CPU and GPU Performance of Large Scale
Numerical Simulations in Geophysics

Ali Dorostkar!, Dimitar Lukarski', Bjorn Lund?, Maya Neytcheva',
Yvan Notay?, and Peter Schmidt?

! Department of Information Technology, Uppsala University, Sweden
{ali.dorostkar,dimitar.lukarski,maya.neytcheval}@it.uu.se
2 Department of Earth Sciences, Uppsala University, Sweden
{bjorn.lund, peter.schmidt}@geo.uu.se
3 Numerical Analysis Group Service de Métrologie Nucléaire,
Université Libre de Bruxelles, Belgium
ynotay@ulb.ac.be

Abstract. In this work we benchmark the performance of a precon-
ditioned iterative method, used in large scale computer simulations of
a geophysical application, namely, the elastic Glacial Isostatic Adjust-
ment model. The model is discretized using the finite element method
that gives raise to algebraic systems of equations with matrices that are
large, sparse, nonsymmetric, indefinite and with a saddle point structure.
The efficiency of solving systems of the latter type is crucial as it is to be
embedded in a time-evolution procedure, where systems with matrices
of similar type have to be solved repeatedly many times.

The implementation is based on available open source software pa-
ckages - Deal.Il, Trilinos, PARALUTION and AGMG. These packages
provide toolboxes with state-of-the-art implementations of iterative so-
lution methods and preconditioners for multicore computer platforms
and GPU. We present performance results in terms of numerical and the
computational efficiency, number of iterations and execution time, and
compare the timing results against a sparse direct solver from a com-
mercial finite element package, that is often used by applied scientists in
their simulations.

Keywords: glacial isostatic adjustment, iterative methods, multicore,
block-preconditioners, inner-outer iterations, CPU-GPU, performance.

1 Introduction

Solving realistic, large scale applied problems with advanced numerical tech-
niques can be seen as a multidimensional optimization problem, with many le-
vels of complexity that have to be simultaneously taken into account. We do
not have anymore just one single method to be implemented and optimized on a
given computer platform. The code that enables such large scale computer simu-
lations usually requires a whole collection of algorithms, such as unstructured,
adaptive or moving meshes; time-dependent processes that in turn require the

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part I, LNCS 8805, pp. 12-23, 2014.
© Springer International Publishing Switzerland 2014

CPU and GPU Performance of Large Scale Numerical Simulations 13

repeated solution of nonlinear and/or linear systems; inner-outer solution pro-
cedures, block preconditioners that utilize internal algebraic structures, solution
methods as algebraic multigrid that have a recursive nature. All this has to work
efficiently on modern computer architectures. Another aspect to mention is that
codes at this level of complexity can no longer be written from scratch but rather
(combination of) ready toolboxes have to be used instead.

We consider as an example a large scale problem from Geophysics. We im-
plement it using several publicly available high quality libraries and compare
the performance of the underlying advanced multi-level numerical solver, the
resulting scalability and performance on multicore CPU and GPU. Section 2
describes the simplified target problem and the mathematical model, used in
the numerical experiments. In Section 3 we outline the solution method and the
acceleration technique - a block lower-triangular preconditioner. Section 4 de-
picts the most important characteristics of the software packages used for the
computer implementation of the numerical solution procedure. The experiments
are described in Section 5. We illustrate both the numerical and computational
efficiency of the numerical simulations, as well as the scalability and the par-
allel performance on multicore and GPU platforms. Conclusions are found in
Section 6.

2 Description of the Problem — Discretization and
Algebraic Formulation

The applied problem, that gives raise to the large scale linear systems of alge-
braic equations to be solved, is the so called glacial isostatic adjustment (GIA)
model. It comprises the response of the solid Earth to redistribution of mass
due to alternating glaciation and deglaciation periods. The processes that cause
subsidence or uplift of the Earth surface are active today. To fully understand
the interplay between the different processes, and, for example, be able to pre-
dict how coast lines will be affected and how glaciers and ice sheets will retreat,
these have to be coupled also to recent global warming trend and melting of the
current ice sheets and glaciers world wide. The long-term aim is to couple GIA
modeling with other large scale models, such as Climate and Sea-level changes,
Ice modeling etc. In this work, however, we consider only GIA models.

