Fliplt: An LLVM Based Fault Injector for HPC

Jon Calhoun, Luke Olson, and Marc Snir

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{jccalho2,1luko,snir}@illinois.edu

Abstract. High performance computing (HPC) is increasingly subjected
to faulty computations. The frequency of silent data corruptions (SDCs)
in particular is expected to increase in emerging machines requiring HPC
applications to handle SDCs. In this paper we, propose a robust fault injec-
tor structured through an LLVM compiler pass that allows simulation of
SDCs in various applications. Although fault injection locations are enu-
merated at compile time, their activation is purely at runtime and based
on a user-provided fault distribution. The robustness of our fault injector
is in the ability to augment the runtime injection logic on a per application
basis. This allows tighter control on the spacial, temporal, and probabil-
ity of injected faults. The usability, scalability, and robustness of our fault
injection is demonstrated with injecting faults into an algebraic multigird
solver.

1 Introduction

Driven by a need to solve ever larger problems, high performance computing
(HPC) has become a fundamental part of scientific investigation and discovery.
This dependence is evident in the push for increased performance of supercom-
puters over the past few decades. The petascale barrier was broken almost six
years ago , and while the exascale barrier is expected to be broken within the
next decade, it is not expected to be met without overcoming a host of challenges
[10] [3]. One key challenge facing HPC as we march toward exascale is the need
to deal with faults. Faults afflicting HPC systems are classified as either hard or
soft, and are the cause of errors in the system. Hard faults are faults that are
reproducible — e.g. the inability to communicate with a node that is offline. Soft
faults are faults where activation is not systematically reproducible [1] — e.g. a
bit-flip caused by a charged particle.

Traditionally failures due to hard faults are handled by checkpoint-restart [9].
Issues with scalability [14] [15] are prompting the development of hierarchical
approaches [2], while alternatives to checkpoint-restart focus on replication [7].
Although these solutions provide safeguards against faults present in the system,
they provide little if any insight about the application’s ability to handle faults.

Soft errors are common on DRAM chips, and all DRAMs in modern HPC
include error correcting codes (ECC). The addition of ECC and more advanced
features such as chipkill dramatically reduce the errors in DRAM [17]. Processors
are more difficult to protect, but recent designs add protection to memories, data

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part I, LNCS 8805, pp. 547-558, 2014.
© Springer International Publishing Switzerland 2014

548 J. Calhoun, L. Olson, and M. Snir

paths, and register files. Even so, with increased core count and continued use
of commodity parts, soft errors are likely to be common encounters in emerging
architectures [3].

Consequently, we are motivated to determine the impact of soft errors on
HPC applications and the effectiveness of resiliency schemes to safeguard against
them. Because soft errors are rare and do not normally exhibit during testing,
their manifestation must be simulated by a fault injector.

This paper makes the following contributions:

— The development of a robust LLVM based fault injector that targets HPC
applications.

— An overview in its utility as a general purpose fault injection framework.

— A demonstration of its usability, scalability, robustness on production level
HPC code.

The remainder of this paper is structured as follows. In the next section, we
discuss related background in the area of fault injection. Section 3 details the
design, use, and adaptation to individual applications. Results from its usability,
scalability, and robustness are shown in Section 4.

2 Background

There are many forms of fault injectors. The more accurate the fault injector the
closer to physical hardware the faults are injected. At the lowest level, injections
come in two forms real and simulated.

In real injections, the hardware is bombarded with a concentration of neu-
trons. While this method is highly accurate, it has significant drawbacks mainly
its cost and availability to a limited number of researchers, which limits its ap-
plicability to HPC.

Simulated injections comprise many techniques at both the hardware and soft-
ware level. At the hardware level, gate-accurate models are constructed, and fault
injection occurs systematically with gate level granularity. With gate-accurate
simulations, execution of a full application is possible, but a large scale machine
is prohibitive due to execution overhead. A fault injection framework that op-
erates with low overhead on current hardware is needed to inject faults in HPC
applications.

