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Abstract. We present two practical attacks on the CAESAR candidate
PAES. The first attack is a universal forgery for any plaintext with at
least 240 bytes. It works for the nonce-repeating variant of PAES and in a
nutshell it is a state recovery based on solving differential equations for
the S-box leaked throught the ciphertext that arise when the plaintext
has a certain difference. We show that to produce the forgery based
on this method the attacker needs only 211 time and data. The second
attack is a distinguisher for 264 out of 2128 keys that requires negligible
complexity and only one pair of known plaintext-ciphertext. The attack
is based on the lack of constants in the initialization of the PAES which
allows to exploit the symmetric properties of the keyless AES round. Both
of our attacks contradict the security goals of PAES.

Keywords: PAES · Universal forgery · Distinguisher · Symmetric prop-
erty · Authenticated encryption

1 Introduction

The CAESAR competition [2] (Competition for Authenticated Encryption:
Security, Applicability, and Robustness) has started in March 2014, and its
goal is to improve the understanding of the crypto community in the area of
authenticated ciphers through a public competition for submitting authenticated
encryption schemes that offer advantages over the widely used AES-GCM [8]. In
total, 58 ciphers were submitted to the open call, and in the following three years,
through security analysis and investigation of the implementations advantages,
it is expected that among these ciphers, a few to be selected in a portfolio of
recommended authenticated schemes that are suitable for widespread adoption.

A number of the proposed CAESAR candidates (as well as the benchmark
AES-GCM) are based on the current encryption standard: the AES family of block
ciphers. The reason for this is twofold. First, the AES has undergone an exten-
sive analysis and is assumed that its security is well understood (or at least
better understood compared to all of the remaining unbroken ciphers). Second,
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AES offers a large software implementation advantage on the latest processor
through the so-called AES-NI instruction set, i.e., modern processors have ded-
icated instructions that allow to reduce the execution time of the AES cipher
calls.

In general, the CAESAR candidates based on the AES use the block cipher in
two ways: either as a whole (or a variant consisting of at least a certain num-
ber of rounds), or only its round function. The first type of candidates (OCB [6],
AES-COPA [1], etc., and AES-GCM) are constructions that require calls to the full
10-round AES-128 (or at least 4-round variants with independent round keys,
e.g., SHELL [11]). Usually, they are provable modes based on security reduction
to the security of AES, and thus benefit from the current state-of-the-art crypt-
analysis of AES-128 [4,5]. The second type uses only the AES round function
and has no strict security proof, i.e., the mode is not provably secure, however,
the resistance against common attacks is provided through ad-hoc techniques.
Such candidates (see AEGIS [12], PAES [13], Tiaoxin-346 [9]) benefit from the
good security properties and the software performance of the AES round func-
tion. They tend to use less than 10 AES round calls per message blocks, and as
such are extremely fast.

Our Contributions. We provide a cryptanalysis of the CAESAR candidate
PAES [13] and show two attacks that contradict the security claims given by the
designers. Common for both of the attacks are the low complexity requirements
and misuse of the AES round function in PAES.

The first attack targets the nonce-repeating mode of PAES (called PAES-8)
and is a universal forgery attack of any plaintext with at least 240 bytes. It
requires 211 time and data complexity to fully recover the internal state and
produce forgery. To launch the attack, we use a special differential trail that
can take two different paths. By analyzing the ciphertext difference, the path is
uniquely determined and allows state recovery based on the differential property
of the AES S-Box. Our attack shows that a mere differential analysis (often given
by providing the best differential characteristic of a construction) is insufficient
for proving security in the nonce-repeating mode, even when the candidates
guarantees multiple applications of AES round function.

The second attack comes in a form of a distinguisher for a class of 264 weak
keys among the total 2128 keys of PAES. We show that if the attacker can control
the nonce, then a single pair of known plaintext and corresponding ciphertext is
sufficient to distinguish PAES from an ideal authenticated encryption scheme. The
attack relies on the initialization phase of PAES that does not use constants, while
the AES round function preserves certain symmetric properties when constants
are absent. The results of this paper are summarized in Table 1.

Organization of the Paper. We recall the design details of the PAES submis-
sions in Sect. 2 and present the universal forgery attack on PAES-8 in Sect. 3.
Then, in Sect. 4 we introduce the distinguisher for PAES in the context of weak
keys, and we conclude the paper in Sect. 5.
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Table 1. Attacks on PAES.

