12.711%| 6.32%

Method. In the first phase, we recruited four sets of five workers, and told
each set of workers to work for one of VE, VE/I, VRE, and VRE/I. We used a
common set of tweets as explained below. Each variation terminates when all of
attribute values for all tweets are determined.

In the second phase, we asked an independent set of three persons to evaluate
the quality of the extracted (agreed) attribute values. This phase was performed
off-line. They discussed the quality of each value to classify it to one of “correct”,
“incorrect”, and “neither” groups (Row A of Table 1).

Data. We collected tweets tweeted for a successive 16 days in 2013 with the
tag “#tenki” (Japanese word to denote the weather). The number of tweets was
463. The relation schema was defined as Output (tw, weather, place).

Quality of Generated Attribute Values and Extraction Rules. As Row
A of Table 1 shows, the quality of data generated by the four variations are
almost the same and the difference is not significant in statistics. The reason is
that the workers are university students, and they are relatively reliable even
without the incentive for improving the quality of their work.

However, an interesting fact was that even if they are reliable workers who
work diligently without an incentive that is connected to the quality of their
work, the quality of extraction rules became much better with an appropri-
ate incentive structure. Given an extraction rule r;, we compute the confidence
(conf;) and support (sup;) for r; and compared them to each other. Here, con f;
and sup; are defined as follows:

__ F#tweets matched with r;

#agreed values )
Supi #all tweets

#values extracted by r;

conf; =

Rows B and C of Table 1 shows that the average confidence and support for
VRE/TI are clearly higher than those for VRE. In fact, our statistical analysis
shows that the differences are significant at the 0.01 significance level, assuming
that population variances of VRE and VRE/I are the same in computing con f;
and sup;.

Workers’ Behavior. For the detailed analysis, we examined the log of actions
to compare the workers’ behavior in both VRE/I and VRE. Figure 11 has two
graphs each of which visualizes the behavior of workers for VRE or VRE/I. In
each graph, the X axis is the completion rate of extracting attribute values from
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100%
80%

60%

Breakdown of agreed values
Breakdown of agreed values

IO )
N :
40% L A 40%: AN N D \
, Y X D
20% : 20% N
0% sitbl R R R R 0% s Ry P
B T T T T S N NI NN s gl o sl do s s S s (e
VIV L AN L AP P ST 0
N} S S S S PP SN Y~ SIS P A S A
Completion rate of extracting attribute values Completion rate of extracting attribute values

Fig. 11. Breakdown of agreed values into entered and selected values

all the tweets. The Y axis shows the breakdown of agreed values: whether each
agreement was on entered values or on selected values. If we compare the two
graphs, we can see that the percentage of agreement on selected values (i.e., the
percentage of the values extracted by the machine, out of all adopted values) is
clearly higher in the early stages in VRE/I.

We examined the log of actions in more detail [26]. Then, we found that
workers in VRE/T took the strategy that they enter high-quality extraction rules
in earlier stages to try (1) to maximize the number of values extracted by the
rules and agreed by workers and (2) to obtain more payoff by taking Action 1
in later stages, instead of entering extraction rules that they cannot expect to
give them much payoff. The strategy is consistent with Theorems 1 and 2, and
in fact, generated high-quality extraction rules.

8 Conclusion

This paper introduced a declarative language that supports the game aspect
for data-centric crowdsourcing. With a running example, we showed that the
game aspect not only makes it easier to maintain and analyze the code using
game theory, but gives a principled model of the fusion of human and machine
computations. In addition, we showed experimental results with a real data
set. The results are consistent with the results of the theoretical analysis, and
showed that appropriately designed complex crowdsourcing applications obtain
good results.
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