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Abstract. Performing face recognition across 3D scans of different reso-
lution is now attracting an increasing interest thanks to the introduction
of a new generation of depth cameras, capable of acquiring color/depth
images over time. However, these devices have still a much lower resolu-
tion than the 3D high-resolution scanners typically used for face recogni-
tion applications. Due to this, comparing low- and high-resolution scans
can be misleading. Based on these considerations, in this paper we define
an approach for reconstructing a higher-resolution 3D face model from
a sequence of low-resolution 3D scans. The proposed solution uses the
scaled ICP algorithm to align the low-resolution scans with each other,
and estimates the value of the high-resolution 3D model through a 2D
Box-spline approximation. The approach is evaluated on the The Flo-
rence face dataset that collects high- and low-resolution data for about
50 subjects. Measures of the quality of the reconstructed models with
respect to high-resolution scans and in comparison with two alternative
techniques, demonstrate the viability of the proposed solution.
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1 Introduction

Person identity recognition by the analysis of 3D face scans is attracting an
increasing interest, with several challenging issues successfully investigated, such
as 3D face recognition in the presence of non-neutral facial expressions, occlu-
sions, and missing data [1,2]. Existing solutions have been evaluated follow-
ing well defined protocols on consolidated benchmark datasets, which provide
a reasonable coverage of the many different traits of the human face, including
variations in terms of gender, age, ethnicity, occlusions due to hair or external
accessories. The resolution at which 3D face scans are acquired changes across
different datasets, but it is typically the same within one dataset. Due to this,
the difficulties posed by considering 3D face scans with different resolutions and
their impact on the recognition accuracy have not been explicitly addressed
in the past. Nevertheless, there is an increasing interest for methods capable
of performing recognition across scans acquired with different resolutions. This
is mainly motivated by the availability of a new generation of low-cost, low-
resolution 4D scanning devices (i.e., 3D plus time), such as Microsoft Kinect
or Asus Xtion PRO LIVE. In fact, these devices are capable of a combined
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color-depth (RGB-D) acquisition at about 30fps, with a resolution of 18ppi
at a distance of about 80cm from the sensor. The spatial resolution of such
devices is lower than that of high-resolution 3D scanners, but these latter are
also costly, bulky and highly demanding for computational resources. Despite the
lower resolution, the advantages in terms of cost and applicability of consumer
cameras motivated some preliminary works performing face detection [3], con-
tinuous authentication [4] and recognition [5–7] directly from the depth frames
of the Kinect camera. However, based on the opposite characteristics evidenced
by 4D low-resolution and 3D high-resolution scanners, new applicative scenarios
can be devised, where high-resolution scans are likely to be part of gallery acqui-
sitions, whereas probes are expected to be of lower resolution and potentially
acquired with 4D cameras.

In this context, reducing the impact on the recognition accuracy due to the
match of low-resolution probes against high-resolution gallery scans is relevant,
but an even more challenging task with potentially wider applications is given
by the reconstruction of one super-resolved face model out of a sequence of low-
resolution depth frames acquired by a 4D scanner. In fact, this could open the
way to more versatile 3D face recognition methods deployable in contexts where
the acquisition of high resolution 3D scans is not convenient or even possible.
Based on these premises, in this work we aim to provide an effective approach
specifically tailored to reconstruct a higher-resolution face model from a sequence
of low-resolution depth frames, thus capable of reducing the gap between low-
and high-resolution acquisitions.

1.1 Related Work

Methods to recover one high-resolution image from a set of low-resolution images
possibly altered by noise, blurring or geometric warping, have been formerly
introduced for 2D still images [8–12], and go under the term of super-resolution.

Super-resolution techniques have been also applied to 3D generic data
[13,14]. Previous work that focus in particular on super-resolution of 3D faces
are reported in [15,16]. In [15], high resolution 3D face models are used to learn
the mapping between low-res data and high-res data. Given a new low-res face
model the learned mapping is used to compute the high-res face model. Differ-
ently, in [16] the super-resolution process is modeled as a progressive resolution
chain, whose features are computed as the solution to a MAP problem. However,
in both the cases, the framework is validated just on synthetic data.