Design Supported Attack Attack mode Key class size Time

nonce modes (out of 2128) complexity

PAES-4 respecting distinguisher respecting 264 1

PAES-8 respecting+repeating universal forgery repeating 2128 211

PAES-8 respecting+repeating distinguisher respecting+repeating 264 1

2 Description of PAES

The family of authenticated encryption (AE) algorithms PAES has been submit-
ted to the ongoing CAESAR competition and consists of two concrete proposals:
PAES-4 and PAES-8. As the name suggests, they both use the AES design strat-
egy [3], and take as input a variable-length plaintext, a 128-bit key, a 128-bit
nonce and produce a variable-length ciphertext and a 128-bit authentication tag.
The difference between PAES-4 and PAES-8 lies in the size of the internal state,
which amounts to four 128-bit blocks for the former, and eight 128-bit blocks
for the latter. A functional difference between these two variants is in the mode:
PAES-4 has security claims only in the nonce-respecting mode, while PAES-8 in
both, the nonce-respecting and nonce-repeating modes.

To simplify the presentation, we describe only PAES-8 in the sequel, and
only as authenticated encryption. The design resembles a stream cipher: it
has an initialization (where the key and the nonce are loaded into the state),
then it processes the input message and produces the ciphertext, and finally
in the finalization it produces the tag. The internal state S has eight words
S1, S2, . . . , S8, each of 128 bits, i.e., |Si| = 128, i = 1, . . . , 8. The state update
function StateUpdate(S,M) is the round transformation and uses eight keyless1

AES-round calls (denoted further as AES0) to update the state as depicted in
Fig. 1.

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

M

S1 S2 S3 S4 S5 S6 S7 S8

Fig. 1. The round function StateUpdate(S, M). During the processing of the plaintext,
the XOR from S7 to S8 is absent.

1 We emphasize that all the AES calls are keyless, that is, composed of SubBytes,
ShiftRows and MixColumns (but no AddRoundKey).
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Initialization. The 128-bit master key K and the nonce N are loaded into the
eight words of the state, the state goes through 10 rounds and at the end the
key is XORed to all eight words of the state:

S1 = K ⊕ N, S5 = L4(K) ⊕ L7(N)

S2 = L(K) ⊕ L3(N), S6 = L5(K) ⊕ L3(N)

S3 = L2(K) ⊕ L(N), S7 = L6(K) ⊕ L5(N)

S4 = L3(K) ⊕ L2(N), S8 = L7(K) ⊕ L6(N)
for i = 1 to 10

S = StateUpdate(State, 0)
for i = 1 to 8

Si = Si ⊕ K

where L is the linear transformation that operates on the four 32-bit columns
a, b, c, d of a 128-bit word a||b||c||d, and is defined as L(a, b, c, d) = (b, c, d⊕a, a).
We denote Li the i-th functional power of the transformation L, e.g., L2 = L◦L.

Processing the Plaintext. In one round, from 16-byte plaintext Pi, 16-byte
ciphertext Ci is obtained with one call to the StateUpdate function (see Fig. 2):

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

M

S1 S2 S3 S4 S5 S6 S7 S8

R

Fig. 2. One round of the encryption.

tmp = S7

StateUpdate(S, Pi)
Ri = tmp ⊕ S7

Ci = Pi ⊕ Ri

Finalization and the Tag Production. Let |M | be the 128-bit encoding
of the message length. Then, the tag T is produced after 10 rounds of the
StateUpdate function where the message input is set to |M |:

for i = 1 to 10
StateUpdate(S, |M |)

T = S7 ⊕ S8
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Claimed Security of PAES. The claimed security of PAES is given in Table 2.
We emphasize in particular that 128-bit security is claimed for the integrity of
PAES in the nonce-repeating mode.

Table 2. Bits of security goals of PAES [13, Table 3.1].

Goal Nonce-respecting Nonce-repeating

PAES-4/PAES-8 PAES-4 PAES-8

Confidentiality for the plaintext 128 - -

Integrity for the plaintext 128 - 128

Integrity for the associated data 128 - 128

Integrity for the public message number 128 - 128

3 Practical Universal Forgery Attack Against PAES-8

In this section, we show a universal forgery attack for PAES-8 in the nonce-
repeating mode. The attack works for any plaintext with length of at least 240
bytes, and requires only a small time and data complexity. The steps of the
attack can be summarized as follows:

1. Inject differences in two consecutive plaintext blocks such that they cancel in
S8 with a high probability.

2. The ciphertext difference after eight rounds will reveal if the cancellation in
S8 occurred and if so, it will leak information about the state bits.

