Skip to main content

Neurochemical Aspects of Alzheimer Disease

  • Chapter
  • First Online:

Abstract

Alzheimer disease (AD) is a multifactorial disorder involving oxidative stress, neuroinflammation, impairments in energy metabolism, and excitotoxicity. AD affects several brain regions such as entorhinal cortex, hippocampus, basal forebrain and amygdale, which exhibit synaptic loss resulting in extensive brain atrophy. In vulnerable brain regions, AD is characterized by the accumulation of extracellular neuritic plaques and intracellular neurofibrillary tangles. The neurofibrillary tangles consist largely of hyperphosphorylated twisted filaments of the microtubule-associated protein Tau. Extracellular neuritic plaques are deposits of Aβ that are derived via sequential proteolytic cleavages of the APP. Clinically, AD patients present with symptoms of memory loss, altered personality and behavior, and impaired executive function. Neurochemically, AD is accompanied by profound biochemical alterations in multiple pathways including increased turnover of membrane phospholipid, sphingolipid, and cholesterol metabolism and increase in phospholipid-, sphingolipid-, and cholesterol-derived lipid mediators. The severity of AD pathology is associates with number of reactive astrocytes and activated microglia in the brain. Both neurons and glial cells contribute to the induction, maintenance, and progression of neuroinflammation and oxidative stress in AD by releasing proinflammatory cytokines and generating reactive oxygen and nitrogen species, which contribute to neurodegeneration in AD. Accumulating evidence suggests that AD also involves increases in metal ions (iron, copper, and zinc), nitric oxide generation, reduction in expression of trophic factors, dysfunction of the ubiquitin–proteasome system, depletion of endogenous antioxidants, and expression of proapoptotic proteins leading to synaptic and neuronal loss.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramov AY, Canevari L, Duchen MR (2004) Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24:565–575

    Article  CAS  PubMed  Google Scholar 

  • Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30:1631–1636

    Article  CAS  PubMed  Google Scholar 

  • Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778

    Article  CAS  PubMed  Google Scholar 

  • Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA, Tsopelas ND, Ziolko SK, James JA, Snitz BE, Houck PR, Bi W, Cohen AD, Lopresti BJ, DeKosky ST, Halligan EM, Klunk WE (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65:1509–1517

    Article  PubMed  PubMed Central  Google Scholar 

  • Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-κB in hippocampal synaptic plasticity. Synapse 35:151–159

    Article  CAS  PubMed  Google Scholar 

  • Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K (1997) Abnormal phosphorylation of Tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal Tau. Proc Natl Acad Sci U S A 94:298–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimers Dis 16:879–895

    PubMed  Google Scholar 

  • Alzheimer’s Association (2010) Alzheimer’s disease facts and figures. Alzheimers Dement 6:158–194

    Article  Google Scholar 

  • Alzheimer’s Association (2012) 2011 Alzheimer’s diseases facts and figures: prevalence. Alzheimers Dement 7:12–13

    Google Scholar 

  • Alzheimer’s Association (2013) Alzheimer’s disease facts and figures. Alzheimer Dementia 9:208–245

    Article  Google Scholar 

  • Amaducci L, Tesco G (1994) Aging as a major risk for degenerative diseases of the central nervous system. Curr Opin Neurol 7:283–286

    Article  CAS  PubMed  Google Scholar 

  • An K, Jung JH, Jeong AY, Kim HG, Jung SY, Lee K, Kim HJ, Kim SJ, Jeong TY, Son Y, Kim HS, Kim JH (2014) Neuritin can normalize neural deficits of Alzheimer’s disease. Cell Death Dis 5, e1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrasi E, Pali N, Molnar Z, Kosel S (2005) Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. J Alzheimers Dis 7:273–284

    CAS  PubMed  Google Scholar 

  • Andreyev AY, Fahy E, Guan Z, Kelly S, Li X, McDonald JG, Milne S, Myers D, Park H, Ryan A, Thompson BM, Wang E, Zhao Y, Brown HA, Merrill AH, Raetz CR, Russell DW, Subramaniam S, Dennis EA (2010) Subcellular organelle lipidomics in TLR-4-activated macrophages. J Lipid Res 51:2785–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arboleda G, Morales LC, Benítez B, Arboleda H (2009) Regulation of ceramide-induced neuronal death: cell metabolism meets neurodegeneration. Brain Res Rev 59:333–346

    Article  CAS  PubMed  Google Scholar 

  • Ariga T, McDonald MP, Yu RK (2008) Thematic review series: sphingolipids. Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—a review. J Lipid Res 49:1157–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arioka M, Tsukamoto M, Ishiguro K, Kato R, Sato K, Imahori K, Uchida T (1993) Tau protein kinase II is involved in the regulation of the normal phosphorylation state of Tau protein. J Neurochem 60:461–468

    Article  CAS  PubMed  Google Scholar 

  • Arnaud L, Robakis NK, Figueiredo-Pereira ME (2006) It may take inflammation, phosphorylation and ubiquitination to ‘tangle’ in Alzheimer’s disease. Neurodegener Dis 3:313–319

    Article  PubMed  Google Scholar 

  • Arnaud LT, Myeku N, Figueiredo-Pereira ME (2009) Proteasome-caspase-cathepsin sequence leading to Tau pathology induced by prostaglandin J2 in neuronal cells. J Neurochem 110:328–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  • Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific Tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103:26–35

    Article  CAS  PubMed  Google Scholar 

  • Avila J, Gomez de Barreda E, Engel T, Lucas JJ, Hernandez F (2010) Tau phosphorylation in hippocampus results in toxic gain-of-function. Biochem Soc Trans 38:977–980

    Article  CAS  PubMed  Google Scholar 

  • Ayton S, Lei P, Bush AI (2013) Metallostasis in Alzheimer’s disease. Free Radic Biol Med 62:76–89

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Li Q, Yang J, Zhou X, Yin X, Zhao D (2008) p75(NTR) activation of NF-kappaB is involved in PrP106–126-induced apoptosis in mouse neuroblastoma cells. Neurosci Res 62:9–14

    Article  CAS  PubMed  Google Scholar 

  • Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810

    Article  CAS  PubMed  Google Scholar 

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  PubMed  Google Scholar 

  • Bansal MP, Shalini S (2005) Effect of cholesterol and 7-beta hydroxycholesterol on glutathione status and nitric oxide production in murine peritoneal macrophages. Indian J Exp Biol 43:503–508

    CAS  PubMed  Google Scholar 

  • Barbagallo M, Belvedere M, Di Bella G, Dominguez LJ (2011) Altered ionized magnesium levels in mild-to-moderate Alzheimer’s disease. Magnes Res 24:S115–S121

    CAS  PubMed  Google Scholar 

  • Barbusinski K (2009) Fenton reaction—controversy concerning the chemistry. Ecol Chem Eng 16:347–358

    CAS  Google Scholar 

  • Barnes K, Matsas R, Hooper NM, Turner AJ, Kenny AJ (1988a) Endopeptidase-24.11 is striosomally ordered in pig brain, and in contrast to aminopeptidase N and peptidyl dipeptidase A (“angiotensin converting enzyme”), is a marker for a set of striatal efferent fibres. Neuroscience 27(3):799–817

    Article  CAS  PubMed  Google Scholar 

  • Barnes K, Turner AJ, Kenny AJ (1988b) Electronmicroscopic immunocytochemistry of pig brain shows that endopeptidase-24.11 is localized in neuronal membranes. Neurosci Lett 94:64–69

    Article  CAS  PubMed  Google Scholar 

  • Barnes K, Doherty S, Turner AJ (1995) Endopeptidase-24.11 is the integral membrane peptidase initiating degradation of somatostatin in the hippocampus. J Neurochem 64:1826–1832

    Article  CAS  PubMed  Google Scholar 

  • Barnham KJ, McKinstry WJ, Multhaup G, Galatis D, Morton CJ, Curtain CC, Williamson NA, White AR, Hinds MG, Norton RS, Beyreuther K, Masters CL, Parker MW, Cappai R (2003) Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J Biol Chem 278:17401–17407

    Article  CAS  PubMed  Google Scholar 

  • Barrier L, Ingrand S, Fauconneau B, Page G (2008) Gender-dependent accumulation of ceramides in the cerebral cortex of the APP(SL)/PS1Ki mouse model of Alzheimer’s disease. Neurobiol Aging 31:1843–1853

    Article  PubMed  CAS  Google Scholar 

  • Beraldo FH, Arantes CP, Santos TG, Queiroz NG, Young K, Rylett RJ, Markus RP, Prado MA, Martins VR (2010) Role of alpha7 nicotinic acetylcholine receptor in calcium signaling induced by prion protein interaction with stress-inducible protein 1. J Biol Chem 285:36542–36550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertram L (2009) Alzheimer’s disease genetics current status and future perspectives. Int Rev Neurobiol 84:167–184

    Article  CAS  PubMed  Google Scholar 

  • Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31:454–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat NR (2010) Linking cardiometabolic disorders to sporadic Alzheimer’s disease: a perspective on potential mechanisms and mediators. J Neurochem 115:551–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biasini E, Turnbaugh JA, Unterberger U, Harris DA (2012) Prion protein at the crossroads of physiology and disease. Trends Neurosci 35:92–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjørbaek C, Buchholz RM, Davis SM, Bates SH, Pierroz DD, Gu H, Neel BG, Myers MG Jr, Flier JS (2001) Divergent roles of SHP-2 in ERK activation by leptin receptors. J Biol Chem 276:4747–4755

    Article  PubMed  Google Scholar 

  • Björkhem I, Lütjohann D, Diczfalusy U, Ståhle L, Ahlborg G, Wahren J (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39:1594–1600

    PubMed  Google Scholar 

  • Björkhem I, Andersson U, Ellis E, Alvelius G, Ellegard L, Diczfalusy U, Sjövall J, Einarsson C (2001) From brain to bile. Evidence that conjugation and omega-hydroxylation are important for elimination of 24S-hydroxycholesterol (cerebrosterol) in humans. J Biol Chem 276:37004–37010

    Article  PubMed  Google Scholar 

  • Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613

    Article  CAS  PubMed  Google Scholar 

  • Bloom GS (2014) Amyloid-β and Tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71:505–508

    Article  PubMed  Google Scholar 

  • Blurton-Jones M, Laferla FM (2006) Pathways by which Abeta facilitates Tau pathology. Curr Alzheimer Res 3:437–448

    Article  CAS  PubMed  Google Scholar 

  • Bogdanovic N, Bretillon L, Lund EG, Diczfalusy U, Lannfelt L, Winblad B, Russell DW, Björkhem I (2001) On the turnover of brain cholesterol in patients with Alzheimer’s disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells. Neurosci Lett 314:45–48

    Article  CAS  PubMed  Google Scholar 

  • Bohr VA (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 32:804–812

    Article  CAS  PubMed  Google Scholar 

  • Boland K, Behrens M, Choi D, Manias K, Perlmutter DH (1996) The serpin-enzyme complex receptor recognizes soluble, non toxic amyloid-β peptide but not aggregated, cytotoxic amyloid-β peptide. J Biol Chem 271:18032–18044

    Article  CAS  PubMed  Google Scholar 

  • Bolognin S, Messori L, Zatta P (2009) Metal ion physiopathology in neurodegenerative disorders. Neuromolecular Med 11:223–238