Many fault injectors have been created that operate in real time and on real
hardware. DOCTOR [8] injects faults into memory, the CPU, and network com-
munications by using time-outs and traps to overwrite memory locations and
modify the binary. XCEPTION [4] is an exception handler that injects faults
when triggered by accesses to specific memory addresses, and simulates stuck-
at-zero, stuck-at-one, and bit-blips. NFTAPE [18] uses a driver based fault in-
jection scheme to inject fault inside the user or kernel space, but requires OS
modification.

Fliplt: An LLVM Based Fault Injector for HPC 549

In compiler based fault injection, hard errors are simulated by adding extra
instructions that always inject in the same location. To address the static na-
ture of these injections, the injection is made dynamic by addition of code that
corrupts data at runtime based on programmatic and environmental factors.

Fault injection for MPI applications is often focused on message injection [7].
Yet other works consider soft errors that manifest in register modifications [5] or
that arise in the memory image of the running application [13,12]. The approach in
[12] allows user identification of stack and heap items to target for injection. This is
similar to our approach where we allow the user to select functions that are faulty.

Since DRAMs have a higher level of protection from silent errors than proces-
sors thanks to being easier to protect by ECC and chipkill, our focus is on faults
that arise in the processor. In the following section, we detail the design of our
fault injector that simulates the presence of silent errors as the manifestation of
bit-flips in register values.

Relax [6], an LLVM based fault injector, is similar to our approach; however, it
is not publicly available, is designed from an old version of LLVM, and does not
target HPC applications. KULFI [16] is a publicly available fault injector similar
to Relax. Because KULFT is still currently maintained and is easily modifiable,
its structure provides a basis for our fault injector. In particular, we utilize
the framework of their compiler pass. We provide a fault injector that is more
expansive, extensible, and provides more user control than KULFT.

3 Fault Injector

3.1 Overview

Our fault injector is structured as an LLVM compiler pass [11] and is based on
KULFI [16]. Notable extensions have been added to increase its robustness and
efficacy. Such extensions include:

— Support for complex pointer types.

— Ability to work with multiple source files simultaneously.
— User customized fault distribution and event logger.

— Support for a larger subset of the LLVM instructions.

— MPI rank aware.

We chose to use an LLVM compiler pass to simulate transient errors instead
of randomly flipping bits inside the binary in order to provide more control
over what section of the code is faulty and when faults arise. The compiler pass
proceeds by iterating over all modules in a source file. Upon discovery a module
marked for injection, the included instructions are surrounded by instructions
that probabilistically inject a fault. Here we say a fault is a single bit-flip in a
source operand or the result of an LLVM instruction. Figure 1 illustrates this
transformation for a single add instruction in which the result is corrupted.

All subsequent use of the variable that is possibly corrupted is replaced with
the value returned from the corrupt function. The locations where faults can
occur are enumerated at compile time, but their activation occurs randomly at
runtime based upon a user provided fault distribution.

550 J. Calhoun, L. Olson, and M. Snir

define i32 @add(i32 %a, 132 %b) #0 {
entry:

%add = add nsw i32 %a, %b

%data = sext i32 %add i64

define i32 @add(i32 %a, i32 %b) #0 { %tmp = call i32 @crptInt(i32 0, i32 0,
entry: double 0.01, i32 2, i64 Y%data)
%add = add nsw i32 %a, %b %crptAdd = trunc i64 Ytmp to i32
ret i32 %add ret i32 YcrptAdd
}
(a) Original LLVM IR. (b) Transformed LLVM IR.

Fig. 1. Code Transformation to Inject Faults

3.2 Design

As shown in Figure 1, a function call to crptInt is used to determine if a bit
should be flipped and performs the flip. Algorithm 1 provides generic logic for
the injection. In every corrupting function, the argument list is the same except
for the data type of the value being corrupted. Table 1 details the argument
list of the corrupt functions from left to right. The byte where a bit-flip is to
occur is either determined at compile time (0-7) or is calculated randomly at
runtime, negative value. If the byte specified is outside the range of the data
type, we use the modulus operator to wrap the bytes to the correct range. For
both the dynamic and static byte selection, the bit that is flipped is determined
at random. We fix a byte before selecting a bit to flip in order to provide the
ability to look at bit flips in certain bit positions.