3. Once the state is recovered, the tag is produced by going through the remain-
ing of the transformations of the (now) public construction.

3.1 Differential Trail and Detection of Difference Cancellation

The differential trail used in the attack is given in Fig. 3. We inject difference
Δα in the plaintext P0, and try to cancel it with another difference Δβ in the
plaintext P1. Interestingly, this type of trail has been discussed by the designers
of PAES (see [13, Figure 4.3]), however, they focused on the standard case of
propagating the difference through eight rounds and tried to predict it. On the
other hand, we use a different approach: our goal is not to predict the difference
after eight rounds, but only to detect if the initial differences in Δα and Δβ
have canceled. In Fig. 3, the trail can take two paths:

1. The differences Δα and Δβ cancel, thus only the words with bold lines are
active,

2. The differences Δα and Δβ do not cancel and there are additional active
words depicted with red lines.
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AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

ΔR7

ΔR8

ΔP  = Δα0

ΔP  = Δβ1

Δ X=0

Fig. 3. Differential trail used in the attack. The black bold lines denote active state
words. The red lines denote active words when Δα and Δβ do not cancel in S8.

We further show how to choose optimal Δα and Δβ and how to detect the
cancellation.
Choosing Plaintext Differences Δα and Δβ. For an arbitrary difference Δα
in the plaintext P0, the difference Δβ in the plaintext P1 should be
chosen such that it will cancel Δα and thus will avoid activating the state S8.
Therefore, Δα and Δβ are chosen so that the cancellation can occur with a high
probability – this happens when Δα has only one active byte. Let α and β be
the input and output difference transition of the S-Box, i.e., α changes to β with
a probability 2−6. Then, Δα and Δβ are defined as
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Δα = (α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Δβ = MixColumns ◦ ShiftRows(β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and thus Δα after AES0 will change to Δβ with probability 2−6. We note that
the difference α can be located in any of the 16 bytes of the state.

Detecting the Cancellation Between Δα and Δβ. We can detect if the
cancellation occurred by observing the differences in the ciphertexts Ci (or equiv-
alently, the difference in the key streams Ri) after eight rounds. There are two
cases:

• Cancellation occurred. From the trail on Fig. 3, it follows that the differ-
ence ΔR8⊕ΔR7 is obtained when ΔR7 goes through one AES0 round. It means
that the difference in each of the 16 bytes of ΔR7 can be matched through
the S-Box with the corresponding differences in the bytes of ShiftRows−1 ◦
MixColumns−1(ΔR8 ⊕ΔR7). We note that the probability of matching is one.

• Cancellation did not occurred. If the cancellation did not occur, then
there are additional state words with differences (depicted with red lines in
Fig. 3). In this case, ΔR8⊕ΔR7 is obtained when ΔR7⊕ΔX (where ΔX is the
non-zero difference in S6) goes through AES0. In contrast to the above case,
now ΔR7 and ShiftRows−1 ◦ MixColumns−1(ΔR8 ⊕ ΔR7) can be matched
through the S-Box only with some probability lower than one.

Two randomly chosen differences can be matched through the S-Box with a
probability 127/256 ≈ 2−1. Without loss of generality, we can assume that ΔX
is active in all 16 bytes2. Therefore, when Δα and Δβ cancel, the probability
of a 16-byte match is 1, however, when they do not cancel, then the probability
drops to 2−16. As a result, we can easily distinguish the above two cases, by
analyzing ΔR7 and ΔR8.

The same distinguishing method can be applied to 4 additional rounds (see
Fig. 4). This way, we can increase the probability of distinguishing the two cases,
and end up with a very low probability of matching differences through S-Boxes
in the case when Δα and Δβ do not cancel. As we apply it to five rounds, the
probability becomes 2−5·16 = 2−80.