    Article  CAS  PubMed  Google Scholar 

  • Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, Silverman MA, Kazi H, Melo HM, McClean PL, Holscher C, Arnold SE, Talbot K, Klein WL, Munoz DP, Ferreira ST, De Felice FG (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J Clin Invest 122:1339–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borger E, Aitken L, Du H, Zhang W, Gunn-Moore FJ, Yan SS (2013) Is amyloid binding alcohol dehydrogenase a drug target for treating Alzheimer’s disease? Curr Alzheimer Res 10:21–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosco D, Fava A, Plastino M, Montaecini T, Puja A (2011) Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J Cell Mol Med 15:1807–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourassa MW, Leskovjan AC, Tappero RV, Farquhar ER, Colton CA, Van Nostrand WE, Miller LM (2013) Elevated copper in the amyloid plaques and iron in the cortex are observed in mouse models of Alzheimer’s disease that exhibit neurodegeneration. Biomed Spectrosc Imaging 2:129–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle PA, Wilson RS, Yu L, Barr AM, Honer WG, Schneider JA, Bennett DA (2013) Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann Neurol 74:478–489

    Article  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–12510

    Article  CAS  PubMed  Google Scholar 

  • Brands AM, Biessels GJ, de Haan EH, Kappelle LJ, Kessels RP (2005) The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28:726–735

    Article  PubMed  Google Scholar 

  • Brasnjevic I, Hof PR, Steinbusch HW, Schmitz C (2008) Accumulation of nuclear DNA damage or neuron loss: molecular basis for a new approach to understanding selective neuronal vulnerability in neurodegenerative diseases. DNA Repair (Amst) 7:1087–1097

    Article  CAS  Google Scholar 

  • Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ (1998) Age-related toxicity to lactate, glutamate, and beta-amyloid in cultured adult neurons. Neurobiol Aging 19:561–568

    Article  CAS  PubMed  Google Scholar 

  • Brewer GJ (2010) Epigenetic oxidative redox shift (EORS) theory of aging unifies the free radical and insulin signaling theories. Exp Gerontol 45:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breydo L, Uversky VN (2011) Role of metal ions in aggregation of intrinsically disordered proteins in neurodegenerative diseases. Metallomics 3:1163–1180

    Article  CAS  PubMed  Google Scholar 

  • Brookmeyer R, Gray S, Kawas C (1998) Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 88:1337–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooksbank BW, McGovern J (1989) Gangliosides in the brain in adult Down’s syndrome and Alzheimer’s disease. Mol Chem Neuropathol 11:143–156

    Article  CAS  PubMed  Google Scholar 

  • Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10:333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns A, Iliffe S (2009) Alzheimer’s disease. Br Med J 338:b158

    Article  Google Scholar 

  • Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 124:225–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caraci F, Battaglia G, Busceti C, Biagioni F, Mastroiacovo F, Bosco P, Drago F, Nicoletti F, Sortino MA, Copani A (2008) TGF-beta 1 protects against Abeta-neurotoxicity via the phosphatidylinositol-3-kinase pathway. Neurobiol Dis 30:234–242

    Article  CAS  PubMed  Google Scholar 

  • Carulla P, Bribián A, Rangel A, Gavín R, Ferrer I, Caelles C, Del Río JA, Llorens F (2011) Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell 22:3041–3054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cencioni C, Spallotta F, Martelli F, Valente S, Mai A, Zeiher AM, Gaetano C (2013) Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int J Mol Sci 14:17643–17663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chabrier MA, Cheng D, Castello NA, Green KN, LaFerla FM (2014) Synergistic effects of amyloid-beta and wild-type human Tau on dendritic spine loss in a floxed double transgenic model of Alzheimer’s disease. Neurobiol Dis 64:107–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarthy B, Menard M, Ito S, Gaudet C, Dal Pra I, Armato U, Whitfield J (2012) Hippocampal membrane-associated p75NTR levels are increased in Alzheimer’s disease. J Alzheimers Dis 30:675–684

    CAS  PubMed  Google Scholar 

  • Chamberlain R, Wengenack TM, Poduslo JF, Garwood M, Jack CR Jr (2011) Magnetic resonance imaging of amyloid plaques in transgenic mouse models of Alzheimer’s disease. Curr Med Imaging Rev 7:3–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan NB, Siegel GJ, Feinstein DL (2005) Propentofylline attenuates Tau hyperphosphorylation in Alzheimer’s Swedish mutant model Tg2576. Neuropharmacology 48:93–104

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Yu G, Arawaka S, Nishimura M, Kawarai T, Yu H, Tandon A, Supala A, Song YQ, Rogaeva E, Milman P, Sato C, Yu C, Janus C, Lee J, Song L, Zhang L, Fraser PE, St George-Hyslop PH (2001) Nicastrin binds to membrane-tethered Notch. Nat Cell Biol 3:751–754

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Lee HM, Greeley GH Jr, Englander EW (2007) Accumulation of oxidatively generated DNA damage in the brain: a mechanism of neurotoxicity. Free Radic Biol Med 42:385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role of N-terminal residues. J Biol Chem 285:26377–26383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarini A, Dal Pra I, Whitfield JF, Armato U (2006) The killing of neurons by beta-amyloid peptides, prions, and pro-inflammatory cytokines. Ital J Anat Embryol 111:221–246

    PubMed  Google Scholar 

  • Chin J, Palop JJ, Puoliväli J, Massaro C, Bien-Ly N, Gerstein H, Scearce-Levie K, Masliah E, Mucke L (2005) Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer’s disease. J Neurosci 25:9694–9703

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem 279:13256–13264

    Article  CAS  PubMed  Google Scholar 

  • Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F, van Os J, Steinbusch HW, van den Hove DL (2010) Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 90:498–510

    Article  CAS  PubMed  Google Scholar 

  • Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR, Steinbusch HW, Coleman PD, Rutten BP, van den Hove DL (2013) Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging 34:2091–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang JC, Jones PA (2007) Epigenetics and microRNAs. Pediatr Res 61:24R–29R

    Article  CAS  PubMed  Google Scholar 

  • Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6:351–362

    Article  CAS  PubMed  Google Scholar 

  • Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, Pontecorvo MJ, Hefti F, Carpenter AP, Flitter ML, Krautkramer MJ, Kung HF, Coleman RE, Doraiswamy PM, Fleisher AS, Sabbagh MN, Sadowsky CH, Reiman EP, Zehntner SP, Skovronsky DM; AV45-A07 Study Group (2011) Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305:275–283

    Google Scholar 

  • Clarke JR, Lyra E, Silva NM, Figueiredo CP, Frozza RL, Ledo JH, Beckman D, Katashima CK, Razolli D, Carvalho BM, Frazão R, Silveira MA, Ribeiro FC, Bomfim TR, Neves FS, Klein WL, Medeiros R, LaFerla FM, Carvalheira JB, Saad MJ, Munoz DP, Velloso LA, Ferreira ST, De Felice FG (2015) Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 7:190–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole SL, Vassar R (2007) The Alzheimer’s disease β-secretase enzyme, BACE1. Mol Neurodegener 2:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conejo R, Lorenzo M (2001) Insulin signaling leading to proliferation, survival, and membrane ruffling in C2C12 myoblasts. J Cell Physiol 187:96–108

    Article  CAS  PubMed  Google Scholar 

  • Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EJ (1992a) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31:327–335

    Article  CAS  PubMed  Google Scholar 

  • Connor JR, Menzies SL, St Martin SM, Mufson EJ (1992b) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31:75–83

    Article  CAS  PubMed  Google Scholar 

  • Coppedè F, Migliore L (2009) DNA damage and repair in Alzheimer’s disease. Curr Alzheimer Res 6:36–47

    Article  PubMed  Google Scholar 

  • Cordy JM, Hooper NM, Turner AJ (2003) Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 100:11735–11740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa RM, Drew J, Silva AJ (2005) Notch to remember. Trends Neurosci 28:429–435

    Article  CAS  PubMed  Google Scholar 

  • Costantini C, Weindruch R, Della Valle G, Puglielli L (2005) A TrkA-to-p75NTR molecular switch activates amyloid β-peptide generation during aging. Biochem J 391:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini C, Scrable H, Puglielli L (2006) An aging pathway controls the TrkA to p75NTR receptor switch and amyloid β peptide generation. EMBO J 25:1997–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotman CW (2005) The role of neurotrophins in brain aging: a perspective in honor of Regino Perez-Polo. Neurochem Res 30:877–881

    Article  CAS  PubMed  Google Scholar 

  • Crichton RR, Dexter DT, Ward RJ (2011) Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm 118:301–314

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Sun Y, Wang Z, Xu C, Xu L, Wang F, Chen Z, Peng Y, Li R (2011) Activation of liver X receptor decreases BACE1 expression and activity by reducing membrane cholesterol levels. Neurochem Res 36:1910–1921

    Article  CAS  PubMed  Google Scholar 

  • Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) Alzheimer’s disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem 276:20466–20473

    Article  CAS  PubMed  Google Scholar 

  • Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 17:2070–2075

    Article  CAS  Google Scholar 

  • Dandona P (2002) Endothelium, inflammation, and diabetes. Curr Diab Rep 2:311–315

    Article  PubMed  Google Scholar 

  • Dasari B, Prasanthi JR, Marwarha G, Singh BB, Ghribi O (2010) The oxysterol 27-hydroxycholesterol increases b-amyloid and oxidative stress in retinal pigment epithelial cells. BMC 10:22

    Article  Google Scholar 

  • Davison AN (1965) Brain sterol metabolism. Adv Lipid Res 3:171–196

    CAS  PubMed  Google Scholar 

  • Dawkins E, Small DH (2014) Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer’s disease. J Neurochem 129:756–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70:813–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT (2010) Caspase activation precedes and leads to tangles. Nature 464:1201–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) A beta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601

    Article  PubMed  CAS  Google Scholar 

  • De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J, Acton PJ, Shughrue PJ, Chen-Dodson E, Kinney GG, Klein WL (2009a) Alzheimer’s disease-type neuronal Tau hyperphosphorylation induced by A beta oligomers. Neurobiol Aging 29:1334–1347

    Article  CAS  Google Scholar 

  • De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL (2009b) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A 106:1971–1976

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Monte SM (2013) Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv 10:1699–1709

    Google Scholar 

  • de la Monte SM (2009) Insulin resistance and Alzheimer’s disease. BMB Rep 42:475–481

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Monte SM, Tong M (2013) Insulin resistance and metabolic failure underlie Alzheimer disease. In: Farooqui T, Farooqui AA (eds) Metabolic syndrome and neurological disorders. Wiley, Oxford, UK, pp 1–30

    Chapter  Google Scholar 

  • de la Monte SM, Tong M (2014) Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochem Pharmacol 88:548–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Monte SM, Wands JR Jr (2008) Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2:1101–1113

    Article  PubMed  PubMed Central  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deibel MA, Ehmann WD, Markesbery WR (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142

    Article  CAS  PubMed  Google Scholar 

  • Delcroix JD, Valletta JS, Wu C, Hunt SJ, Kowal AS, Mobley WC (2003) NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals. Neuron 39:69–84

    Article  CAS  PubMed  Google Scholar 

  • Demuro A, Smith M, Parker I (2011) Single-channel Ca2+ imaging implicates Aβ1-42 amyloid pores in Alzheimer’s disease pathology. J Cell Biol 195:515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  CAS  PubMed  Google Scholar 

  • Desbène C, Malaplate-Armand C, Youssef I, Garcia P, Stenger C, Sauvée M, Fischer N, Rimet D, Koziel V, Escanyé MC, Oster T, Kriem B, Yen FT, Pillot T, Olivier JL (2012) Critical role of cPLA2 in Aβ oligomer-induced neurodegeneration and memory deficit. Neurobiol Aging 33:1123.e17–e29