Mathematical Model. Although GIA model describes a very complex applied
problem, here we deal with a model of modest mathematical difficulty. However,
the test problem considered here appears as a building block in an extended
simulation context, see [12] for more details.

The benchmark setting consists of a two-dimensional vertical cut of Earth’s
crust, assumed to be pre-stressed, homogeneous, visco-elastic and in a constant
gravity field. The space domain is axisymmetric, 10000 km long and 4000 deep.
We compute the deformations subject to the load of rectangular-shaped ice of
sizes 1000 km times 2 km. The geometry of the problem is shown in Figure 1.

14 A. Dorostkar et al.

T
FL
I Iy
y
| - G
X

Fig. 1. The geometry of the problem

The momentum equation describing the quasi-static perturbations of such a
material body is

f\V-chV(u~Vpo)+(V~u)Vpo:finQCR2, (1)
(4)))

where o is the stress tensor, u = [u;]&; is the displacement vector, py is the so-
called pre-stress and f is the body force. The boundary conditions are standard,
o(u)rn=¢on Iy, o(u)-n=0only,u=0o0nIp,u; =0, dyus =0o0n [s.

Term (A) describes the force due to spatial gradients in stress. Term (B)
represents the so-called advection of pre-stress and has proven to be crucial
for the successful modeling of the underlying physical processes [29]. Term (C)
describes the buoyancy of the compressed material.

In addition to (1) we add appropriate constitutive relations, describing stress
as a function of strain, displacements and time, namely, o(x,t) = ogr(x) —
o1(x,t), where og(x) is the instantaneous stress due to elastic (reversible) re-
sponse to load and o1(x,t) is the contribution due to inelastic response. In the
target context the stress evolution is described via a heredity equation of the
form

oC(x,t — 1)
oy e(x,7)dr .

o(x,1) = C(x,0)en — /
0

Without describing the visco-elastic problem any further, we mention that we
use the so-called Maxwell relaxation model, that simplifies the computation of
the integral term. Here we consider the elastic part only, utilizing the standard
relations between stress, strain and displacements, given by Hooke’s law for a
homogeneous, isotropic, linear, and purely elastic lithosphere, namely,

o(u) =2ue(u) + A(V-u)l (2)

where the coefficients p and A are the Lamé coefficients. We note that p and A
are related to the Young modulus F and the Poisson ratio v as ug = 2(14v) and

_ 2uv
A = D,

E
1+v

CPU and GPU Performance of Large Scale Numerical Simulations 15

In order to compensate for excluding self-gravitation effects, we need to model
fully incompressible materials, i.e., for which v = 0.5. However, when v — 0.5, A
becomes unbounded. Thus, Equation (2) becomes ill-posed, and the correspond-
ing discrete analogue of Equation (1) becomes extremely ill-conditioned. This
phenomenon is known as volumetric locking. See, for example, [10], for further
details on the locking effect.

A known remedy to the locking problem is to introduce the so-called kinematic
pressure p = ;‘V - u and replacing the term A(V-u)I in (2), reformulate Equation
(1) as a coupled system of PDEs, which yields

-V (2ue(u)) = V(u-Vpy) + (V- -u)Vpy — pVp =1 in 2 (3a)
2
,uV~uf'Li\p:OinQ (3b)

with appropriate boundary conditions. Below we consider the solution of (3).

Space Discretization and Algebraic Formulation. We next perform a
finite element space discretization of {2, namely, consider a discretized domain
25, and some finite dimensional subspaces V}, C V and P, C P. To this end, we
use mixed finite elements and the Q2-Q1 stable finite element pair of spaces for
the displacements and the pressure, in order to satisfy the LBB condition (see,
e.g. [11] for more details).

Remark: The handling of the visco-elastic problem and the corresponding
numerical procedure are described in detail in [22]. In brief, we obtain a matrix-
vector form of the problem to be solved at time ¢; find the displacements u; and
the pressure p; by solving the linear system

r; T T
wl [m] o, o, Ay _[MB _ [My B
A {PJ_LJ’A]_A 2 AO’A_{B o= By ~Co)

The detailed forms of r; and q; and the matrix blocks are given in [22].