Algorithm 1. Generic corrupt logic
Input: site Prob: Probability that this site is faulty.
siteIndex: Unique index of this fault site.
data: Value eligible for corruption.
Result: Data unmodified(no injection), or data with a single bit-flip(injection).
1 if = shouldIngect(injectorOn, siteProb) then
2 return data;

else
bit Position <— random bit position in targeted byte;
logInjection(siteIndex, bit Position);
datacorrupt < data @ (0xl K bit Position);
return datacorrupt;

NI 0 Gk w

In our basic model and the experiments in Section IV, we make the simplifying
assumption that all LLVM instructions have an equal probability for a fault to
be injected. Each LLVM instruction should have differing probabilities and is a
function of the underline hardware. Therefore, if one knew this information for
a processor a priori, the scaled probabilities should be incorporated into to the
configuration file of the fault injector.

Advance pointer types, multiple levels of indirection, are not considered for
injection in KULFI. Pointers are represented using a finite number of bits;

Fliplt: An LLVM Based Fault Injector for HPC 551

Table 1. Corrupt function’s arguments #include "/path/to/fault/lib/corrupt.h"
. #include <mpi.h>

(left to rlght) int main(int argc, charx* argv) {

MPI_Init(&argc, &argv);

int id; int seed = 71;

Arg Description MPI_Comm_rank (MPI_COMM_WORLD, &id);
FLIPIT_Init(id, argc, argv, seed);

1 Unique fault site index. fooO);

. R . FLIPIT_Finalize(NULL);

2 Boolean: one injection per active rank. MPI_Finalize();

3 Probability that instruction is faulty. ¥

4 Byte location targeted for bit-flip. .])

5 Data to be corrupted by a bit-flip. Fig.2. Source modifications to use

fault injector

Table 2. User callable functions

Function name Description

FLIPIT Init Initializes fault injector. Turns on injector.

FLIPIT Finalize Cleans up injector. Turns off injector.

FLIPIT SetInjector Zero: turns off injector. Non-zero: turns on injector.
FLIPIT SetFaultProbability Sets the probability function with a user defined function.
FLIPIT SetCustomLogger Sets user defined logging function. Called on all injections.

therefore, in our solution, we inject into pointers by first casting the variable
to a 64-bit integer. Next, a call to corrupt this 64-bit integer is inserted, and the
value returned from this call is cast back to the appropriate data type. As with
all corruptions, all subsequent uses are replaced.

Since a function targeted for corruption may include additional function calls,
corrupting these function calls is critical to properly modeling a fault function.
There are two options to handle propper corruption, depending on the type of
function. First, proper corruption may be issued by recompiling the source of
the corrupting function. Second, if recomplation is not an option — e.g. due to
unavailable source — then we scale the probability of injecting a fault into return
value or argument of the call instruction. The probably is not specified until
compile time, either by using the function’s execution time or by the amount of
hardware active during its execution.

In order to support HPC injections, our fault injector is aware of the pro-
cesses’ current MPI rank inside MPI COMM WORLD. This allows fault injections on
a subset of ranks specified at runtime via command line arguments. Large scale
machines have custom MPI distributions that are tuned for performance. Be-
cause a substantial portion of time in MPI applications is spent in MPI routines,
we must consider MPI calls as faulty. The source code for the machine optimal
MPI is not available. This implies that we must utilize the mechanism outlined
above to modify probabilities of function call injections based upon the execution
characteristics of the function.

552 J. Calhoun, L. Olson, and M. Snir

3.3 Usability and Extensibility

Source Modification. Our fault injector is designed to require minimal mod-
ification to existing codes while at the same time providing a high degree of ro-
bustness and flexibility. Figure 2 shows the minimum required changes to main
in order to use the fault injector. The call to FLIPIT Init should dominate all
usage of code compiled with our fault injector, and no such code should be ex-
ecuted after the call to FLIPIT Finalize. We elect to have the user to insert
calls to FLIPIT Init because it is possible that we never see the file containing
MPI Init. To provide the user with a more fine grain control over fault injection,
the functions in Table 2 are provided.