Methods in [17,18] and [19] approach the problem of noise reduction in depth
data by fusing the observations of multiple scans to construct one denoised scan.
In [17], the Kinect Fusion system is presented, which takes live depth data from
a moving Kinect camera and creates a high-quality 3D model for a static scene
object. Later, dynamic interaction has been added to the system in [20], where
camera tracking is performed on a static background scene and the foreground
object is tracked independently of camera tracking. Aligning all depth points
to the complete scene from a large environment (e.g., a room) provides very
accurate tracking of the camera pose and mapping [17]. However, this approach



Increasing 3D Resolution of Kinect Faces 641

is targeted to generic objects in internal environments, rather than to faces.
In [18], a 3D face model with an improved quality is obtained by a user moving
in front of a low resolution depth camera. The model is initialized with the first
depth image, and then each subsequent cloud of 3D points is registered to the
reference one using a GPU implementation of the ICP algorithm. This approach
is used in [19] to investigate whether a system that uses reconstructed 3D face
models performs better than a system that uses the individual raw depth frames
considered for the reconstruction. To this end, authors present different 3D face
recognition strategies in terms of the used probes and gallery. The reported anal-
ysis shows that the scenarios where a reconstructed 3D face model is compared
against a gallery of reconstructed 3D face models, and where one frame (1F)
is compared against multiple frames in the gallery (NF), provide better results
compared to the baseline 1F-1F approach. Although the method is not con-
ceived to increase the resolution of the reconstructed model with respect to the
individual frames, it supports the idea that aggregating multiple observations
enhances the signal to noise ratio, thus increasing the recognition results with
respect to the solution where a single frame is used. In [21], a method to increase
the resolution of the face scans acquired with a Kinect is proposed. The method
is based on ICP registration on the first frame of the sequence and subsequent
points approximation, but results are quite preliminary and no evidence that
the approach is indeed capable of producing a super-resolution is provided.

1.2 Our Method and Contribution

In this paper, we present an original solution to derive one super-resolution 3D
face model from the low-resolution depth frames of a sequence acquired through
a Kinect camera. In the proposed approach, first, the region containing the face
is automatically detected and cropped in each depth frame; then, the face of
the first frame is used as reference and all the faces from the other frames are
aligned to the reference; finally, the aggregated data of these multiple aligned
observations are resampled at a higher resolution and approximated using 2D-
Box splines. The proposed approach has been evaluated on the The Florence
face dataset, which includes, for each individual, one Kinect depth sequence and
one high-resolution face scan acquired through a 3dMD scanner. In summary,
the main contributions of this paper are:

– A complete approach to reconstruct a super-resolved 3D face model from
a sequence of low-resolution depth frames of the face, with the proof the
proposed approach is capable of producing a super-resolved 3D model rather
than just a denoised one;

– An evaluation demonstrating the accuracy of the reconstructed super-
resolved models with respect to the high-resolution scans, and in comparison
to two alternative solutions.

The rest of the paper is organized as follows: The problem statement and
the basic notation are defined in Sect. 2; The super-resolution approach based
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on facial data approximation is described and validated in Sect. 3. Experimental
results are reported and discussed in Sect. 4. Finally, discussion and conclusions
are given in Sect. 5.

2 Problem Statement

In this work, we aim to reconstruct a depth image of the face (image for short),
which shows both super-resolution and denoising, starting from a sequence
of low-resolution depth frames (frames in the following). In particular, low-
resolution frames are acquired by a Kinect camera placed in front of a sitting
subject, while s/he is slightly rotating the head to the left and right side. In
Fig. 1(a), a sample depth frame is shown. The face region is cropped in each
frame by using the Face Tracking function available in the device SDK, as shown
in Fig. 1(b).