3 Numerical Solution Method and Preconditioning

To summarize, at each time t; we have to solve a linear system with the matrix
A;. We assume that At; is small enough and from now on we investigate the
solution of one representative system of equations of the type,

M BT] [x; b
we= [%) 2] = o] @
where M € RM«*Nu is non-symmetric, sparse and in general indefinite, and
CNe*Np is positive semi-definite. Thus, A is of saddle point form.
The algebraic problem in (4) is solved with an iterative solution method,
M 0

, where the
B -8

preconditioned by the block lower-triangular matrix D =

16 A. Dorostkar et al.

block M approximates M, and the block S , approximates the negative Schur
complement of A, S = C + BM~'B7T. The block-triangular matrix D is one
of the possible choices of a preconditioner for A and we refer to [9, 4] for an
extensive survey on solution techniques for saddle point problems.

A matrix of the above block lower-triangular form is among the most often
used preconditioners for matrices of saddle point form as in (4). For M = M
ans S = S , the matrix D is referred to as the ideal preconditioner, as it clusters
the spectrum of D;lA in just two points, —1 and 1, ensuring that, for instance,
GMRES (see [28]) will converge in two-three iterations, the computational cost
is, however, prohibitive. . B

Approximating M and S by M and S respectively causes an increase in the
number of iterations of the preconditioned iterative method. Eigenvalue analysis
reveals that M must approximate M very well. In order to control the quality
of this approximation, we use an inner solver for M with some suitable precon-
ditioner. The usage of an inner solver is denoted in the sequel by [M]. On the
other hand, approximating S by S has less profound effect, compared with that
of M. This is confirmed by the rigorous eigenvalue analysis provided in [25] (see
in particular Corollary 4.5). For the purpose of this study we compute S using
the so-called element-by-element (EBE) approach, see for instance, [16, 5, 22, 21|
and the references therein. The EBE technique is very attractive as it is easily
patallelizable and produces a good quality sparse approximation of the, in gen-
eral, dense Schur complement.

The system A is solved by the flexible variant of GMRES, FGMRES, cf.
[28, 27|, referred to as the outer solver. The choice of the outer method is due
to the fact that M is nonsymmetric and that the preconditioner is variable, due
to the inner solvers involved. The preconditioner is thus

D— PM} 0~]. (5)

Systems with M and S are solved by inner iterations using GMRES and pre-
conditioned by an algebraic Multigrid (AMG) method.

We construct the AMG preconditioner for [M] in two ways. The first option
is for the block M as a whole, denoted by [Mj]. Alternatively, ordering the
degrees of freedom (DOFs) of the displacements first in z-direction and then in
y-direction reveals a block two-by-two structure of the matrix M itself. Then the
block diagonal of M is a good choice to construct AMG. For an explanation, see
for instance, [3]. The resulting preconditioned inner solver is denoted by [Mi].

4 Implementation Details

As already pointed out, computer simulations of realistic applied problems usu-
ally result in very complex coupled models. Implementing a fully functional and
flexible code for such models needs excessive coding and a substantial amount of
time. Over the past decades, many libraries have been developed to ease the de-
velopment process for scientific computing applications. These libraries include

CPU and GPU Performance of Large Scale Numerical Simulations 17

state-of-the-art numerical solution methods that are robust and reliable due to
many years of development and rigorous testing. Using such libraries helps the
researchers to concentrate on the problem itself and not on implementation tech-
nicalities.

We describe next the software used to implement the solution procedure for
(4), preconditioned by (5), using [Mp] for the solution of systems with M. The
code is developed using C++ except AGMG that is available in FORTRAN. The
systems A, [Mp] and [S] are solved with tolerance of 10~ and 10~! respec-
tively. We note that solving the same system in 3D requires minor adjustment
in the preconditioner and handling the boundary values. The rest is automati-
cally taken care of through a template parameter stating the dimension of the
problem.

Differential Equations Analysis Library (Deal.II) is used as the main
finite element software toolbox. It is a general purpose object-oriented finite ele-
ment library suitable for solving systems of partial differential equations. Deal Il
is publicly available under an Open Source license. For more details on Deal.Il,
see [7].

Deal.Il expands its functionality by providing interfaces to other packages
such as Trilinos, PETSc [6], METIS [15] and others. Each package is added and
used via a wrapper class in Deal.Il. Data movement between Deal.Il and other
packages can be avoided by using the proper data structure provided by the
Deal IT wrappers. For our purpose, we use the Deal. Il wrapper for Trilinos.

As precondtioners for the inner solvers for M and S we use an AMG precon-
ditioner, provided by Trilinos, AGMG and PARALUTION, see below.