    Google Scholar 

  • Dickson JR, Kruse C, Montagna DR, Finsen B, Wolfe MS (2013) Alternative polyadenylation and miR-34 family members regulate Tau expression. J Neurochem 127:739–749

    Article  CAS  PubMed  Google Scholar 

  • Doherty GH (2011) Obesity and the ageing brain: could leptin play a role in neurodegeneration? Curr Gerontal Geriatr Res 2011:708154

    Google Scholar 

  • Doherty GH, Beccano-Kelly D, Yan SD, Gunn-Moore FJ, Harvey J (2012) Leptin prevents hippocampal synaptic disruption and neuronal cell death induced by amyloid β. Neurobiol Aging 34:226–237

    Article  PubMed  CAS  Google Scholar 

  • Du JL, Poo MM (2004) Rapid BDNF-induced retrograde synaptic modification in a developing retinotectal system. Nature 429:878–883

    Article  CAS  PubMed  Google Scholar 

  • Du H, Guo L, Fang F, Chen D, Sosunov AA, McKhann GM, Yan Y, Wang C, Zhang H, Molkentin JD, Gunn-Moore FJ, Vonsattel JP, Arancio O, Chen JX, Yan SD (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 14:1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duce JA, Bush AI (2010) Biological metals and Alzheimer’s disease: implications for therapeutics and diagnostics. Prog Neurobiol 92:1–18

    Article  CAS  PubMed  Google Scholar 

  • Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA, Cho HH, Galatis D, Moir RD, Masters CL, McLean C, Tanzi RE, Cappai R, Barnham KJ, Ciccotosto GD, Rogers JT, Bush AI (2010) Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142:857–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egana JT, Zambrano C, Nunez MT, Gonzalez-Billault C, Maccioni RB (2003) Iron-induced oxidative stress modify Tau phosphorylation patterns in hippocampal cell cultures. Biometals 16:215–223

    Article  CAS  PubMed  Google Scholar 

  • El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD (1996) Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature 382:716–719

    Article  PubMed  Google Scholar 

  • Emmerzaal TL, Kiliaan AJ, Gustafson DR (2015) 2003-2013: a decade of body mass index, Alzheimer’s disease, and dementia. J Alzheimers Dis 43:739–755

    PubMed  Google Scholar 

  • Englander EW (2008) Brain capacity for repair of oxidatively damaged DNA and preservation of neuronal function. Mech Ageing Dev 129:475–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escribano L, Simón AM, Gimeno E, Cuadrado-Tejedor M, López de Maturana R, García-Osta A, Ricobaraza A, Pérez-Mediavilla A, Del Río J, Frechilla D (2010) Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and Tau pathology. Neuropsychopharmacology 35:1593–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans MC, Barnes J, Nielsen C, Kim LG, Clegg SL, Blair M, Leung KK, Douiri A, Boyes RG, Ourselin S, Fox NC (2010) Volume changes in Alzheimer’s disease and mild cognitive impairment: cognitive associations. Eur Radiol 20:674–682

    Article  PubMed  Google Scholar 

  • Extance A (2010) Alzheimer’s failure raises questions about disease-modifying strategies. Nat Rev Drug Discov 9:749–751

    Article  CAS  PubMed  Google Scholar 

  • Fahrenholz F (2007) Alpha-secretase as a therapeutic target. Curr Alzheimer Res 4:412–417

    Article  CAS  PubMed  Google Scholar 

  • Famer D, Meaney S, Mousavi M, Nordberg A, Bjorkhem I, Crisby M (2007) Regulation of alpha- and beta-secretase activity by oxysterols: cerebrosterol stimulates processing of APP via the a-secretase pathway. Biochem Biophys Res Commun 20:46–50

    Article  CAS  Google Scholar 

  • Fang CL, Wu WH, Liu Q, Sun X, Ma Y, Zhao YF, Li YM (2010) Dual functions of beta-amyloid oligomer and fibril in Cu(II)-induced H2O2 production. Regul Pept 163:1–6

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA (2009a) Beneficial effects of fish oil on human brain. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2009b) Hot topics in neural membrane lipidology. Springer, New York, NY

    Book  Google Scholar 

  • Farooqui AA (2010a) Neurochemical aspects of neurotraumatic and neurodegeneratine diseases. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2010b) Studies on plasmalogen-selective phospholipase A2 in brain. Mol Neurobiol 41:267–273

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA (2011) Lipid mediators and their metabolism in the brain. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2013) Metabolic syndrome: an important risk factor for Stroke, Alzheimer, and depression. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2014) Inflammation and oxidative stress in neurological disorders. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2015) High calorie diet and human brain: metabolic consequences of long term consumption. Springer, New York

    Book  Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in the brain: phospholipases A2 in neurological disorders. Springer, New York, NY

    Book  Google Scholar 

  • Farooqui AA, Rapoport SI, Horrocks LA (1997) Membrane phospholipid alterations in Alzheimer’s disease: deficiency of ethanolamine plasmalogens. Neurochem Res 22:523–527

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2000) Deacylation-reacylation of neural membrane glycerophospholipids, a matter of life and death. J Mol Neurosci 14:123–133

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2003) Plasmalogens, docosahexaenoic acid and neurological disorders. Adv Exp Med Biol 544:335–354

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2008) Neurochemical aspects of excitotoxicity. Springer, New York

    Google Scholar 

  • Farooqui AA, Ong WY, Farooqui T (2010) Lipid mediators in the nucleus: their potential contribution to Alzheimer’s disease. Biochim Biophys Acta 1801:906–916

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Farooqui T, Panza F, Frisardi V (2012) Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 69:741–762

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ, Fan G (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13:423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer I (2009) Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer’s disease. J Bioenerg Biomembr 41:425–431

    Article  CAS  PubMed  Google Scholar 

  • Fewlass DC, Noboa K, Pi-Sunyer FX, Johnston JM, Yan SD, Tezapsidis N (2004) Obesity-related leptin regulates Alzheimer’s Abeta. FASEB J 18:1870–1878

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo-Pereira ME, Rockwell P, Schmidt-Glenewinkel T, Serrano P (2015) Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Front Mol Neurosci 7:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447:178–182

    Article  CAS  PubMed  Google Scholar 

  • Flier JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116:337–350

    Article  CAS  PubMed  Google Scholar 

  • Folwell J, Cowan CM, Ubhi KK, Shiabh H, Newman TA, Shepherd D, Mudher A (2010) Aβ exacerbates the neuronal dysfunction caused by human Tau expression in a Drosophila model of Alzheimer’s disease. Exp Neurol 223:401–409

    Article  CAS  PubMed  Google Scholar 

  • Fonteh AN, Chiang J, Cipolla M, Hale J, Diallo F, Chirino A, Arakaki X, Harrington MG (2013) Alterations in cerebrospinal fluid glycerophospholipids and phospholipase A2 activity in Alzheimer’s disease. J Lipid Res 54:2884–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox NC, Schott JM (2004) Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. Lancet 363:392–394

    Article  PubMed  Google Scholar 

  • Frazzini V, Rockabrand E, Mocchegiani E, Sensi SL (2006) Oxidative stress and brain aging: is zinc the link? Biogerontology 7:307–314

    Article  CAS  PubMed  Google Scholar 

  • Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471S–1483S

    CAS  PubMed  Google Scholar 

  • Frisoni GB, Rozzini L, Gozzetti A, Binetti G, Zanetti O, Bianchetti A, Trabucchi M, Cummings JL (1999) Behavioral syndromes in Alzheimer’s disease: description and correlates. Dement Geriatr Cogn Disord 10:130–138

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, Sparrow CP, Lund EG (2001) 27-Hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem 276:38378–38387

    Article  CAS  PubMed  Google Scholar 

  • Fujino T, Lee WC, Nedivi E (2003) Regulation of cpg15 by signaling pathways that mediate synaptic plasticity. Mol Cell Neurosci 24:538–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujino T, Wu Z, Lin WC, Phillips MA, Nedivi E (2008) cpg15 and cpg15-2 constitute a family of activity-regulated ligands expressed differentially in the nervous system to promote neurite growth and neuronal survival. J Comp Neurol 507:1831–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet al, Lu M, Fu Y, Garcia-Sierra F, LaPointe N, Miller R, Berry RW, Binder LI, Cryns VL (2003) Caspase cleavage of Tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci U S A 100:10032–10037

    Google Scholar 

  • Garza JC, Guo M, Zhang W, Lu XY (2008) Leptin increases adult hippocampal neurogenesis in vivo and in vitro. J Biol Chem 283:18238–18247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci 21:2561–2570

    CAS  PubMed  Google Scholar 

  • Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VM (2003) Initiation and synergistic fibrillization of Tau and α-synuclein. Science 300:636–640

    Article  CAS  PubMed  Google Scholar 

  • Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14:1261–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    Article  CAS  PubMed  Google Scholar 

  • Golde TE, Dickson D, Hutton M (2006) Filling the Gaps in the abeta; cascade hypothesis of Alzheimer’s disease. Curr Alzheimer Res 3:421–430

    Article  CAS  PubMed  Google Scholar 

  • Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein Tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15:2321–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Chang L, Viola K, Lacor P, Lambert M, Finch C, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci U S A 100:10417–10422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gräff J, Kim D, Dobbin MM, Tsai L-H (2011) Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 91:603–649

    Article  PubMed  CAS  Google Scholar 

  • Grant WB, Campbell A, Itzhaki RF, Savory J (2002) The significance of environmental factors in the etiology of Alzheimer’s disease. J Alzheimers Dis 4:179–189

    PubMed  Google Scholar 

  • Greco SJ, Sarkar S, Johnston JM, Zhu X, Su B, Casadesus G, Ashford JW, Smith MA, Tezapsidis N (2008) Leptin reduces Alzheimer’s disease-related Tau phosphorylation in neuronal cells. Biochem Biophys Res Commun 376:536–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greco SJ, Sarkar S, Johnston JM, Tezapsidis N (2009) Leptin regulates Tau phosphorylation and amyloid through AMPK in neuronal cells. Biochem Biophys Res Commun 380:98–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm MO, Grimm HS, Patzold AJ, Zinser EG, Halonen R, Duering M, Tschäpe JA, De Strooper B, Müller U, Shen J (2005) Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nat Cell Biol 27:1118–1123

    Article  CAS  Google Scholar 

  • Grimm MO, Grimm HS, Hartmann T (2007) Amyloid beta as a regulator of lipid homeostasis. Trends Mol Med 13:337–344

    Article  CAS  PubMed  Google Scholar 

  • Grimm MO, Rothhaar TL, Grösgen S, Burg VK, Hundsdörfer B, Haupenthal VJ, Friess P, Kins S, Grimm HS, Hartmann T (2011a) Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloid precursor protein (APP). J Nutr Biochem 23:1214–1223

    Article  PubMed  CAS  Google Scholar 

  • Grimm MO, Kuchenbecker J, Grösgen S, Burg VK, Hundsdörfer B, Rothhaar TL, Friess P, de Wilde MC, Broersen LM, Penke B, Péter M, Vígh L, Grimm HS, Hartmann T (2011b) Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms. J Biol Chem 286:14028–14039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm MO, Zinser EG, Grösgen S, Hundsdörfer B, Rothhaar TL, Burg VK, Kaestner L, Bayer TA, Lipp P, Müller U, Grimm HS, Hartmann T (2012) Amyloid precursor protein (APP) mediated regulation of ganglioside homeostasis linking Alzheimer’s disease pathology with ganglioside metabolism. PLoS One 7, e34095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm MO, Zimmer VC, Lehmann J, Grimm HS, Hartmann T (2013) The impact of cholesterol, DHA, and sphingolipids on Alzheimer’s disease. Biomed Res Int 2013:814390