Compiling. The use of our fault injector requires little modification to current
building practices. Once functions have been identified by the programmer, the
source files containing the functions is recompiled using our compiler pass. Figure
3 shows this process with a change in the Makefile.

INJPASS = /path/to/compiler/pass
INJLIB = -L/path/to/injeciton/lib -lcorrupt.a
FIPARMS = -prob 0.01 -funcList "fool foo2"
HEADER =/path/to/bitcode/header
clang -g -emit-1lvm bob.c -c -o bob.bc
1lvm-1link -o bob_c.bc bob.bc $(HEADER)
opt -load $(INJPASS) $(FIPARAMS) < bob_c.bc > bob_F.bc 2> bob.log
clang -c bob_F.bc -o bob.o
$(CC) -c bob.c $(cC) [...] bob.o [...] $(INJLIB)

(a) Original (b) Modified Makefile line.
Makefile line.

Fig. 3. Compilation steps

Step 1 in the compilation process has the original source being compiled with
clang into LLVM bitcode. We compile with -g to relate fault sites indexed by our
injector to the source code lines. If this flag is omitted we can relate the injection
to the location it the bit-code which doesn’t always have a clear translation back
to the source code due to a provided optimization level. The bitcode generated
is transformed in Step 2 via our compiler pass to enable fault injections. Here
we add code to inject faults into the functions fool and foo2 with a fault
probability of 1 x 1072, each instruction has a 1 in 100 chance of producing an
incorrect result. Table 3 details all possible arguments to our compiler pass and
their default values. Step 3 compiles this transformed bit-code into object code.
Finally we compile the application linking with a static library that contains
the functions used by our injector. To simplify we provide a wrapper script that
replaces the selected compiler in the Makefile.

For MPI applications, mpicc is a wrapper around a native compiler. The com-
piler flags -show and -showme for MPICH and OpenMPI, respectfully, provides
the exact compiler command used to compile the source file. This command
is subsequently modified in accordance to Figure 3, or this information can be
provided to our wrapper script.

Fliplt: An LLVM Based Fault Injector for HPC 553

Table 3. Compiler pass arguments

Argument Type Req. Default Description

config string No Fliplt.config Path to configuration file.

funcList string Yes — Functions to corrupt.

prob double Yes 1le-8 Default per instruction fault probability.
byte int No -1 Byte to flip bit in (0-7). (-1 random).
singlelnj bool No true One injection per rank.

ptr bool No true Allow bit-flips in pointers.

ctrl bool No true Allow bit-flips in control variables.

arith bool No true Allow bit-flips in arithmetic.

Programmer Control. The choice to use a static library for the corruption
routines is influenced by three key points: 1) the need to compile multiple source
files for a single executable; 2) the ability to limit overhead of the fault injec-
tor; and 3) to allow for application specific behavior such as the collection of
user defined statistics. Straightforward use of KULFT is restricted to one source
file, which limits use by requiring the programmer to place all functions of in-
terest into a single source file, or by requiring multiple recompilations to cover
all functions of interest, but sacrificing the ability to look at complex function
interactions.

Our approach to fault injection increases the static and dynamic instruction
count for the application, which leads to increased execution time. The overhead
depends on the additional computation performed by the corrupted functions
apart from injecting the fault. Extra instructions are attributed to collecting
statistics and the granularity of the spacial and temporal locality of a fault. Al-
gorithm 1 shows the outline for a generic, corrupt function, and Algorithm 2
shows a basic shouldInject function. This function allows for fine-grained ap-
plication specific selectivity for fault injection, but requires recompilation of the
static library when modified. A simple modification of Algorithm 2 allows for
fault injection on certain MPI modifications of the conditional in line 2; this
introspection includes a check for a faulty rank.

Algorithm 2. Basic shouldInject logic.