Trilinos in its whole has a vast collection of algorithms within an object oriented
framework aimed at scientific computing problems. More details about Trilinos
can be found in [14]. Deal.Il configures and uses the packages from Trilinos
through Deal.Il wrappers. In this study we use Epetra for sparse matrix and
vector storage, Teuchos to provide parameters of solver and preconditioner, ML
for multigrid preconditioning, AZTEC for the iterative solver (GMRES). Note
that all the aforementioned packages are accessed through Deal.Il wrappers.
The AMG from Trilinos is configured using Chebyshev smoother with two pre-
and post-smoothing steps, uncoupled aggregation with threshold of 0.02 and one
multigrid cycle. We refer to [7] for a detailed description of the settings.

PARALUTION is a sparse linear algebra library with focus on exploring
fine-grained parallelism, targeting modern processors and accelerators including
multi/many-core CPU and GPU platforms. The goal of this project is to provide
a portable library for iterative sparse methods on state-of-the-art hardware. The
library contains a solid collection of various methods for solving sparse linear
systems. All solvers and preconditioners are based on matrix and vector objects.

PARALUTION separates its objects from actual hardware specification. The
objects are initially allocated on the host (CPU). Then every object can be
moved to a selected accelerator by a simple move-to-accelerator function. The
execution is based on run-time type information (RTTI) which allows the user to

18 A. Dorostkar et al.

select where and how to perform the operations at run time. This is in contrast
to template-based libraries that need this information at compilation time.

The philosophy of the library is to abstract the hardware-specific functions and
routines from the actual program which describes the algorithm. This abstrac-
tion layer of the hardware specific routines is the core of PARALUTION’s design,
it is built to explore fine-grained level of parallelism suited for multi/many-core
devices. In this way PARALUTION differs from most of the available parallel
sparse libraries which are mainly based on domain decomposition techniques.
Thus, the design of the iterative solvers and the preconditioners are very diffe-
rent. Another cornerstone of PARALUTION is the native support of accelerators
- the memory allocation, transfers and specific hardware functions are handled
internally in the library. The library provides OpenMP (Host, Xeon Phi/MIC),
OpenCL (NVIDIA, AMD GPUs), CUDA (NVIDIA GPUs) backends. For more
details we refer to [18].

A plug-in to Deal Il is provided which is not a direct wrapper as for Trilinos,
but exports and imports data from Deal.Il to PARALUTION. To solve the linear
problem, we use the preconditioner [My] and own implementation of AMG. The
AMBG is set to have the coarsest grid size as 2000 with smooth aggregation as the
coarsening method, coupling strength is set to 0.001, the smoother is of multi-
colored Gauss-Seidel type with relaxation parameter set to 1.3, [17]. Additionally,
one pre-smoothing step, two post- smoothing steps and one multigrid cycle for
preconditioning are performed. The AMG has to be constructed entirely on the
CPU, while the execution can be performed on the CPU or on the GPU without
any code modification.

AGMG implements an aggregation-based algebraic multigrid method [19]. Tt
provides tools for constructing the preconditioner and to solve linear systems of
equations, and is expected to be efficient for large systems arising from the dis-
cretization of scalar second order elliptic PDEs. The method is however purely al-
gebraic. The software package provides subroutines, written in FORTRAN, which
implement the method described in [23], with further improvements from [20, 24].

AGMG’s parallel performance is tested on up to 370000 cores. However, cur-
rently parallel implementation is available only with MPI and, therefore, in this
study we compare it’s serial performance with that of Trilinos AMG.

In this study AGMG uses double pairwise aggregation for the coarsening (with
quality control as in [20, 24]), performed separately on the two components of the
displacement vector. Furthermore, AGMG performs one forward and one back-
ward Gauss-Seidel sweep for pre- and post-smoothing respectively and also a K-
cycle [26], i.e., two Krylov accelerated iterations at each intermediate level. The
main iterative solver in AGMG is the Generalized Conjugate Residual method,
[13].