(a) (b)

Fig. 1. (a) Sample depth frame acquired by the Kinect; (b) Some cropped frames from
the sequence, with the pose of the face varying from frontal to right and left side

To simplify the notation and without loss of generality, we assume that each
frame is defined on a regular low-resolution grid Ω = [1, . . . , N ] × [1, . . . , N ].
The high-resolution image is defined on a regular high-resolution grid Σ =
[1, . . . , M ] × [1, . . . ,M ], being ζ = M/N the resolution gain. The forward degra-
dation model, describing the formation of low-resolution frames from a high-
resolution image can be formalized as follows:

X
(k)
L = Pk(XH), k = 1, . . . , K , (1)

being {X
(k)
L } the set of K low-resolution frames, XH the high-resolution image,

and Pk the operator that maps the high-resolution image onto the coordinate sys-
tem and sampling grid of the k-th low-resolution frame. The mapping operated
by Pk accounts mainly for the geometric transformation of XH to the coordi-
nates of the k-th low-resolution frame X

(k)
L , the blurring effect induced by the

atmosphere and camera lens, down-sampling, and additive noise. In particular,
we note the coordinate system of the high-resolution image XH is aligned to the
coordinate system of the first low-resolution frame X

(1)
L of the sequence, which

is used as reference. The geometric transformation that maps the coordinate
systems of subsequent low-resolution frames to the first frame of the sequence is
computed with a variant of the ICP algorithm, which jointly estimates the 3D
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rotation and translation parameters as well as the scaling one [22] (this opera-
tion is applied just to the cropped region of the face). The data cumulated by
this process represent a cloud of points in the 3D space, and these points are
regarded as observations of the value of the high-resolution image XH .

Let x(k)
i be the 3D coordinates (x, y and the depth value z) of the i-th facial

point in the k-th frame X
(k)
L . Registration of facial data represented in X

(k)
L

to data represented in the reference frame X
(1)
L is obtained by computing the

translation, rotation and scaling transformation that best aligns the data:

min
R,S,t,p

∣
∣
∣X

(k)
L

∣
∣
∣∑

i=1

∥∥∥R · S · x(k)
i + t − x(1)

p(i)

∥∥∥ , (2)

being R an orthogonal matrix, S a diagonal scale matrix, t a translation vector,
|.| the cardinality of a set, and p :

{
1, . . . ,

∣∣∣X(k)
L

∣∣∣
}

�→
{

1, . . . ,
∣∣∣X(1)

L

∣∣∣
}

a function
that maps indexes of facial points across the k-th and the 1-st frames. The
solution of Eq. (2), namely Rk,Sk, tk, is computed according to the procedure
described in [22].

The ICP algorithm usually requires an appropriate initialization to avoid con-
vergence to local minima. For this purpose, alignment of the generic frame X

(k)
L

to the reference frame X
(1)
L is obtained by first applying to X

(k)
L the transforma-

tion computed for the previous frame X
(k−1)
L . In this way, the transformation of

the (k-1)-th frame is used to predict the transformation of the k-th frame, and
ICP is then used for fine registration.

3 Increasing the Face Resolution

Based on the procedure described so far, data points of the frames X
(k)
L , k =

2, . . . ,K are aligned to the data in the first frame X
(1)
L , used as reference. The

set of all these scattered data points
{
P(j)

}J

j=1
=

{
(P (j)

x , P (j)
y , P (j)

z )
}J

j=1
repre-

sent the observed samples of the underlying face surface, which is approximated
through a function Γ (x, y). This function is defined on a high resolution uni-
form grid Φ compared to the low resolution uniform grid Ω of the reference
frame X

(1)
L . It should be noticed that, under the effect of Eq. (2), data points

are scattered and distributed irregularly with respect to both the high and low
resolution grids Φ and Ω. The approximation model acts as a function Γ (x, y)

that given the set of scattered points
{
P(j)