    Google Scholar 

  • Gu X, Sun J, Li S, Wu X, Li L (2013) Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol Aging 34:1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, Sindelar PJ (1999) Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropathol Exp Neurol 58:740–747

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Jiang H, Xu X, Duan W, Mattson MP (2008) Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization. J Biol Chem 283:1754–1763

    Article  CAS  PubMed  Google Scholar 

  • Haan MN (2006) Therapy insight: type 2 diabetes mellitus and the risk of late-onset alzheimer’s disease. Nat Clin Pract Neurol 2:159–166

    Article  CAS  PubMed  Google Scholar 

  • Haass C, Mandelkow E (2010) Fynτ-amyloid: a toxic triad. Cell 142:356–358

    Article  CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  CAS  PubMed  Google Scholar 

  • Hambidge M (2000) Human zinc deficiency. J Nutr 130:1344S–1349S

    CAS  PubMed  Google Scholar 

  • Han X (2007) Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer’s disease: a tale of shotgun lipidomics. J Neurochem 103(Suppl 1):171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X (2010) The pathogenic implication of abnormal interaction between apolipoprotein E isoforms, amyloid-beta peptides, and sulfatides in Alzheimer’s disease. Mol Neurobiol 41:97–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Holtzman DM, McKeel DW Jr (2001) Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77:1168–1180

    Article  CAS  PubMed  Google Scholar 

  • Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818

    Article  CAS  PubMed  Google Scholar 

  • Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hartmann D, Tournoy J, Saftig P, Annaert W, De Strooper B (2001) Implication of APP secretases in notch signaling. J Mol Neurosci 17:171–181

    Article  CAS  PubMed  Google Scholar 

  • Harvey J, Shanley LJ, O’Malley D, Irving AJ (2005) Leptin: a potential cognitive enhancer? Biochem Soc Trans 33:1029–1032

    Article  CAS  PubMed  Google Scholar 

  • He P, Zhong Z, Lindholm K, Berning L, Lee W, Lemere C, Staufenbiel M, Li R, Shen Y (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178:829–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Huang Y, Li B, Gong CX, Schuchman EH (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31:398–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerssen HM, Pazyra MF, Segal RA (2004) Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nat Neurosci 7:596–604

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91

    Article  CAS  PubMed  Google Scholar 

  • Henneman WJ, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC, Scheltens P, Vrenken H, Barkhof F (2009) Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 72:999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herholz K (2012) Use of FDG PET as an imaging biomarker in clinical trials of Alzheimer’s disease. Biomark Med 6:431–439

    Article  CAS  PubMed  Google Scholar 

  • Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    CAS  PubMed  Google Scholar 

  • Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S, Suzuki T (2008) Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 97:149–176

    Article  CAS  PubMed  Google Scholar 

  • Ho A, Sudhof TC (2004) Binding of F-spondin to amyloid-beta precursor protein: a candidate amyloid-beta precursor protein ligand that modulates amyloid-beta precursor protein cleavage. Proc Natl Acad Sci U S A 101:2548–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden KF, Lindquist K, Tylavsky FA, Rosano C, Harris TB, Yaffe K (2009) Serum leptin level and cognition in the elderly: findings from the Health ABC Study. Neurobiol Aging 30:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Holland WL, Summers SA (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 29:381–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S, Ostaszewski BL, Yang T, O’Malley TT, Jin M, Yanagisawa K, Li S, Bartels T, Selkoe DJ (2014) Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron 82:308–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh RH, Hou JH, Hsu HS, Wei YH (1994) Age-dependent respiratory function decline and DNA deletions in human muscle mitochondria. Biochem Mol Biol Int 32:1009–1022

    CAS  PubMed  Google Scholar 

  • Hu N, Yu JT, Tan L, Wang YL, Sun L, Tan L (2013) Nutrition and the risk of Alzheimer’s disease. Biomed Res Int 2013:524820

    Google Scholar 

  • Hu NW, Nicoll AJ, Zhang D, Mably AJ, O’Malley T, Purro SA, Terry C, Collinge J, Walsh DM, Rowan MJ (2014) mGlu5 receptors and cellular prion protein mediate amyloid-β-facilitated synaptic long-term depression in vivo. Nat Commun 5:3374

    PubMed  PubMed Central  Google Scholar 

  • Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999) The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Tanimukai H, Liu F, Iqbal K, Grunake-Iqbal I, Gong CX (2004) Elevation of the level and activity of acid ceramidase in Alzheimer’s disease brain. Eur J Neurosci 20:3489–3497

    Article  PubMed  Google Scholar 

  • Hughes TM, Lopez OL, Evans RW, Kamboh MI, Williamson JD, Klunk WE, Mathis CA, Price JC, Cohen AD, Snitz BE, Dekosky ST, Kuller LH (2014) Markers of cholesterol transport are associated with amyloid deposition in the brain. Neurobiol Aging 35:802–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung YH, Bush AI, La Fontaine S (2013) Links between copper and cholesterol in Alzheimer’s disease. Front Physiol 4:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Illenberger S, Zheng-Fischhofer Q, Preuss U, Stamer K, Baumann K, Trinczek B, Biernat J, Godemann R, Mandelkow EM, Mandelkow E (1998) The endogenous and cell cycle-dependent phosphorylation of Tau protein in living cells: implications for Alzheimer’s disease. Mol Biol Cell 9:1495–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illi B, Colussi C, Grasselli A, Farsetti A, Capogrossi MC, Gaetano C (2009) NO sparks off chromatin: tales of a multifaceted epigenetic regulator. Pharmacol Ther 123:344–352

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11:77–86

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Liu F, Gong CX, Alonso AC, Grundke-Iqbal I (2009) Mechanisms of Tau-induced neurodegeneration. Acta Neuropathol 118:53–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata A, Nagata K, Hatsuta H, Takuma H, Bundo M, Iwamoto K, Tamaoka A, Murayama S, Saido T, Tsuji S (2014) Altered CpG methylation in sporadic Alzheimer’s disease is associated with APP and MAPT dysregulation. Hum Mol Genet 23:648–656

    Article  CAS  PubMed  Google Scholar 

  • Jahn H (2013) Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 15:445–454

    PubMed  PubMed Central  Google Scholar 

  • Jana A, Pahan K (2004) Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J Biol Chem 279:51451–51459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481

    Article  CAS  PubMed  Google Scholar 

  • Jeong J, Eide DJ (2013) The SLC39 family of zinc transporters. Mol Aspects Med 34:612–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetten AM (2009) Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal 7:45–59

    Google Scholar 

  • Jiang D, Li X, Williams R, Patel S, Men L, Wang Y, Zhou F (2009) Ternary complexes of iron, amyloid-β, and nitrilotriacetic acid: binding affinities, redox properties, and relevance to iron-induced oxidative stress in Alzheimer’s disease. Biochemistry 48:7939–7947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631

    Article  CAS  PubMed  Google Scholar 

  • Johnston AM, Pirola L, Van Obberghen E (2003) Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett 546:32–36

    Article  CAS  PubMed  Google Scholar 

  • Kaether C, Haass C (2004) A lipid boundary separates APP and secretases and limits amyloid beta-peptide generation. J Cell Biol 167:809–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalanj S, Kracun I, Rosner H, Cosovic C (1991) Regional distribution of brain gangliosides in Alzheimer’s disease. Neurol Croat 40:269–281

    CAS  PubMed  Google Scholar 

  • Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniyi A, Perry EK, Potocnik F, Prince M, Stewart R, Wimo A, Zhang ZX, Antuono P; World Federation of Neurology Dementia Research Group (2008) Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol 7:812–826

    Google Scholar 

  • Kandalepas PC, Vassar R (2012) Identification and biology of β-secretase. J Neurochem 120(Suppl 1):S55–S61

    Article  CAS  Google Scholar 

  • Kang J, Muller-Hill B (1990) Differential splicing of Alzheimer’s disease amyloid A4 precursor RNA in rat tissues: PreA4(695) mRNA is predominantly produced in rat and human brain. Biochem Biophys Res Commun 166:1192–1200

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Article  CAS  PubMed  Google Scholar 

  • Kang HS, Angers M, Beak JY, Wu X, Gimble JM, Wada T, Xie W, Collins JB, Grissom SF, Jetten AM (2007) Gene expression profiling reveals a regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism. Physiol Genomics 31:281–294

    Article  CAS  PubMed  Google Scholar 

  • Kanoski SE, Davidson TL (2011) Western diet consumption and cognitive impairment: links to hippocampal dysfunction and obesity. Physiol Behav 103:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsel P, Li C, Haroutunian V (2007) Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochem Res 32:845–856

    Article  CAS  PubMed  Google Scholar 

  • Katura T, Moriya T, Nakahata N (2010) 15-Deoxy-delta 12,14-prostaglandin J2 biphasically regulates the proliferation of mouse hippocampal neural progenitor cells by modulating the redox state. Mol Pharmacol 77:601–611

    Article  CAS  PubMed  Google Scholar 

  • Katzman R, Saitoh T (1991) Advances in Alzheimer’s disease. FASEB J 5:278–286

    CAS  PubMed  Google Scholar 

  • Kawahara M (2010) Neurotoxicity of beta-amyloid protein: oligomerization, channel formation and calcium dyshomeostasis. Curr Pharm Des 16:2779–2789

    Article  CAS  PubMed  Google Scholar 

  • Kessels HW, Nguyen LN, Nabavi S, Malinow R (2010) The prion protein as a receptor for amyloid-beta. Nature 466:E3–E4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR, Zamponi GW (2008) Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol 181:551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63:287–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lee HJ, Lee KW (2010) Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 112:1415–1430

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Yoon H, Basak J, Kim J (2014) Apolipoprotein E in synaptic plasticity and Alzheimer’s disease: potential cellular and molecular mechanisms. Mol Cells 37:767–776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ (2003) γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proc Natl Acad Sci U S A 100:6382–6387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitazawa M, Cheng D, Laferla FM (2009) Chronic copper exposure exacerbates both amyloid and Tau pathology and selectively dysregulates cdk5 in a mouse model of AD. J Neurochem 108:1550–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleene R, Loers G, Langer J, Frobert Y, Buck F, Schachner M (2007) Prion protein regulates glutamate-dependent lactate transport of astrocytes. J Neurosci 27:12331–12340

    Article  CAS  PubMed  Google Scholar 

  • Klewpatinond M, Davies P, Bowen S, Brown DR, Viles JH (2008) Deconvoluting the Cu2+ binding modes of full-length prion protein. J Biol Chem 283:1870–1881

    Article  CAS  PubMed  Google Scholar 

  • Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319

    Article  CAS  PubMed  Google Scholar 

  • Knowles JK, Rajadas J, Nguyen TV, Yang T, LeMieux MC, Vander Griend L, Ishikawa C, Massa SM, Wyss-Coray T, Longo FM (2009) The p75 neurotrophin receptor promotes amyloid-β(1–42)-induced neuritic dystrophy in vitro and in vivo. J Neurosci 29:10627–10637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojro E, Postina R (2009) Regulated proteolysis of RAGE and AbetaPP as possible link between type 2 diabetes mellitus and Alzheimer’s disease. J Alzheimers Dis 16:865–878

    PubMed  Google Scholar 

  • Kong Y, Wu J, Yuan L (2014) MicroRNA expression analysis of adult-onset Drosophila Alzheimer’s disease model. Curr Alzheimer Res 11:882–891