ABAQUS is a general-purpose finite element analysis program, most suited for
numerical modelling of structural response. It handles various stress problems,
both with static and dynamic response. The program is designed to ease the so-
lution of complex problems, and has a simple input language, with comprehen-
sive data checking, as well as a wide range of preprocessing and post-processing

CPU and GPU Performance of Large Scale Numerical Simulations 19

- ' i

0o

8505 — -0.104
50.7n| -0.20
2835 — -0.30
u
n:::gq:nu -0.40 s e I 0.8
Min: 0.000

Fig. 2. GIA simulation - vertical displacements on the surface

options. However, enhanced numerical simulations of GIA problems are not
straightforwardly performed with ABAQUS since important terms in the contin-
uous model, such as prestress advection, cannot be added directly, leading to the
necessity to modify the model in order to be able to use the package. These ques-
tions are described in detail in [30]. Further, ABAQUS cannot handle purely in-
compressible materials - v cannot be set to 0.5 but to some closer value, such as
0.4999, for instance.

Nevertheless, ABAQUS offers highly optimized numerical solution methods. In
particular, the available sparse direct solver in 2D shows nearly optimal computa-
tional complexity, see the results in [8] and the performance figures in Section 5.
The direct solver can be executed in parallel and its scalability is also presented.
We use here ABAQUS 6.12.

The iterative methods, included in ABAQUS can be tested only on 3D prob-
lems. For further details we refer to ABAQUS’ user manual [1].

5 Performance Analysis

In this section we present the results of the numerical experiments with different
software packages. The computations are performed on the following computer
resources:

(C1) CPU: Intel(R) Xeon(R) 1.6GHz 12 cores
(C2) CPU: Intel(R) Core(TM) i5-3550 CPU 3.30GHz 4 cores
GPU: NVIDIA K40, 12G, 2880 cores

In Figure 2 we illustrate the GIA simulations. We show the vertical displace-
ments in the domain, caused by a rectangular ice load as described in the test
problem.

The performance results for ABAQUS, Deal.Il, Trilinos and AGMG are ob-
tained using (C1). The solver from PARALUTION (ver 0.6.1) is tested on CPU
using both resources and on the GPU using (C2). Parallelism is exploited by the

20 A. Dorostkar et al.

Table 1. Comparison between Deal.Il, PARALUTION and ABAQUS on (C1)

No. of Deal.Il + Trilinos PARALUTION ABAQUS

Threads DOFs Setup Solve (2/3) Setup Solve (2/3) DOFs Setup Solve
1 343 44.2 (29.4) 14.5 51.6 (34.4) 744 59
4 1479043 3.04 30.8 (20.5) 9.76 20.9 (13.9) 986626 7.49 33
8 3.00 25.2 (16.8) 8.76 22.4 (14.9) 751 28
1 15.4 235 (156) 59.4 220 (147) 29.72 269
4 5907203 14.2 155 (103) 40.4 92.7 (61.8) 3939330 29.93 145
8 14.1 126 (84) 36.2 92.5 (61.7) 29.94 122

built-in functionality of the packages to use OpenMP. The maximum number of
threads, which is the number of cores without hyper-threading is set to twelve
n (C1) and four on (C2).

From (3) we observe that while enabling to solve the models with fully in-
compressible materials, we obtain a system of equation that is about 30% larger
than what is solved with ABAQUS. The problem sizes are shown in Table 1.

It is evident from Table 1 that both solution techniques scale nearly exactly
linearly with the problem size. However, for the two- dimensional problem at
hand, the direct solver from ABAQUS is somewhat faster than the preconditioned
iterative solver, implemented in Trilinos. More detailed information, including
iteration counts, is given in [12], confirming experimentally the optimality of the
iterative solver.

Figure 3a shows the used time of the iterative solver using Trilinos and PAR-
ALUTION on four threads. While PARALUTION is faster than Trilinos in com-
puting the solution, it takes more CPU time in the setup phase. We note that
both Trilinos and PARALUTION do not scale to more than four threads. For
more details see [12]. We also note that PARALUTION performs faster than the
direct solver from ABAQUS.

From experiments, not included here, performed using valgrind, cf. [2], one
can see that the lack of scaling is due to the matrix- vector multiplications
in AMG. This issue is not solvable within the shared memory programming
model and using OpenMP for further developing the model and/or extending
the computational domain will be a bottle neck. We expect to see better scaling
by changing the programming model to MPI.

As mentioned above PARALUTION is tested on CPU using both (C1) and
(C2). The results of these experiments are used as reference to compare the
results of PARALUTION on the GPU with the results of ABAQUS and Trilinos.
The results are presented in Figure 3b. We see that for smaller problem sizes the
GPU solver from PARALUTION is slower than the CPU solver. As the problem
size grows the GPU outperforms the CPU with up to four times speedup. Solving
the largest problem size on the GPU leads to insufficient memory error.