}J

j=1
that are expected to sample the

2D facial surface in the 3D space, projects them onto a reference plane Π (the
(x, y) plane of the first frame) and then estimates the height of the surface for
a generic point p ∈ Π within the convex hull of the projected set of points (see
Fig. 2). In this way, given the super-resolution uniformly spaced grid Φ in Π,
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Fig. 2. The projection of points of frames in a sequence onto the reference plane asso-
ciated to the first frame distribute irregularly. Estimation of values of the underlying
surface (shown in gray) on a regular grid (blue points) is obtained by computing one
approximating function that fits the data.

it is possible to estimate the value of the 2D facial surface for each point of Φ
enclosed within the convex hull of the projection of the scattered points onto Π.

To estimate the approximating function, the 2D Box-splines model is
used [23]. Accordingly, the approximating function Γ (x, y) is expressed as a
weighted sum of Box splines originated by translation of a 2D base function
B0,0(x, y) with local support. Given a 1D lattice {x−n, . . . , x−1, x0, x1, . . . , xn},
the 1D first degree (C0 continuity) base function b0(t) is defined as:

b0(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if t ∈ (−∞, x−1]
t−x−1

x0−x−1
if t ∈ (x−1, x0]

x1−t
x1−x0

if t ∈ (x0, x1]
0 if t ∈ (x1,∞) .

(3)

The translated copy of the base function, centered on the generic node xi of
the lattice is computed as bi(t) = b0(t − xi). Extension of this framework to the
2D case is possible by considering a 2D lattice {xi,j} and the 2D base function
B0,0(x, y) computed as the tensor product of the 1D base function:

B0,0(x, y) = b0(x)b0(y) . (4)

The translated copy of the base function, centered on the generic node xi,j

of the lattice is computed as Bi,j(x, y) = bi(x)bj(y). Functions Bi,j(x, y) are
continuous and with local support, being zero for all points (x, y) not included
in any of the rectangular cells with one vertex on xi,j . The function Γ (x, y) is
expressed as:

Γ (x, y) =
∑

i,j

wi,jBi,j(x, y) , (5)
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being wi,j the set of weights that yield the best approximation to the points
cloud. In order to determine the values of these weights, two types of constraints
are considered targeting the fit of Γ (x, y) to the data points and the regularity of
Γ (x, y), in terms of continuity and derivability. In the ideal case, Γ (x, y) would
fit all the data points. This constraint is expressed by K equations of the form:

Γ (P (k)
x , P (k)

y ) = P (k)
z k = 1, . . . ,K . (6)

Due to the form of the basis functions (Eqs. (3)-(4)), Γ (x, y) is continuous
everywhere. Since Γ (x, y) is not derivable in correspondence to the points of the
lattice {xi,j}, its smoothness is forced by the following set of equations:

∂+Γ (x, y)
∂x

∣∣∣∣
xij

=
∂−Γ (x, y)

∂x

∣∣∣∣
xij

(7)

∂+Γ (x, y)
∂y

∣∣∣∣
xij

=
∂−Γ (x, y)

∂y

∣∣∣∣
xij

i, j = −n, . . . , n .

The left and right partial derivatives of Eq. (7) can be obtained analytically,
and combined with Eq. (6) represent a system of K + n2 linear equations in
the n2 variables wi,j . Values of the variables wi,j are computed by resolving a
least-squares fit, which minimizes the sum of the squares of the deviations of the
data from the model.

3.1 Resolution Gain

The proposed solution results in a face surface with an increased resolution,
rather than just in a surface denoising. This can be shown considering the ref-
erence frame of a sample sequence in Fig. 3(a), and the reconstruction obtained
from the depth sequence of the same face at different resolutions, namely, 104 ×
157, 207 × 313 and 413 × 625, as reported in Fig. 3(b)-(d), respectively.