    Article  CAS  PubMed  Google Scholar 

  • Konietzko U (2012) AICD nuclear signaling and its possible contribution to Alzheimer’s disease. Curr Alzheimer Res 9:200–216

    Article  CAS  PubMed  Google Scholar 

  • König HG, Kögel D, Rami A, Prehn JH (2005) TGF-{beta}1 activates two distinct type I receptors in neurons implications for neuronal NF-{kappa}B signaling. J Cell Biol 168:1077–1086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kopan R, Goate A (2000) A common enzyme connects notch signaling and Alzheimer’s disease. Genes Dev 14:2799–2806

    Article  CAS  PubMed  Google Scholar 

  • Koponen E, Lakso M, Castrén E (2004) Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. Brain Res Mol Brain Res 130:81–94

    Article  CAS  PubMed  Google Scholar 

  • Kotti T, Head DD, McKenna CE, Russell DW (2008) Biphasic requirement for geranylgeraniol in hippocampal long-term potentiation. Proc Natl Acad Sci U S A 105:11394–11399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh-Madsen R, Plomgaard P, Keller P, Keller C, Pedersen BK (2004) Insulin stimulates interleukin-6 and tumor necrosis factor-alpha gene expression in human subcutaneous adipose tissue. Am J Physiol Endocrinol Metab 286:E234–E238

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Walter J (2011) Phosphorylation of amyloid beta (Aβ) peptides – a trigger for formation of toxic aggregates in Alzheimer’s disease. Aging (Albany, NY) 3:PMC3184981

    Google Scholar 

  • Kuner PR, Schubenel RC, Hertel C (1998) β-amyloid binds to p75NTR and activates NF-κB in human neuroblastoma cells. J Neurosci Res 54:798–804

    Article  CAS  PubMed  Google Scholar 

  • Labouèbe G, Liu S, Dias C, Zou H, Wong JC, Karunakaran S, Clee SM, Phillips AG, Boutrel B, Borgland SL (2013) Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. Nat Neurosci 16:300–308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200

    Article  CAS  PubMed  Google Scholar 

  • Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807

    Article  CAS  PubMed  Google Scholar 

  • Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 25:11693–11709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landry GJ, Liu-Ambrose T (2014) Buying time: a rationale for examining the use of circadian rhythm and sleep interventions to delay progression of mild cognitive impairment to Alzheimer’s disease. Front Aging Neurosci 6:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Lasagna-Reeves CA, Sengupta U, Castillo-Carranza D, Gerson JE, Guerrero-Munoz M, Troncoso JC, Jackson GR, Kayed R (2014) The formation of Tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. Acta Neuropathol Commun 2:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauren J, Gimbel D, Nygaard H, Gilbert J, Strittmatter S (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leandro P, Gomes CM (2008) Protein misfolding in conformational disorders: rescue of folding defects and chemical chaperoning. Mini Rev Med Chem 8:901–911

    Article  CAS  PubMed  Google Scholar 

  • Lee HG, Zhu X, Castellani RJ, Nunomura A, Perry G, Smith MA (2007) Amyloid-β in Alzheimer disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther 321(3):823–829

    Google Scholar 

  • Lee H-K, Kumar P, Fu Q, Rosen KM, Querfurth HW (2009) The insulin/Akt signaling pathway is targeted by intracellular β-amyloid. Mol Biol Cell 20:1533–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC, Simonyi A, Sun AY, Sun GY (2010) Phospholipases A2 and neural membrane dynamics: implications for Alzheimer’s disease. J Neurochem 116:813–819

    Article  CAS  Google Scholar 

  • Leoni V (2009) Oxysterols as markers of neurological disease – a review. Scan J Clin Lab Invest 69:22–25

    Article  CAS  Google Scholar 

  • Leoni V, Solomon A, Kivipelto M (2010) Links between ApoE, brain cholesterol metabolism, Tau and amyloid beta-peptide in patients with cognitive impairment. Biochem Soc Trans 38:1021–1025

    Article  CAS  PubMed  Google Scholar 

  • Lessmann V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 69:341–374

    Article  CAS  PubMed  Google Scholar 

  • Li YM, Lai MT, Xu M, Huang Q, DiMuzio-Mower J, Sardana MK, Shi XP, Yin KC, Shafer JA, Gardell SJ (2000) Presenilin 1 is linked with gamma -secretase activity in the detergent solubilized state. Proc Natl Acad Sci U S A 97:6138–6143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Ma G, Cai H, Price DL, Wong PC (2003) Nicastrin is required for assembly of presenilin/γ-secretase complexes to mediate notch signaling and for processing and trafficking of β-amyloid precursor protein in mammals. J Neurosci 23:3272–3277

    CAS  PubMed  Google Scholar 

  • Li Z, Melandri F, Berdo I, Jansen M, Hunter L, Wright S, Valbrun D, Figueiredo-Pereira ME (2004a) Delta12-Prostaglandin J2 inhibits the ubiquitin hydrolase UCH-L1 and elicits ubiquitin-protein aggregation without proteasome inhibition. Biochem Biophys Res Commun 319:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sue L, Sabbagh M, Cai H, Wong P, Price D, Shen Y (2004b) Amyloid β peptide load is correlated with increased β-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci U S A 101:3632–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LM, Liu QH, Qiao JT, Zhang C (2009) Aβ31–35-induced neuronal apoptosis is mediated by JNK-dependent extrinsic apoptosis pathway. Neurosci Bull 25:361–366

    Article  PubMed  CAS  Google Scholar 

  • Li W, Yu J, Huang X, Abumaria N, Zhu Y, Huang X, Xiong W, Pen C, Liu X-C, Chui D, Liu G (2014) Elevation of brain magnesium prevents synaptic loss and reverses cognitive deficits in Alzheimer’s disease mouse model. Mol Brain 7:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lieb W, Beiser AS, Vasan RS, Tan ZS, Au R, Harris TB, Roubenoff R, Auerbach S, DeCarli C, Wolf PA, Seshadri S (2009) Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 302:2565–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linkous DH, Flinn JM, Koh JY, Lanzirotti A, Bertsch PM, Jones BF, Giblin LJ, Frederickson CJ (2008) Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles. J Histochem Cytochem 56:3–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Dou F, Feng J, Yan Z (2001) RACK1 is involved in β-amyloid impairment of muscarinic regulation of GABAergic transmission. Neurobiol Aging 32:1818–1826

    Article  CAS  Google Scholar 

  • Liu Y, Qin L, Wilson BC, An L, Hong J-S, Liu B (2002) Inhibition by naloxone stereoisomers of β-amyloid peptide (1-42)-induced superoxide production in microglia and degeneration of cortical and mesencephalic neurons. J Pharmacol Exp Ther 302:1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Xu Y, Feng Y, Liu H, Shen X, Chen K, Ma J, Jiang H (2006) Inhibitor discovery targeting the intermediate structure of beta-amyloid peptide on the conformational transition pathway: implications in the aggregation mechanism of beta-amyloid peptide. Biochemistry 45:10963–10972

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Li W, Ahmad M, Miller TM, Rose ME, Poloyac SM, Uechi G, Balasubramani M, Hickey RW, Graham SH (2011) Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury. Neurobiol Dis 41:318–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longo FM, Massa SM (2008) Small molecule modulation of p75 neurotrophin receptor functions. CNS Neurol Disord Drug Targets 7:63–70

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-Pierrat C, Staufenbiel M, Mautino J, Vigo FS, Sommer B, Yankner BA (2000) Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat Neurosci 3:460–464

    Article  CAS  PubMed  Google Scholar 

  • Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF, Sathler LB, Brito-Moreira J, Amaral OB, Silva CA, Freitas-Correa L, Espírito-Santo S, Campello-Costa P, Houzel JC, Klein WL, Holscher C, Carvalheira JB, Silva AM, Velloso LA, Munoz DP, Ferreira ST, De Felice FG (2013) TNF-alpha mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s beta-amyloid oligomers in mice and monkeys. Cell Metab 18:831–843

    Article  CAS  PubMed  Google Scholar 

  • Lovell MA, Markesbery WR (2008) Oxidatively modified RNA in mild cognitive impairment. Neurobiol Dis 29:169–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  CAS  PubMed  Google Scholar 

  • Lukiw WJ, Andreeva TV, Grigorenko AP, Rogaev EI (2013) Studying micro RNA function and dysfunction in Alzheimer’s disease. Front Genet 3:327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, Russell DW (2003) Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 278:22980–22988

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, Martin L, Louis JC, Yan Q, Richards WG, Citron M, Vassar R (2001) Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation. Nat Neurosci 4:231–232

    Article  CAS  PubMed  Google Scholar 

  • Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    Article  CAS  PubMed  Google Scholar 

  • Lutjohann D, Papassotiropoulos A, Bjorkhem I, Locatelli S, Bagli M, Oehring RD, Schlegel U, Jessen F, Rao ML, von Bergmann K, Heun R (2000) Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 41:195–198

    CAS  PubMed  Google Scholar 

  • Ma H, Lesne S, Kotilinek L, Steidl-Nichols JV, Sherman M, Younkin L, Younkin S, Forster C, Sergeant N, Delacourte A, Vassar R, Citron M, Kofuji P, Boland LM, Ashe KH (2007) Involvement of beta-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. Proc Natl Acad Sci U S A 104:8167–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandelkow EM, Biernat J, Drewes G, Gustke N, Trinczek B, Mandelkow E (1995) Tau domains, phosphorylation, and interactions with microtubules. Neurobiol Aging 16:355–362, discussion 362–353

    Article  CAS  PubMed  Google Scholar 

  • Mandelkow EM, Schweers O, Drewes G, Biernat J, Gustke N, Trinczek B, Mandelkow E (1996) Structure, microtubule interactions, and phosphorylation of Tau protein. Ann N Y Acad Sci 777:96–106

    Article  CAS  PubMed  Google Scholar 

  • Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E (2003) Clogging of axons by Tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24:1079–1085

    Article  CAS  PubMed  Google Scholar 

  • Mantha AK, Sarkar B, Tell G (2013) A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. Mitochondrion 16:38–49

    Article  PubMed  CAS  Google Scholar 

  • Mao X, Ye J, Zhou S, Pi R, Dou J, Zang L, Chen X, Chao X, Li W, Liu M, Liu P (2012) The effects of chronic copper exposure on the amyloid protein metabolisim associated genes’ expression in chronic cerebral hypoperfused rats. Neurosci Lett 518:14–18

    Article  CAS  PubMed  Google Scholar 

  • Martic S, Rains MK, Kraatz HB (2013) Probing copper/Tau protein interactions electrochemically. Anal Biochem 442:130–137

    Article  CAS  PubMed  Google Scholar 

  • Martin L, Latypova X, Wilson CM et al (2013) Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12:289–309

    Article  CAS  PubMed  Google Scholar 

  • Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN (2009) Cholesterol metabolism and transport in the pathogenesis of Alzheimer’s disease. J Neurochem 111:1275–1308

    Article  CAS  PubMed  Google Scholar 

  • Marwarha G, Ghribi O (2012) Leptin signaling and Alzheimer’s disease. Am J Neurodegener Dis 1:245–265