Input: siteProb: Probability that this site is faulty.
injectorOn: Boolean signifying if injector is on.
Result: Boolean indicating an injection.
P + probability();
if injectorOn and siteProb > P then
return TRUFE;

else
return FALSE;

SV VI

554 J. Calhoun, L. Olson, and M. Snir

Injection at the finest
granularity in an MPI
application has only one

Table 4. Command line arguments for fault injector

active fault site, capa- Argument Description

ble of generating a bit- --numFaulty Number of faulty MPI ranks.
flip, on a single MPI --faulty List of faulty MPI ranks.

rank. To remove the need --numFaultyLoc Number of active fault locations.
for recompilation, com- --faultyLoc List of active fault locations.

mand line arguments are

provided and passed to

FLIPIT Init detailing which fault sites are active and which MPI ranks are
candidates for injection. These command line arguments listed in Table 4.

The three classifications of injection types mentioned in Table 3 are pointer,
control, and arithmetic. The classification pointer refers to all calculations di-
rectly related to use of a pointers (loads, stores, and address calculation), control
refers to all calculations of branching and control flow (comparisons for branches
and modification of loop control variables), arithmetic refers to pure mathemat-
ical operations. By default all of these are active, but each can be toggled to
simulate different injection campaigns.

Analysis. As code is being compiled with our fault injector, a log file is gener-
ated that specifies all locations where faults can be injected. Each fault site is
given a unique identifier and classified depending on which the fault is injected
pointer, control, or arithmetic. In addition, a brief description of the fault site
is listed to discern any ambiguities about the injection location along with the
source line number if compiled with -g.

As the application is run, information about the faults being injected is logged
per rank for later inspection. Two types of data are logged every time a fault is
injected. The first kind is information about the faults themselves — i.e. the fault
site numbers, bits flipped, and values from the fault distribution. This information
is used in conjunction with the fault site log files to determine in what function and
where in this function the fault is injected. The second type of information logged
on each fault injection is accomplished through a user-defined function. This user
defined function is set using FLIPIT SetCustomLogger (Table 2).

Even if no faults are injected, some statistics are still collected. For every rank,
a histogram is generated showing the frequency each fault site is looked at. To
determine if the execution path of the application changes due to a fault, the
histogram generated in the fault free case is compared with the histogram from
an application run with faults. Any discrepancies in these histograms suggest
differing paths of execution. Further insights are found by using the injection
log and the fault site log along side the histograms to determine precisely what
occurred due to the fault, as we see in the next section.

4 Experiments on Hypre

In order to show the scalability and flexibility of our fault injector, we compile
sections of Hypre with our fault injector to look at SDCs that arise during the

Fliplt: An LLVM Based Fault Injector for HPC 555

solving of a linear system. To solve the linear system we use Algebraic Multigrid
(AMG) with one iteration of Jacobi relaxation for smoothing. The problem is a
2D Laplacian with zero on the boundaries. Profiling Hypre allows us to determine
the call stack inside HYPRE BoomerAMGSolve. We select all functions in this call
stack for injection.

4.1 Scalability

To characterize the
scalability of our fault
injector, we run weak
scaling experiments on

Table 5. Increase in execution time due to fault injector

Processes Increased Time Processes Increased Time

Blue Waters with 16 pro- 1 123.77x 128 44.41x
cesses per node, Figure 4, 2 89.48x% 256 38.06x
where each data point is 4 82.55x 512 37.89x
the average of three runs. 8 69.04x 1024 28.79x
In this figure, the injec- 16 62.58x 2048 26.59x
tor is turned on, but we 32 54.40x 4096 20.96x
inject no faults due to 64 48.05x 8192 17.21x

the probability of inject-

ing a fault being zero.

The number of unknowns per process is kept at approximately 16,384 throughout
all weak scaling runs. From Figure 4 we see that our modified Hypre’s execution
time grows roughly linearly on a log scale just as the unmodified Hypre. From
this we can conclude that the weak scaling results demonstrate that our fault
injector is scalable. To determine how much our fault injector adversely effects
performance we look at how much it increases execution time, Table 5. Our fault
injector increases the dynamic instruction count, which produces a correspond-
ing increase computation time. Yet, the overhead introduced by our injection is
reduced as the the number of processes increases since communication becomes
the bottleneck.