Although, in theory, the resolution gain can be set arbitrarily, the interest
lies in the identification of the highest value of the real resolution gain, beyond
which the amount of information encoded in the reconstructed surface does not
change: two reconstructions of a surface at two different resolutions encode the
same information if the reconstruction at the higher resolution can be obtained
by resampling and interpolation of the reconstruction at the lower resolution.
For this purpose, we compare results of the proposed super-resolution approach
with those obtained through resampling and interpolation of data at the original
resolution. Assuming Ω = [1, . . . , N ] × [1, . . . , N ] be the original sampling grid
and Σ = [1, . . . , M ]×[1, . . . ,M ] the super-resolved one, we measure the difference
between the super-resolved model reconstructed on the grid Σ and the predicted
model obtained by reconstructing the face model on the original grid Ω and then
increasing the resolution by resampling up to Σ and predicting values at the new
grid points by bilinear interpolation. More formally, let Fζ be the super-resolved
model at a resolution M = ζN , and R(·) the operator that resamples an image
by bilinear interpolation, doubling the size of the input grid on both the x and
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y axis. The ratio η measures the mean error between the predicted and the
super-resolved model:

η(ζ) =

∑
i,j |R(Fζ−1) − Fζ |

ζ2N2
. (8)

(a) (b)

(c) (d)

Fig. 3. (a) Reference frame of a sequence; (b)-(d) Three models reconstructed at resolu-
tions, respectively, 104×157 (same resolution as the original, just denoising), 207×313,
and 413 × 625

At the lowest value of the resolution gain, ζ = 2, Fζ−1 is the reconstruction of
the facial surface at the original resolution. Resampling this surface by bilinear
interpolation yields R(Fζ−1) whose resolution is twice the original. Fζ is the
output of the super-resolved facial surface at a resolution twice the original
one. Values of η(ζ) are expected to decrease for increasing values of ζ. This is
confirmed by the plot of Fig. 4, showing the values η(ζ) for ζ ∈ {2, . . . , 5}. For
ζ = 2 the error is computed between the bilinearly interpolated reference frame
and the super-resolved model at a resolution twice the original one; For increasing
values of ζ, the difference between the predicted and the reconstructed models
decreases showing that the higher the resolution, the lower is the information
truly added by the super-resolved model compared to the information predicted
by interpolation.

4 Experimental Results

The proposed approach has been evaluated considering the accuracy of the super-
resolution reconstruction, by computing the error between the super-resolved
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Fig. 4. Values of η(ζ) measure the error between the model reconstructed through the
proposed super-resolution approach at the resolution gain ζ, and the prediction (by
bilinear interpolation) based on the model reconstructed at the resolution gain ζ-1

models and the corresponding high-resolution scans (Sect. 4.1). In so doing, we
also compared our approach against two alternative solutions (Sect. 4.2).

The study reported hereafter has been performed on the The Florence face
dataset (UF-S) [24]. Some public datasets exist for face analysis from consumer
cameras, like Kinect (see for example the EURECOM Kinect Face dataset [25],
or the The 3D Mask Attack database specifically targeted to detect face spoofing
attacks [26]). However, to the best of our knowledge the UF-S dataset is the only
one providing sequences of low resolution face scans acquired with the Kinect
camera and high resolution 3D scans, for the same subjects. This dataset enrolls
50 subjects, each with the following data:

– A 3D high-resolution face scan, with about 40,000 vertices. The geometry of
the mesh is highly accurate with an average RMS error of about 0.2mm or
lower, depending on the particular pre-calibration and configuration;

– A video sequence acquired with the Kinect camera. During acquisition the
person sits in front of the sensor at an approximate distance of 80cm. The
subject is also asked to rotate the head around the yaw axis, so that both
the left and right side of the face are exposed to the camera. This results in
video sequences lasting approximately 10 to 15 seconds on average, at 30fps.