    PubMed  PubMed Central  Google Scholar 

  • Marwarha G, Dasari B, Prasanthi JR, Schommer J, Ghribi O (2010a) Leptin reduces the accumulation of Abeta and phosphorylated Tau induced by 27-hydroxycholesterol in rabbit organotypic slices. J Alzheimers Dis 19:1007–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marwarha G, Dasari B, Prabhakara JP, Schommer J, Ghribi O (2010b) β-Amyloid regulates leptin expression and Tau phosphorylation through the mTORC1 signaling pathway. J Neurochem 115:373–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marwarha G, Raza S, Prasanthi JR, Ghribi O (2013) Gadd153 and NF-κB crosstalk regulates 27-hydroxycholesterol-induced increase in BACE1 and β-amyloid production in human neuroblastoma SH-SY5Y cells. PLoS One 8, e70773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr, Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56:127–129

    Article  CAS  PubMed  Google Scholar 

  • Mast N, Norcross R, Andersson U, Shou M, Nakayama L, Bjorkhem I, Pikuleva IA (2003) Broad substrate specificity of human cytochrome P450 46A1 which initiates cholesterol degradation in the brain. Biochemistry 42:14284–14292

    Article  CAS  PubMed  Google Scholar 

  • Mateos L, Akterin S, Gil-Bea FJ, Spulber S, Rahman A, Björkhem I, Schultzberg M, Flores-Morales A, Cedazo-Minguez A (2009) Activity-regulated cytoskeleton-associated protein in rodent brain is down-regulated by high fat diet in vivo and by 27-hydroxycholesterol in vitro. Brain Pathol 19:69–80

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Kato K, Yanagisawa K (2010) Abeta polymerization through interaction with membrane gangliosides. Biochim Biophys Acta 1801:868–877

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP (2004) Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann N Y Acad Sci 1012:37–50

    Article  CAS  PubMed  Google Scholar 

  • Matus A (1994) Stiff microtubules and neuronal morphology. Trends Neurosci 17:19–22

    Article  CAS  PubMed  Google Scholar 

  • McCord MC, Aizenman E (2014) The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front Aging Neurosci 6:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34:939–944

    Article  CAS  PubMed  Google Scholar 

  • Mclauren Dorrance A, Graham D, Dominiczak A, Fraser R (2000) Inhibition of nitric oxide synthesis increases erythrocyte membrane fluidity and unsaturated fatty acid content. Am J Hypertens 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • McNay EC, Ong CT, McCrimmon RJ, Cresswell J, Bogan JS, Sherwin RS (2010) Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol Learn Mem 93:546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meadowcroft MD, Connor JR, Smith MB, Yang QX (2009) MRI and histological analysis of beta-amyloid plaques in both human Alzheimer’s disease and APP/PS1 transgenic mice. J Magn Reson Imaging 29:997–1007

    Article  PubMed  PubMed Central  Google Scholar 

  • Metcalfe MJ, Huang Q, Figueiredo-Pereira ME (2012) Coordination between proteasome impairment and caspase activation leading to TAU pathology: neuroprotection by cAMP. Cell Death Dis 3, e326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meziane H, Dodart JC, Mathis C, Little S, Clemens J, Paul SM, Ungerer A (1998) Memory-enhancing effects of secreted forms of the beta-amyloid precursor protein in normal and amnestic mice. Proc Natl Acad Sci U S A 95:12683–12688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228

    Article  CAS  PubMed  Google Scholar 

  • Millan MJ (2013) An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 68:2–82

    Article  CAS  PubMed  Google Scholar 

  • Mitani Y, Akashiba H, Saita K, Yarimizu J, Uchino H, Okabe M, Asai M, Yamasaki S, Nozawa T, Ishikawa N, Shitaka Y, Ni K, Matsuoka N (2014) Pharmacological characterization of the novel γ-secretase modulator AS2715348, a potential therapy for Alzheimer’s disease, in rodents and nonhuman primates. Neuropharmacology 79:412–419

    Article  CAS  PubMed  Google Scholar 

  • Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M (2005) Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 75:367–390

    Article  CAS  PubMed  Google Scholar 

  • Morante S (2008) The role of metals in beta-amyloid peptide aggregation: X-Ray spectroscopy and numerical simulations. Curr Alzheimer Res 5:508–524

    Article  CAS  PubMed  Google Scholar 

  • Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Titani K, Ihara K (1995) Proline-directed and non-proline-directed phosphorylation of PHF-Tau. J Biol Chem 270:823–829

    Article  CAS  PubMed  Google Scholar 

  • Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of Tau. Neuron 70:410–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2:a006338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Münzberg H, Myers MG Jr (2005) Molecular and anatomical determinants of central leptin resistance. Nat Neurosci 8:566–570

    Article  PubMed  CAS  Google Scholar 

  • Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71–124

    Article  CAS  PubMed  Google Scholar 

  • Naeve GS, Ramakrishnan M, Kramer R, Hevroni D, Citri Y et al (1997) Neuritin: a gene induced by neural activity and neurotrophins that promotes neuritogenesis. Proc Natl Acad Sci U S A 94:2648–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ (2014) Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease. Front Aging Neurosci 6:235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nathlie P, Jean-Noel O (2008) Processing of amyloid precursor protein and amyloid peptide neurotoxicity. Curr Alzheimer Res 5:92–99

    Article  Google Scholar 

  • Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kövari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Niedowicz DM, Studzinski CM, Weidner AM, Platt TL, Kingry KN, Beckett TL, Bruce-Keller AJ, Keller JN, Murphy MP (2013) Leptin regulates amyloid β production via the γ-secretase complex. Biochim Biophys Acta 1832:439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen E, Severin F, Backer JM, Hyman AA, Zerial M (1999) Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1:376–382

    Article  CAS  PubMed  Google Scholar 

  • Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nistico R, Cavallucci V, Piccinin S, Macri S, Pignatelli M, Mehdawy B, Blandini F, Laviola G, Lauro D, Mercuri NB, D’Amelio M (2012) Insulin receptor beta-subunit haploinsufficiency impairs hippocampal late-phase LTP and recognition memory. Neuromolecular Med 14:262–269

    Article  CAS  PubMed  Google Scholar 

  • Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers MG Jr, Schwartz MW (2001) Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 413:794–795

    Article  CAS  PubMed  Google Scholar 

  • Nolte C, Gore A, Sekler I, Kresse W, Hershfinkel M, Hoffman A, Kettenmann H, Moran A (2004) ZnT1 expression in astroglial cells protects against zinc toxicity and slows the accumulation of intracellular zinc. Glia 43:145–155

    Article  Google Scholar 

  • Nunomura A, Hofer T, Moreira PT, Castellani RJ, Smith MA, Perry G (2009) RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol 118:151–166

    Article  CAS  PubMed  Google Scholar 

  • Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE, Hempstead BL, Petersen CM (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427:843–848

    Article  CAS  PubMed  Google Scholar 

  • Octave JN (2005) Alzheimer disease: cellular and molecular aspects Bull. Mem Acad R Med Belg 160:445–449

    CAS  Google Scholar 

  • Oddo S (2008) The ubiquitin-proteasome system in Alzheimer’s disease. J Cell Mol Med 12:363–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–10670

    Article  CAS  PubMed  Google Scholar 

  • Oikawa N, Goto M, Ikeda K, Taguchi R, Yanagisawa K (2012) The γ-secretase inhibitor DAPT increases the levels of gangliosides at neuritic terminals of differentiating PC12 cells. Neurosci Lett 525:49–53

    Article  CAS  PubMed  Google Scholar 

  • Olkkonen VM, Béaslas O, Nissilä E (2012) Oxysterols and their cellular effectors. Biomolecules 2:76–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong WY, Kim J-H, He X, Chen P, Farooqui AA, Jenner AM (2010) Changes in brain cholesterol metabolome after kainate excitotoxicity. Mol Neurobiol 41:299–313

    Article  CAS  PubMed  Google Scholar 

  • Opazo C, Huang X, Cherny RA, Moir RD, Roher AE, White AR, Cappai R, Masters CL, Tanzi RE, Inestrosa NC, Bush AI (2002) Metalloenzyme-like activity of Alzheimer’s disease β-amyloid: Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J Biol Chem 277:40302–40308

    Article  CAS  PubMed  Google Scholar 

  • Pál G, Vincze C, Renner É, Wappler EA, Nagy Z, Lovas G, Dobolyi A (2012) Time course, distribution and cell types of induction of transforming growth factor betas following middle cerebral artery occlusion in the rat brain. PLoS One 7, e46731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paoletti P, Vergnano AM, Barbour B, Casado M (2009) Zinc at glutamatergic synapses. Neuroscience 158:126–136

    Article  CAS  PubMed  Google Scholar 

  • Paudel HK, Lew J, Ali Z, Wang JH (1993) Brain proline-directed protein kinase phosphorylates Tau on sites that are abnormally phosphorylated in Tau associated with Alzheimer’s paired helical filaments. J Biol Chem 268:23512–23518

    CAS  PubMed  Google Scholar 

  • Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756

    Article  CAS  PubMed  Google Scholar 

  • Perini G, Della-Bianca V, Politi V, Della Valle G, Dal-Pra I, Rossi F, Armato U (2002) Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. J Exp Med 195:907–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ (2001) Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 26:771–782

    Article  CAS  PubMed  Google Scholar 

  • Pfrieger FW (2003) Outsourcing in the brain do neurons depend on cholesterol delivery by astrocytes? Bioessays 25:72–78

    Article  PubMed  CAS  Google Scholar 

  • Pimenova AA, Thathiah A, De Strooper B, Tesseur I (2014) Regulation of amyloid precursor protein processing by serotonin signaling. PLoS One 9, e87014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poon WW, Blurton-Jones M, Tu CH, Feinberg LM, Chabrier MA, Harris JW, Jeon NL, Cotman CW (2011) β-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol Aging 32:821–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon WW, Carlos AJ, Aguilar BL, Berchtold NC, Kawano CK, Zograbyan V, Yaopruke T, Shelanski M, Cotman CW (2013) Levels of soluble apolipoprotein E/amyloid-β (Aβ) complex are reduced and oligomeric Aβ increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples. J Biol Chem 288:16937–16948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M, Flamez P, Dequenne A, Godaux E, van Leuven F, Fahrenholz F (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113:1456–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2009) Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr 28:257–265

    Article  CAS  PubMed  Google Scholar 

  • Pratico D, Zhukareva V, Yao Y, Uryu K, Funk CD, Lawson JA, Trojanowski JQ, Lee VM (2004) 12/15-lipoxygenase is increased in Alzheimer’s disease: possible involvement in brain oxidative stress. Am J Pathol 164:1655–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price JL, McKeel DW Jr, Buckles VD, Roe CM, Xiong C, Grundman M, Hansen LA, Petersen RC, Parisi JE, Dickson DW, Smith CD, Davis DG, Schmitt FA, Markesbery WR, Kaye J, Kurlan R, Hulette C, Kurland BF, Higdon R, Kukull W, Morris JC (2009) Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging 30:1026–1036

    Article  PubMed  PubMed Central  Google Scholar 

  • Puglielli L, Ellis BC, Saunders AJ, Kovacs DM (2003) Ceramide stabilizes β-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid β-peptide biogenesis. J Biol Chem 278:19777–19783

    Article  CAS  PubMed  Google Scholar 

  • Purro SA, Dickins EM, Salinas PC (2012) The secreted Wnt antagonist dickkopf-1 is required for amyloid β-mediated synaptic loss. J Neurosci 32:3492–3498

    Article  CAS  PubMed  Google Scholar 

  • Puzzo D, Privitera L, Leznik E, Fà M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28:14537–14545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu WQ, Folstein MF (2006) Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging 27:190–198

    Article  CAS  PubMed  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS (2008) Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab 8:512–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramasamy R, Yan SF, Schmidt AM (2009) RAGE therapeutic target and biomarker of the inflammatory response-the evidence mounts. J Leukoc Biol 86:505–512