4.2 Selective Injection

To show the ease at which our fault injector can inject precise injections, we
target the first element of the residual vector just before it is written to memory
for injection. The fault occurs during the first cycle on the finest level as we are
creating the residual vector before restriction. In order to have this precise injec-
tion, we need to first determine which fault site should be active. To determine
the correct fault site index, we consult the fault site log. The index is passed to
our fault injector via command line arguments along with the rank that is to
experience the fault, rank 0. Because the residual is computed via a SpMV rou-
tine, that is also used during problem setup, two calls to FLIPIT SetInjector
are added, one to turn off the injector after initialization and the other to turn it
on just before calculating the residual. Figure 5 shows what effect this injection

556 J. Calhoun, L. Olson, and M. Snir

s Injector ol | - e Bit63 v— Bit40
w0 T« Bit58 e« Bit32

=~ No Injector |

10 10"} +s Bit56 o Bit24
0}/ s o Bit 54 Bit 16

: | «— Bit52 +— Bit8

o

Time(sec)
=
)
©
Relative Residual
[

10* — - 10

,// 10

10°
10-22" 2" 27 27 2% 2% 2F 27 2° 27 20 2M TR 0% 5 10 15 20

Processes Iteration
Fig. 4. Weak scaling of Hypre. Approx- Fig.5. Selective injection in residual
imately 16,384 unknowns per process. calculation on rank 0. 8 processes with
approximately 16,384 unknowns per
process

has on the relative residual, the stopping criterion for AMG. The name of the
trend indicates which bit is flipped in the 64-bit floating point number.

As we can see, a single SDC can either be masked by the application, or
increase the number of iterations. Since this fault occurs in the mathematics of
the problem, it wouldn’t be detected until the application’s results were analyzed.
This suggests that work should be done to design SDC detectors to catch such
SDCs early. In order to test the effectiveness of these SDC detectors, a fault
injector such as the one presented here is required.

We now look at the result of injection into certain instruction types as outlined
in Table 3. For this we inject a single fault into the aforementioned problem on
rank 3.

Our fault injector allows us
to target different classifica- Table 6. Results of injecting into certain types
tions of instructions, and de-

pending upon what classifi- Pointer Control Arithmetic All
cations are active, the effects

on the application vary. In Crash 41 29 21 29
Table 6, the average of 1000 More V-Cycles 6 0 6 4
Same V-Cycles 53 71 73 67

trials, we see injection into
pointers has a corresponding
increase in the percent of tri-
als that crash. Likewise injection in the mathematics of AMG, or accessing the
wrong data with corrupted pointers, increases the percent of trials that require
a higher number of iterations required to converge. We see a small increase in
the percent of trials that crash with control injections due taking incorrect paths
and incorrect indexing. By the use of these classifications, unique injection cam-
paigns can be created allowing the study of an applications susceptibility to
certain types of errors and the effectiveness of detection schemes.

Fliplt: An LLVM Based Fault Injector for HPC 557

5 Conclusion

As SDCs become more common in HPC, research needs conducted to investi-
gate application resilience and the effectiveness of SDC detectors. This paper
presents an LLVM based fault injector designed for HPC that can aid research
in this area. Scalability of our fault injector is shown with weak scaling experi-
ments with Hypre. Our fault injector’s overhead diminishes as the application’s
communication begins to dominate computation. To support various applica-
tion requirements, our fault injector is designed to be extensible. We provide the
ability to turn injections on and off from inside the application and use custom
probability distributions and logging information. Using the aforementioned fea-
tures we inject a fault into Hypre at a specific location and time and show that
it can significantly impact convergence.

Acknowledgments. This work is sponsored by the Air Force Office of Scien-
tific Research under grant FA9550-12-1-0478. It is also supported by the Blue
Waters sustained-petascale computing project, which is supported by the Na-
tional Science Foundation (awards OCI-0725070 and ACI-1238993) and the state
of Mlinois. Blue Waters is a joint effort of the University of Illinois at Urbana-
Champaign and its National Center for Supercomputing Applications.