The 3D high-resolution scans and the Kinect video sequences are provided
in the form produced by the sensors, without any processing or annotation.
Figure 5 shows samples of the raw data acquired for a subject (RGB frames of
the sequence are also reported, but they are not used in our solution).

4.1 Reconstruction Accuracy

The first evaluation aims to show the error between the reconstructed 3D super-
resolution model with respect to the 3D high-resolution scan of a same subject,
also in comparison to the same measure of error computed between the first
depth frame of a sequence (reference frame) and the 3D high-resolution scan.
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(a) (b)

Fig. 5. Sample of the The Florence face dataset: (a) 3D high-resolution scan; (b) RGB
and depth frames from the Kinect video sequence, with the head pose changing from
frontal to left and right side

Choosing the first frame of a sequence as reference frame is motivated by the
fact that at the beginning of the acquired video sequences, persons sit in front
of the camera looking at it, so that just small areas of the face are not visible to
the sensor due to self-occlusion effects.

(a) reference frame

(b) super-resolution
model

(c) high-resolution scan

(d) error-map: high- vs.
super-resolution

#009 #014 #016 #019

Fig. 6. Each column corresponds to a different subject and reports: (a) The low
resolution 3D scan of the reference frame; (b) The super-resolution 3D model; (c) The
high-resolution 3D scan. The error-map in (d) shows, for each point of the super-
resolution model, the value of the distance to its closest point on the high-resolution
scan after alignment (distance increases from red/yellow to green/blue).
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All the subjects in the UF-S dataset have been used in the experiments,
In particular, for each subject we considered: The high-resolution scan; The
super-resolution (reconstructed) model; and the low-resolution scan (this latter
obtained from the reference frame of the depth sequence). In all these cases,
the 3D facial data are represented as a mesh and cropped using a sphere of
radius 95mm centered at the nose tip (the approach in [27] is used to detect
the nose tip). To measure the error between the high-resolution scan and the
super-resolution model of the same subject, they are first aligned through ICP
registration [28]. Then, for each point of the super-resolution model its distance
to the closest point in the high-resolution scan is computed to build an error-
map. As an example, Fig. 6 shows for some representative subjects (one column
per subject), the cropped 3D mesh of the reference frame, the super-resolution
model, the high-resolution scan and the error-map between the super-resolution
model and the high-resolution scan (after alignment).

To represent the average error of the reconstructed models and reference
frames with respect to high-resolution scans, the Root Mean Square Error
(RMSE) between two surfaces S and S′ is computed considering the vertex
correspondences defined by the ICP registration, which associates each vertex
p ∈ S to the closest vertex p′ ∈ S′:

RMSE(S, S′) =

(
1
N

N∑

i=1

(pi − p′
i)

2

)1/2

, (9)

being N the number of correspondent points in S and S′.

Table 1. The first two rows report the average RMSE between the 3D high-resolution
scan and, respectively, the super-resolution model and the reference scan of same sub-
jects. In the third row, the average RMSE between any two high-resolution scans of
different subjects is reported. The rightmost column also evidences the relative varia-
tion of the intra-subjects distance values with respect to the inter-subject distance

models average RMSE % variation

same subject
reference vs. high-res 1.48 +4.2%

reconstructed vs. high-res 1.16 -18.3%

different subjects high-res vs. high-res 1.42 –

Results obtained using this distance measure are summarized in Table 1.
In particular, we reported the average values for the RMSE computed between
the high-resolution scan and, respectively, the super-resolution model and the
reference scan. On the one hand, values in Table 1 measure the magnitude of the
error between the super-resolution model and the high-resolution scan of same
subjects; On the other, they give a quantitative evidence of the increased quality
of the super-resolution model with respect to the reference scan. This latter result
is indeed an expected achievement of the proposed approach, since the super-
resolution models combine information of several frames of a sequence. However,
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it is interesting to note the substantial decrease of the error with respect to the
reference frame (more than 20% decrease of the RMSE passing from the first
to the second row). To better emphasize the actual improvement, the average
inter-subject distance between any two high-resolution scans of different subjects
is also reported in the last row of Table 1. The relative variation of the intra-
subject distance values in the first two rows compared to the inter-subject high-
resolution distance values is reported in the rightmost column in the Table. It
can be noticed that compared to the average inter-subject distance, the accuracy
of the super-resolution models is considerable higher than the accuracy of the
reference scans. This supports the idea that 3D face recognition across scans
with different resolutions can be performed.