    Article  CAS  PubMed  Google Scholar 

  • Rao JS, Rapoport SI, Kim HW (2011) Altered neuroinflammatory, arachidonic acid cascade and synaptic markers in postmortem Alzheimer’s disease brain. Transl Psychiatry 1, e31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao JS, Keleshian VL, Klein S, Rapoport SI (2012) Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl Psychiatry 2, e132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PH (2009) Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp Neurol 218:286–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PH, Geethalakshmi M, Byung SP, Joline J, Geoffrey M, William W Jr, Jeffrey K, Maria M (2005) Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction. J Alzheimers Dis 7:103–117

    CAS  PubMed  Google Scholar 

  • Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88:640–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renner M, Lacor PN, Velasco PT, Xu J, Contractor A, Klein WL, Triller A (2010) Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 66:739–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reser JE (2009) Alzheimer’s disease and natural cognitive aging may represent adaptive metabolism reduction programs. Behav Brain Funct 5:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, LaFerla FM, Rohn TT, Cotman CW (2004) Caspase-cleavage of Tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114:121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritter A, Cummings J (2015) Fluid biomarkers in clinical trials of Alzheimer’s disease therapeutics. Front Neurol 6:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous Tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754

    Article  CAS  PubMed  Google Scholar 

  • Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu G-Q, Palop JJ, Noebels JL, Mucke L (2011) Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on Tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci 31:700–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson KD, Wolffe AP (2000) DNA methylation in health and disease. Nat Rev Genet 1:11–19

    Article  CAS  PubMed  Google Scholar 

  • Rohan de Silva HA, Jen A, Wickenden C, Jen LS, Wilkinson SL, Patel AJ (1997) Cell-specific expression of beta-amyloid precursor protein isoform mRNAs and proteins in neurons and astrocytes. Brain Res Mol Brain Res 47:147–156

    Article  CAS  PubMed  Google Scholar 

  • Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P, Morabito M, Almeida OF (2005) Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 25:11061–1070

    Google Scholar 

  • Rosso SB, Inestrosa NC (2013) WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 7:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell DW, Halford RW, Ramirez DM, Shah R, Kotti T (2009) Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. Annu Rev Biochem 78:1017–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, Theofilopoulos S, Parish CL, Hazenberg C, Richter LA, Hovatta O, Gustafsson JA, Arenas E (2009) Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell 5:409–419

    Article  CAS  PubMed  Google Scholar 

  • Sala Frigerio C, Lau P, Salta E, Tournoy J, Bossers K, Vandenberghe R, Wallin A, Bjerke M, Zetterberg H, Blennow K, De Strooper B (2011) Reduced expression of hsa-miR27a-3p in CSF of patients with Alzheimer disease. Neurology 81:2103–2106

    Article  CAS  Google Scholar 

  • Santucci R, Sinibaldi F, Fiorucci L (2008) Protein folding, unfolding and misfolding: role played by intermediate states. Mini Rev Med Chem 8:57–62

    Article  CAS  PubMed  Google Scholar 

  • Saravia FE, Revsin Y, Gonzalez Deniselle MC, Gonzalez SL, Roig P, Lima A, Homo-Delarche F, De Nicola AF (2002) Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: the nonobese diabetic (NOD) and streptozotocin-treated mice. Brain Res 957:345–353

    Article  CAS  PubMed  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18:391–418

    Article  CAS  PubMed  Google Scholar 

  • Schmitt B, Bernhardt T, Moeller H-J, Heuser I, Frölich L (2004) Combination therapy in Alzheimer’s disease. CNS Drugs 18:827–844

    Article  CAS  PubMed  Google Scholar 

  • Schmitz A, Tikkanen R, Kirfel G, Herzog V (2002) The biological role of the Alzheimer amyloid precursor protein in epithelial cells. Histochem Cell Biol 117:171–180

    Article  CAS  PubMed  Google Scholar 

  • Schroeter ML, Stein T, Maslowski N, Neumann J (2009) Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients. Neuroimage 47:1196–1206

    Article  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192:106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2011) Alzheimer’s disease. Cold Spring Harb Perspect Biol 3:a004457

    Google Scholar 

  • Seneff S, Wainwright G, Mascitelli L (2011) Nutrition and Alzheimer’s disease: the detrimental role of a high carbohydrate diet. Eur J Intern Med 22:134–140

    Article  CAS  PubMed  Google Scholar 

  • Sethi P, Lukiw WJ (2009) Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 459:100–104

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Lin CLG (2006) Quantification of oxidized RNAs in Alzheimer’s disease. Neurobiol Aging 27:657–662

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Tashiro H, Lin CL (2003) The identification and characterization of oxidized RNAs in Alzheimer’s disease. J Neurosci 23:4913–4921

    CAS  PubMed  Google Scholar 

  • Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ (2007) Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 6:295–303

    Article  CAS  PubMed  Google Scholar 

  • Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY (2008) Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem 106:45–55

    Article  CAS  PubMed  Google Scholar 

  • Shen WX, Chen JH, Lu JH, Peng YP, Qiu YH (2014) TGF-β1 protection against Aβ1-42-induced neuroinflammation and neurodegeneration in rats. Int J Mol Sci 15:22092–22108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shruster A, Eldar-Finkelman H, Melamed E, Offen D (2011) Wnt signaling pathway overcomes the disruption of neuronal differentiation of neural progenitor cells induced by oligomeric amyloid β-peptide. J Neurochem 116:522–529

    Article  CAS  PubMed  Google Scholar 

  • Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Brain Res Rev 33:199–227

    Article  CAS  PubMed  Google Scholar 

  • Silva-Alvarez C, Arrazola MS, Godoy JA, Ordenes D, Inestrosa NC (2013) Canonical Wnt signaling protects hippocampal neurons from Abeta oligomers: role of non-canonical Wnt-5a/Ca2+ in mitochondrial dynamics. Front Cell Neurosci 7:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvestri L, Camaschella C (2008) A potential pathogenetic role of iron in Alzheimer’s disease. J Cell Mol Med 12:1548–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons K, Ikonen E (2000) How cells handle cholesterol? Science 290:1721–1726

    Article  CAS  PubMed  Google Scholar 

  • Skovronsky DM, Moore DB, Milla ME, Doms RW, Lee VM (2000) Protein kinase C-dependent alpha-secretase competes with beta-secretase for cleavage of amyloid-beta precursor protein in the trans-golgi network. J Biol Chem 275:2568–2575

    Article  CAS  PubMed  Google Scholar 

  • Slutsky I, Sadeghpour S, Li B, Liu G (2004) Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity. Neuron 44:835–849

    Article  CAS  PubMed  Google Scholar 

  • Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW Jr, Cohen ML, Wang X, Siedlak SL, Dwyer BE, Hayashi T, Nakamura M, Nunomura A, Perry G (2010) Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis 19:363–372

    PubMed  PubMed Central  Google Scholar 

  • Smith PY, Delay C, Girard J, Papon MA, Planel E, Sergeant N, Buée L, Hébert SS (2011) MicroRNA-132 loss is associated with Tau exon 10 inclusion in progressive supranuclear palsy. Hum Mol Genet 20:4016–4024

    Article  CAS  PubMed  Google Scholar 

  • Söderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421–425

    Article  PubMed  Google Scholar 

  • Sometani A, Kataoka H, Nitta A, Fukumitsu H, Nomoto H, Furukawa S (2001) Transforming growth factor-beta1 enhances expression of brain-derived neurotrophic factor and its receptor, TrkB, in neurons cultured from rat cerebral cortex. J Neurosci Res 66:369–376

    Article  CAS  PubMed  Google Scholar 

  • Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD (2010) The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 5, e9505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sotthibundhu A, Sykes AM, Fox B, Underwood CK, Thangnipon W, Coulson EJ (2008) β-amyloid1−42 induces neuronal death through the p75 neurotrophin receptor. J Neurosci 28:3941–3946

    Article  CAS  PubMed  Google Scholar 

  • Speisky H, Gomez M, Burgos-Bravo F, Lopez-Alarcon C, Jullian C, Olea-Azar C, Aliaga ME (2009) Generation of superoxide radicals by copper-glutathione complexes: redox-consequences associated with their interaction with reduced glutathione. Bioorg Med Chem 17:1803–1810

    Article  CAS  PubMed  Google Scholar 

  • Stanyon HF, Patel K, Begum N, Viles JH (2014) Copper(II) sequentially loads onto the N-terminal amino group of the cellular prion protein before the individual octarepeats. Biochemistry 53:3934–3939

    Article  CAS  PubMed  Google Scholar 

  • Starkov AA, Beal FM (2008) Portal to Alzheimer’s disease. Nat Med 14:1020–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson D, Rash K, Smalstig B, Roberts E, Johnstone E, Sharp J, Panetta J, Little S, Kramer R, Clemens J (1999) Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 27:110–128

    Article  CAS  PubMed  Google Scholar 

  • Stoothoff WH, Johnson GVW (2005) Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta 1739:280–297

    Article  CAS  PubMed  Google Scholar 

  • Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18:1085–1088

    Article  PubMed  PubMed Central  Google Scholar 

  • Sultana R, Perluigi M, Butterfield DA (2009) Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 118:131–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun GY, Horrocks LA, Farooqui AA (2007) The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103:1–16

    Article  CAS  PubMed  Google Scholar 

  • Sun GY, He Y, Chuang DY, Lee JC, Gu Z, Simonyi A, Sun AY (2012) Integrating cytosolic phospholipase A2 with oxidative/nitrosative signaling pathways in neurons: a novel therapeutic strategy for AD. Mol Neurobiol 46:85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svennerholm L, Gottfries CG (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J Neurochem 62:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan A, Jicha GA (2014) Nutrition and prevention of Alzheimer’s dementia. Front Aging Neurosci 6:282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szewczyk B (2013) Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 5:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tabaton M, Zhu X, Perry G, Smith MA, Giliberto L (2010) Signaling effect of amyloid-beta(42) on the processing of AbetaPP. Exp Neurol 221:18–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takami M, Funamoto S (2012) gamma-Secretase-dependent proteolysis of transmembrane domain of amyloid precursor protein: successive tri- and tetrapeptide release in amyloid beta-protein production. Int J Alzheimers Dis 2012, 591392

    Google Scholar 

  • Takeda A (2000) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–351

    Article  Google Scholar 

  • Takeuchi M, Yamagishi S (2008) Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr Pharm Des 14:973–978

    Article  CAS  PubMed  Google Scholar 

  • Tan Z, Shi L, Schreiber SS (2009) Differential expression of redox factor-1 associated with β-amyloid-mediated neurotoxicity. Open Neurosci J 3:26–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273

    Article  PubMed  CAS  Google Scholar 

  • Teng J, Takei Y, Harada A, Nakata T, Chen J, Hirokawa N (2001) Synergistic effects of MAP2 and MAP1B knockout in neuronal migration, dendritic outgrowth, and microtubule organization. J Cell Biol 155:65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  CAS  PubMed  Google Scholar 

  • Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing and function. J Biol Chem 283:29615–29619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thounaojam MC, Kaushik DK, Basu A (2013) MicroRNAs in the brain: it’s regulatory role in neuroinflammation. Mol Neurobiol 47:1034–1044

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Crump CJ, Li YM (2010) Dual role of alpha-secretase cleavage in the regulation of gamma-secretase activity for amyloid production. J Biol Chem 285:32549–32556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiffany HL, Lavigne MC, Cui YH, Wang JM, Leto TL, Gao JL, Murphy PM (2001) Amyloid-β induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2 (FPR2), a G protein-coupled receptor expressed in phagocytes and brain. J Biol Chem 276:23645–23652