We note that the discretization of the problem, corresponding to 1479043
degrees of freedom, on the surface of the computational domain agrees with
the placement of the surface sensors that gather data from geophysical experi-
ments. This size fits on the GPU and the performance is fastest. Trying to solve

CPU and GPU Performance of Large Scale Numerical Simulations 21

10° : 10° ‘
-©-Trilinos — setup -x-CPU - setup
—&-Trilinos — solve ——CPU - solve
10? |- x-PARALUTION - setup 1 ||-e-GPU - setup -
< PARALUTION - solve 10" & GPU - solve
10' -© :
[Qo
E € 10 Q@
10° -
o).
[chd el
.) 107"
107 p
@ X
-2 -2
10 : : 10 ‘ ‘
10* 10° 10° 10 10* 10° 10° 10
Degrees of freedom Degrees of freedom
(a) Comparison with Trilinos (b) CPU vs GPU

Fig. 3. Performance comparisons: PARALUTION

10 .
-©-Trilinos — setup|
) —©-Trilinos — solve
10" £|-x-AGMG - setup
——AGMG - solve
o)
10' L x
£ ol
10° ¢
e .
1071 B X
2
10 ' :
10* 10° 10° 10

Degrees of freedom

Fig. 4. Comparison between Trilinos-AMG and AGMG

problems with larger computational domain in 2D or 3D problems might fail
due to insufficient memory on the currently available GPUs.

To optimize the solution process, we consider changing the AMG implemen-
tation to investigate the potential scalability of the AMG implementation itself.
To this end, we replace Trilinos-AMG by AGMG. The results in Figure 4 show
that AGMG has better computational efficiency. Since, we use the AGMG only
serially (there is no OpenMP implementation yet) we compare the timing with
the Trilinos-AMG only using one thread.

6 Conclusion

In this work we present a snapshot of the performance of a large scale computer
simulation in terms of numerical efficiency, execution time and scalability on
multicore platforms as well as on GPU.

22 A. Dorostkar et al.

First, we show that large scale coupled problems can be successfully imple-
mented using publicly available numerical linear algebra software. Compared
with highly specialized and optimized commercial software, the open source li-
braries, included in this study, allow to enhance the mathematical model and
make it more realistic, adding features that are not straightforwardly incorpo-
rated when using commercial software.

Furthermore, we show that GPU devices can be used in complex numerical
simulations with various combination of solvers and preconditioners. When the
problem fits into the memory of the GPU, the PARALUTION-GPU implemen-
tation performs noticeably faster than all other tested CPU implementations.

Open source numerical libraries successfully compete with highly efficient
commercial packages in terms of overall simulation time and show better price-
performance ratio. In the current setting PARALUTION proves to show the best
performance results.

However, due to the fact that all methods are memory bounded, none of
the tested OpenMP-based CPU implementations scale linearly. This makes it
necessary to extend the performance tests using MPI, which is a subject of
future work.

Acknowledgments. This work has been supported by the Linnaeus center
of excellence UPMARC, Uppsala Programming for Multicore Architectures Re-
search Center.

References

1. Abaqus FEA, http://www.3ds.com/

2. Valgrind, http://www.valgrind.org

3. Axelsson, O.: On iterative solvers in structural mechanics; separate displacement
orderings and mixed variable methods. Math. Comput. Simulation 50(1-4), 11-30
(1999); Modelling 1998, Prague (1998)

4. Axelsson, O.: Milestones in the development of iterative solution methods. J.
Electr. Comput. Eng., Art. ID 972794, 33 (2010)

5. Axelsson, O., Blaheta, R., Neytcheva, M.: Preconditioning of boundary value prob-
lems using elementwise schur complements. STAM J. Matrix Anal. Appl. 31(2),
767789 (2009)

6. Balay, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Eijkhout, V.,
Gropp, W.D., Kaushik, D., Knepley, M.G., Mclnnes, L.C., Rupp, K., Smith, B.F.,
Zhang, H.: PETSc Web page (2014), http://www.mcs.anl.gov/petsc