(a) Kinect fusion

(b) Volumental

#009 #014 #016 #019

Fig. 7. (a) Kinect Fusion [17]: (b) Volumental [29]. In both the cases, the reconstructed
3D models and the corresponding error-maps with respect to the high-resolution are
reported in the top and bottom row.

4.2 Comparative Evaluation

The proposed approach has been compared against two solutions that permit
fusion of multiple frames acquired with a Kinect sensor: The Kinect Fusion app-
roach proposed in [17], which is released as part of the Kinect for Windows
SDK; the commercial solution proposed by Volumental, which is given as an
online service [29] (for the reported experiments, we used the data processing
service available through the Free account). Both these methods use an acquisi-
tion protocol that requires the sensor to be moved around the object (supposed
to be fixed) or across the environment to scan. In the proposed application, this
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protocol is implemented by asking the subject to sit still, and moving the sen-
sor around his/her head at a distance of about 80 to 120cm, so as to maintain
the best operating conditions for the camera and capture a large view of the
face (i.e., the acquired sequence includes the frontal and the left/right side of
the face). Compared to the protocol used for constructing super-resolved mod-
els, this paradigm is more general, not being constrained to faces, but it also
requires substantial human intervention in the acquisition process and an even
more constrained scenario, where the subject must remain still.

Figure 7(a) shows the reconstructed models obtained using the Kinect Fusion
approach [17], and the corresponding error-maps computed with respect to the
high-resolution scans. Compared to the super-resolution models obtained with
our approach for the same subjects (see Fig. 6(b) and (d)), a general lower
definition of face details can be observed. Results for the same subjects and
for the Volumental approach [17] are reported in Fig. 7(b). The main facial
traits (i.e., nose, eyebrows, chin) are reasonably defined in the reconstructed
models, though finer details are roughly sketched, especially in the mouth and
eyes regions.

Table 2. Average distance measure computed between the 3D high-resolution scans
and the reconstructed models obtained, respectively, with the Kinect Fusion, Volumen-
tal and the super-resolution method proposed in this work

reconstructed vs. high-res average RMSE

Kinect Fusion [17] 1.11

Volumental [29] 1.16

This work 0.84

Using the error measure defined in Sect. 4.1, we also evaluated quantitatively
the distance between the models reconstructed with the Kinect Fusion and the
Volumental approaches, and the corresponding high-resolution scans. Results
are reported in Table 2, and compared with those obtained by our approach. It
can be observed, the proposed approach scores the lowest error value.

5 Discussion and Conclusions

In this paper, we have defined an approach that permits the construction of
a super-resolution face model starting from a sequence of low-resolution 3D
scans acquired with a consumer depth camera. In particular, values of the points
of the super-resolution model are constructed by iteratively aligning the low-
resolution 3D frames to a reference frame (i.e., the first frame of the sequence)
using the scaled ICP algorithm, and estimating an approximation function on the
cumulated point cloud using Box-spline functions. Qualitative and quantitative
experiments have been performed on the The Florence face dataset that includes,
for each subject, a sequence of low-resolution 3D frames and one high-resolution
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3D scan used as the ground truth data of a subject’s face. In this way, results
of the super-resolution process are evaluated by measuring the distance error
between the super-resolved models and the ground truth. Results support the
idea that constructing super-resolved models from consumer depth cameras can
be a viable approach to make such devices deployable in real application contexts
that also include identity recognition using 3D faces.
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