    Article  CAS  PubMed  Google Scholar 

  • Tong L, Balazs R, Thornton PL, Cotman CW (2004) β-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. J Neurosci 24:6799–6809

    Article  CAS  PubMed  Google Scholar 

  • Townsend M, Mehta T, Selkoe DJ (2007) Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem 282:33305–33312

    Article  CAS  PubMed  Google Scholar 

  • Tremblay ML, Giguere V (2008) Phosphatases at the heart of FoxO metabolic control. Cell Metab 7:101–103

    Article  CAS  PubMed  Google Scholar 

  • Trousson A, Bernard S, Petit PX, Liere P, Pianos A, El Hadri K, Lobaccaro JM, Ghandour MS, Raymondjean M, Schumacher M, Massaad C (2009) 25-hydroxycholesterol provokes oligodendrocyte cell line apoptosis and stimulates the secreted phospholipase A2 type IIA via LXR beta and PXR. J Neurochem 109:945–958

    Article  CAS  PubMed  Google Scholar 

  • Tyan SH, Shih AY, Walsh JJ, Maruyama H, Sarsoza F, Ku L, Eggert S, Hof PR, Koo EH, Dickstein DL (2012) Amyloid precursor protein (APP) regulates synaptic structure and function. Mol Cell Neurosci 51:43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, Gunther EC, Nygaard HB, Strittmatter SM (2013) Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer aβ oligomer bound to cellular prion protein. Neuron 79:887–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unger J, McNeill TH, Moxley RT 3rd, White M, Moss A, Livingston JN (1989) Distribution of insulin receptor-like immunoreactivity in the rat forebrain. Neuroscience 31:143–157

    Article  CAS  PubMed  Google Scholar 

  • Upadhya SC, Hegde AN (2007) Role of the ubiquitin proteasome system in Alzheimer’s disease. BMC Biochem 8(Suppl 1):S12

    Google Scholar 

  • van der Heide LP, Ramakers GMJ, Smidt MP (2006) Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol 79:205–221

    Article  PubMed  CAS  Google Scholar 

  • van Helmond Z, Miners JS, Kehoe PG, Love S (2010) Higher soluble amyloid beta concentration in frontal cortex of young adults than in normal elderly or Alzheimer’s disease. Brain Pathol 20:787–793

    Article  PubMed  CAS  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vargas JY, Fuenzalida M, Inestrosa NC (2014) In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer’s disease model. J Neurosci 34:2191–2202

    Article  CAS  PubMed  Google Scholar 

  • Vassar R (2004) BACE1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 23:105–114

    Article  CAS  PubMed  Google Scholar 

  • Vazquez A (2013) Metabolic states following accumulation of intracellular aggregates: implications for neurodegenerative diseases. PLoS One 8, e63822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vega GL, Weiner MF, Lipton AM, von Bergmann K, Lutjohann D, Moore C, Svetlik D (2003) Reduction in levels of 24S-hydroxycholesterol by statin treatment in patients with Alzheimer disease. Arch Neurol 60:510–515

    Article  PubMed  Google Scholar 

  • Velez-Pardo C, Garcia Ospina G, Jimenez del Rio M (2002) Aβ[25-35] peptide and iron promote apoptosis in lymphocytes by an oxidative stress mechanism: involvement of H2O2, caspase-3, NF-κB, p53 and c-Jun. Neurotoxicology 23:351–365

    Article  CAS  PubMed  Google Scholar 

  • Verdile G, Fuller S, Atwood CS, Laws SM, Gandy SE, Martins RN (2004) The role of beta amyloid in Alzheimer’s disease: still a cause of everything or the only one who got caught? Pharmacol Res 50:397–409

    Article  CAS  PubMed  Google Scholar 

  • Vincze C, Pál G, Wappler EA, Szabó ER, Nagy ZG, Lovas G, Dobolyi A (2010) Distribution of mRNAs encoding transforming growth factors-beta1, -2, and -3 in the intact rat brain and after experimentally induced focal ischemia. J Comp Neurol 518:3752–3770

    Article  CAS  PubMed  Google Scholar 

  • Wagner SL, Zhang C, Cheng S, Nguyen P, Zhang X, Rynearson KD, Wang R, Li Y, Sisodia SS, Mobley WC, Tanzi RE (2014) Soluble γ-secretase modulators selectively inhibit the production of the 42-amino acid amyloid β peptide variant and augment the production of multiple carboxy-truncated amyloid β species. Biochemistry 53:702–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  CAS  PubMed  Google Scholar 

  • Wang L-J, Colella R, Roisen FJ (1998a) Ganglioside GM1 alters neuronal morphology by modulating the association of MAP2 with microtubules and actin filaments. Brain Res Dev Brain Res 105:227–239

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Kreutzer DA, Essigmann JM (1998b) Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat Res 400:99–115

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Lee DH, D’Andrea MR, Peterson PA, Shank RP, Reitz AB (2000) β-amyloid(1-42) binds to α-7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 275:5626–5632

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kumar N, Crumbley C, Griffin PR, Burris TP (2010) A second class of nuclear receptors for oxysterols: regulation of RORalpha and RORgamma activity by 24S-hydroxycholesterol (cerebrosterol). Biochim Biophys Acta 1801:917–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt NT, Taylor DR, Kerrigan TL, Griffiths HH, Rushworth JV, Whitehouse IJ, Hooper NM (2012) Prion protein facilitates uptake of zinc into neuronal cells. Nat Commun 3:1134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wells K, Farooqui AA, Liss L, Horrocks LA (1995) Neural membrane phospholipids in Alzheimer disease. Neurochem Res 20:1329–1333

    Article  CAS  PubMed  Google Scholar 

  • West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal aging and Alzheimer’s disease. Lancet 344:769–772

    Article  CAS  PubMed  Google Scholar 

  • Winoto A, Littman DR (2002) Nuclear hormone receptors in T lymphocytes. Cell 109:S57–S66

    Article  CAS  PubMed  Google Scholar 

  • Wolozin B (2004) Cholesterol and the biology of Alzheimer’s disease. Neuron 41:7–10

    Article  CAS  PubMed  Google Scholar 

  • Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arch Neurol 57:1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Wyss-Coray T (2006) Tgf-Beta pathway as a potential target in neurodegeneration and Alzheimer’s. Curr Alzheimer Res 3:191–195

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Johnson GV (1997) Ceramide selectively decreases Tau levels in differentiated PC12 cells through modulation of calpain I. J Neurochem 8:1020–1030

    Google Scholar 

  • Xie S, Xiao JX, Gong GL, Zang YF, Wang YH, Wu HK, Jiang XX (2006) Voxel-based detection of white matter abnormalities in mild Alzheimer disease. Neurology 66:1845–1849

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Guo M, Hay BA (2004) MicroRNAs and the regulation of cell death. Trends Genet 20:617–624

    Article  CAS  PubMed  Google Scholar 

  • Xu AW, Kaelin CB, Takeda K, Akira S, Schwartz MW, Barsh GS (2005) PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest 115:951–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZP, Li L, Bao J, Wang ZH, Zeng J, Liu EJ, Li XG, Huang RX, Gao D, Li MZ, Zhang Y, Liu GP, Wang JZ (2014) Magnesium protects cognitive functions and synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model. PLoS One 9, e108645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yaar M, Zhai S, Pilch PF, Doyle SM, Eisenhauer PB, Fine RE, Gilchrest BA (1997) Binding of β-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. J Clin Invest 100:2333–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaar M, Zhai S, Fine RE, Eisenhauer PB, Arble BL, Stewart KB, Gilchrest BA (2002) Amyloid β binds trimers as well as monomers of the 75-kDa neurotrophin receptor and activates receptor signaling. J Biol Chem 277:7720–7725

    Article  CAS  PubMed  Google Scholar 

  • Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691

    Article  CAS  PubMed  Google Scholar 

  • Yao ZX, Papadopoulos V (2002) Function of beta-amyloid in cholesterol transport: a lead to neurotoxicity. FASEB J 16:1677–1679

    CAS  PubMed  Google Scholar 

  • Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, Song YQ, Rogaeva E, Chen F, Kawarai T, Supala A, Levesque L, Yu H, Yang DS, Holmes E, Milman P, Liang Y, Zhang DM, Xu DH, Sato C, Rogaev E, Smith M, Janus C, Zhang Y, Aebersold R, Farrer LS, Sorbi S, Bruni A, Fraser P, St George-Hyslop P (2000) Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407:48–54

    Article  CAS  PubMed  Google Scholar 

  • Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2 +) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30:11938–11950

    Article  CAS  PubMed  Google Scholar 

  • Zha Q, Ruan Y, Hartmann T, Beyreuther K, Zhang D (2004) GM1 ganglioside regulates the proteolysis of amyloid precursor protein. Mol Psychiatry 9:946–952

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Schuff N, Du AT, Rosen HJ, Kramer JH, Gorno-Tempini ML, Miller BL, Weiner MW (2009) White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain 132:2579–2592

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Zhang Q, Niu J, Lu K, Xie B, Cui D, Xu S (2014) Screening of microRNAs associated with Alzheimer’s disease using oxidative stress cell model and different strains of senescence accelerated mice. J Neurol Sci 338:57–64

    Article  CAS  PubMed  Google Scholar 

  • Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274:34893–34902

    Article  CAS  PubMed  Google Scholar 

  • Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22:246–260

    Article  CAS  PubMed  Google Scholar 

  • Zhao WQ, Lacor PN, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2009) Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric a{beta}. J Biol Chem 284:18742–18753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Wu X, Xie H, Ke Y, Yung WH (2010) Permissive role of insulin in the expression of long-term potentiation in the hippocampus of immature rats. Neurosignals 18:236–245

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Bhattacharjee S, Jones BM, Hill J, Dua P, Lukiw WJ (2014) Regulation of neurotropic signaling by the inducible, NF-κB-sensitive miRNA-125b in Alzheimer’s disease (AD) and in primary human neuronal-glial (HNG) cells. Mol Neurobiol 50:97–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou LX, Du JT, Zeng ZY, Wu WH, Zhao YF, Kanazawa K, Ishizuka Y, Nemoto T, Nakanishi H, Li YM (2007) Copper (II) modulates in vitro aggregation of a Tau peptide. Peptides 28:2229–2234

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Culmsee C, Klumpp S, Krieglstein J (2004) Neuroprotection by transforming growth factor-beta1 involves activation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways. Neuroscience 123:897–906

    Article  CAS  PubMed  Google Scholar 

  • Zhu D, Bungart BL, Yang X, Zhumadilov Z, Lee JC, Askarova S (2015) Role of membrane biophysics in Alzheimer’s-related cell pathways. Front Neurosci 9:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegenhorn AA, Schulte-Herbrüggen O, Danker-Hopfe H, Malbranc M, Hartung HD, Anders D, Lang UE, Steinhagen-Thiessen E, Schaub RT, Hellweg R (2007) Serum neurotrophins—a study on the time course and influencing factors in a large old age sample. Neurobiol Aging 28:1436–1445

    Article  CAS  PubMed  Google Scholar 

  • Zou K, Gong JS, Yanagisawa K, Michikawa M (2002) A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci 22:4833–4841

    CAS  PubMed  Google Scholar 

  • Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5:311–322

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farooqui, A.A. (2016). Neurochemical Aspects of Alzheimer Disease. In: Therapeutic Potentials of Curcumin for Alzheimer Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-15889-1_1

Download citation

Publish with us

Policies and ethics