7. Bangerth, W., Kanschat, G., Hartmann, R.: deal.Il differential equations analysis
library, http://www.dealii.org

8. Béngtsson, E., Lund, B.: A comparison between two solution techniques to solve
the equations of glacially induced deformation of an elastic earth. International
Journal for Numerical Methods in Engineering 75(4), 479-502 (2008)

9. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems.
Acta Numerica 14, 1-137 (2005)

10. Braess, D.: Finite elements, 3rd edn. Theory, fast solvers, and applications in elas-
ticity theory. Cambridge University Press, Cambridge (2007)

http://www.3ds.com/
http://www.valgrind.org
http://www.mcs.anl.gov/petsc
http://www.dealii.org

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

CPU and GPU Performance of Large Scale Numerical Simulations 23

Brezzi, F.: On the existence, uniqueness and approximation of saddle-point prob-
lems arising from Lagrangian multipliers. Rev. Francaise Automat. Informat.
Recherche Opérationnelle Sér. Rouge 8(R-2), 129-151 (1974)

Dorostkar, A., Lukarski, D., Lund, B., Neytcheva, M., Notay, Y., Schmidt, P.:
Parallel performance study of block-preconditioned iterative methods on multicore
computer systems. Technical Report 2014-007, Department of Information Tech-
nology, Uppsala University (March 2014)

Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for non-
symmetric systems of linear equations 20, 345-357 (1983)

Heroux, M.A., Willenbring, J.M.: Trilinos Users Guide. Technical Report
SAND2003-2952, Sandia National Lab. (2003), http://trilinos.sandia.gov
Karypis, G., Kumar, V.: MeTis: Unstructured Graph Partitioning and Sparse Ma-
trix Ordering System, Version 4.0 (2009), http://www.cs.umn.edu/~metis
Kraus, J.: Additive Schur complement approximation and application to multilevel
preconditioning. STAM J. Sci. Comput. 34(6), A2872-A2895 (2012)

Lukarski, D.: Parallel Sparse Linear Algebra for Multi-core and Many-core Plat-
forms — Parallel Solvers and Preconditioners. PhD thesis, Karlsruhe Institute of
Technology (January 2012)

Lurkarski, D.: Paralution project, http://www.paralution.com

Notay, Y.: AGMG software and documentation,
http://homepages.ulb.ac.be/~ynotay/AGMG

Napov, A., Notay, Y.: An algebraic multigrid method with guaranteed convergence
rate. SIAM J. Sci. Comput. 34(2), A1079-A1109 (2012)

Neytcheva, M.: On element-by-element Schur complement approximations. Linear
Algebra Appl. 434(11), 2308-2324 (2011)

Neytcheva, M., Bangtsson, E.: Preconditioning of nonsymmetric saddle point sys-
tems as arising in modelling of viscoelastic problems. Electronic Transactions on
Numerical Analysis 29, 193-211 (2008)

Notay, Y.: An aggregation-based algebraic multigrid method. Electron. Trans. Nu-
mer. Anal. 37, 123-146 (2010)

Notay, Y.: Aggregation-based algebraic multigrid for convection-diffusion equa-
tions. SIAM J. Sci. Comput. 34(4), A2288-A2316 (2012)

Notay, Y.: A new analysis of block preconditioners for saddle point problems. STAM
J. Matrix Anal. Appl. 35, 143-173 (2014)

Notay, Y., Vassilevski, P.S.: Recursive Krylov-based multigrid cycles. Numer. Lin.
Alg. Appl. 15, 473487 (2008)

Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci.
Comput. 14(2), 461-469 (1993)

Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7(3), 856-869 (1986)
Wu, P.: Viscoelastic versus viscous deformation and the advection of pre-stress.
Geophysical Journal International 108(1), 136-142 (1992)

Wu, P.: Using commercial finite element packages for the study of earth deforma-
tions, sea levels and the state of stress. Geophysical Journal International 158(2),
401-408 (2004)

http://trilinos.sandia.gov
http://www.cs.umn.edu/~metis
http://www.paralution.com
http://homepages.ulb.ac.be/~ynotay/AGMG

	CPU and GPU Performance of Large Scale Numerical Simulations in Geophysics
	1 Introduction
	2 Description of the Problem – Discretization and Algebraic Formulation
	3 Numerical Solution Method and Preconditioning
	4 Implementation Details
	5 Performance Analysis
	6 Conclusion
	References