References

1. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11-33 (2004)

2. Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N.,
Matsuoka, S.: FTI: high performance fault tolerance interface for hybrid systems.
In: Proceedings of 2011 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 2011, pp. 32:1-32:32. ACM, New York
(2011)

3. Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B., Snir, M.: Toward exascale
resilience. Int. J. High Perform. Comput. Appl. 23(4), 374-388 (2009)

4. Carreira, J., Madeira, H., Silva, J.G.: Xception: a technique for the experimental
evaluation of dependability in modern computers. IEEE Transactions on Software
Engineering 24(2), 36-125 (1998)

5. Casas, M., de Supinski, B.R., Bronevetsky, G., Schulz, M.: Fault resilience of the
algebraic multi-grid solver. In: Proceedings of the 26th ACM International Confer-
ence on Supercomputing, ICS 2012, pp. 91-100. ACM, New York (2012)

6. de Kruijf, M., Nomura, S., Sankaralingam, K.: Relax: An architectural framework
for software recovery of hardware faults. In: Proceedings of the 37th International
Symposium on Computer Architecture (ISCA) (2010)

7. Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell, R.:
Detection and correction of silent data corruption for large-scale high-performance
computing. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC 2012, pp. 1-78. IEEE Computer
Society Press, Los Alamitos (2012)

558

10.

11.

12.

13.

14.

15.

16.

17.

18.

J. Calhoun, L. Olson, and M. Snir

. Han, S., Rosenberg, H.A., Shin, K.G.: Doctor: An integrated software fault injec-

tion environment (1995)

. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for linux clus-

ters. Journal of Physics: Conference Series 46(1), 494 (2006)

Kogge, P.M., La Fratta, P., Vance, M.: [2010] facing the exascale energy wall.
In: Proceedings of the 2010 International Workshop on Innovative Architecture
for Future Generation High-Performance Processors and Systems, IWIA 2010, pp.
51-58. IEEE Computer Society, Washington, DC (2010)

Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CG0O2004), Palo Alto, California (March
2004)

Li, D., Vetter, J.S., Yu, W.: Classifying soft error vulnerabilities in extreme-scale
scientific applications using a binary instrumentation tool. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC 2012, pp. 57:1-57:11. IEEE Computer Society Press, Los Alamitos
(2012)

Lu, C.-d., Reed, D.A.: Assessing fault sensitivity in MPI applications. In: Proceed-
ings of the 2004 ACM/IEEE Conference on Supercomputing, SC 2004, p. 37. IEEE
Computer Society, Washington, DC (2004)

Riesen, R., Ferreira, K., Da Silva, D., Lemarinier, P., Arnold, D., Bridges, P.G.:
Alleviating scalability issues of checkpointing protocols. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC 2012, pp. 1-18. IEEE Computer Society Press, Los Alamitos
(2012)

Sato, K., Gamblin, T., Moody, A., de Supinski, B.R., Mohror, K., Maruyama,
N.: Design and modeling of non-blocking checkpoint system. In: Proceedings of
the ATIP/A*CRC Workshop on Accelerator Technologies for High-Performance
Computing: Does Asia Lead the Way?, ATIP 2012, pp. 39:1-39:2. A*STAR Com-
putational Resource Centre, Singapore (2012)

Sharma, V.C., Haran, A., Rakamari¢, Z., Gopalakrishnan, G.: Towards formal
approaches to system resilience. In: Proceedings of the 19th IEEE Pacific Rim
International Symposium on Dependable Computing, PRDC (2013)

Sridharan, V., Liberty, D.: A study of DRAM failures in the field. In: Proceedings of
the International Conference on High Performance Computing, Networking, Stor-
age and Analysis, SC 2012, pp. 76:1-76:11. IEEE Computer Society Press, Los
Alamitos (2012)

Stott, D.T., Floering, B., Burke, D., Kalbarczyk, Z., Iyer, R.K.: NFTAPE: A frame-
work for assessing dependability in distributed systems with lightweight fault in-
jectors. In: Proceedings of the IEEE International Computer Performance and
Dependability Symposium, pp. 91-100 (2000)

	FlipIt: An LLVM Based Fault Injector for HPC
	1 Introduction
	2 Background
	3 Fault Injector
	3.1 Overview
	3.2 Design
	3.3 Usability and Extensibility

	4 Experiments on Hypre
	4.1 Scalability
	4.2 Selective Injection

	5 Conclusion
	References