3.2 Recovery of State Words

Assume that Δα and Δβ have canceled (as demonstrated above, we can single
out the case when they cancel). It means that we have the input difference ΔR7

and the output difference ΔR8 ⊕ ΔR7 of an active AES0 for the word S7, i.e.,
SubBytes(ΔR7) = ShiftRows−1 ◦ MixColumns−1(ΔR8 ⊕ ΔR7). As in S7, all
16 bytes are active (with a probability very close to 1), we can easily find the
values of the individual bytes by the well-known method of solving 16 differential
2 The difference ΔX is produced after some initial difference goes through multiple
AES rounds, thus we can assume ΔX is a random 16-byte difference. As a result, the
probability that in ΔX all 16 bytes are active is (1 − 1/256)16 ≈ 1.
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AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

ΔR7

ΔR8

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

ΔR9

ΔR10

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

AES0 AES0 AES0 AES0 AES0 AES0 AES0 AES0

ΔR11

ΔR12

Δ X=0

    =0

    =0

    =0

    =0

Fig. 4. Extending the previous trail for 4 additional rounds.

equations of the form S(x⊕Δinput)⊕S(x) = Δoutput that come from the system
using S-Box S. Each such equation on average has two solutions, because if x is
a solution, then x ⊕ Δinput is also a solution. To find a single solution for each
byte, we repeat once the recovery for different Δα and Δβ. As a result, we can
recover the value of S7 at round 8 of the encryption.

Using the very same method, we can recover S7 at rounds 9, 10, 11 and 12. For
instance, for round 9, the input (resp. output) difference of AES0 is ΔR7 ⊕ ΔR8

(resp. ΔR7 ⊕ ΔR8 ⊕ ΔR9). With the knowledge of the values of 5 consecutive
S7, we can uniquely recover the values of S6, S5, S4, S3 at round 8 by simple
computation using those words. Let SvR

u be the u-th variable of the state for
round v. For instance, S8R

6 is computed by S8R
7 ⊕ AES−1

0 (S9R
7 ).

We can recover two more S7 words (of additional 2 rounds) if we shift the
round where we apply the difference Δα and instead to P0 we introduce Δα at
P2 and Δβ at P3. Hence, we will have the values of S7 for 7 consecutive rounds.

The state word S8 is different compared to the remaining seven words and
it is not possible to recover it by using the above method. Nevertheless, we can
still recover S8 at round 0 of the encryption based on the differences Δα and
Δβ, i.e., we can recover the active byte where the difference Δα is non-zero.
By repeating the recovery with 16 different positions of active bytes, we can
deduce the whole state word S8 at round 0. As S8 does not take feedback from
any other word (but the plaintext), we can easily find the value of S8 at any
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round, including our target round 8. That is, with the knowledge of S7 of seven
consecutive rounds (8, 9,...14) which can be deduced as shown above, and S8 at
round 8, we can recover the full state at round 8.

3.3 The Attack

We now present the universal forgery attack. The goal of the attack is to produce
a tag of an arbitrary plaintext. In our case, the attack works as long as the length
of the plaintext is at least 16 blocks (240 bytes). Our forgery is based on a state
recovery, i.e., if at some round the whole state is known, then the tag can easily
be produced by performing the remaining operations of the finalization, and
therefore it can be produced offline.

Let P0, P1, . . . , P14 be the first 15 blocks of the plaintext. Then, the forgery
can be described with the following algorithm:

1. Query the first 15 plaintext blocks of the target (P0‖P1‖ · · · ‖P14), and obtain
the key stream R0, R1, · · · , R14.

2. FOR position = 1 to 16 DO
3. FOR i = 1 to 27 DO
4. Choose 1-byte difference Δαi with active byte at position and

find the corresponding Δβi.
5. Query (P0⊕Δαi‖P1⊕Δβi‖P2‖ · · · ‖P14) and obtain the key stream

Ri
0, · · · , Ri

14.
6. Check if the difference R7 ⊕ Ri

7 can result in R7 ⊕ Ri
7 ⊕ R8 ⊕ Ri

8

by AES0.
7. Check the same property for additional 4 rounds.
8. Save the pairs that pass all the above checks.
9. END FOR

10. Recover the byte at position of the state word S8 at round 0
11. END FOR
12. Recover S7 at rounds 8,9,10,11,12
13. FOR i = 1 to 27 DO
14. Choose 1-byte difference Δαi and find the corresponding Δβi.
15. Query (P0‖P1‖P2 ⊕ Δαi‖P3 ⊕ Δβi‖P4‖ · · · ‖P14) and obtain the key

stream Ri
0, · · · , Ri

14.
16. Check if the difference R9 ⊕ Ri

9 can result in R9 ⊕ Ri
9 ⊕ R10 ⊕ Ri

10 by
AES0.

17. Check the same property for next 4 additional rounds.
18. Save the pairs that pass all the above checks.
19. END FOR
20. Recover S7 at rounds 13 and 14.
21. Deduce all the state words at round 8.
22. Go through the remaining of the transformations and produce the tag.

The first loop is used to recover S8, and to recover five S7, and the second
to recover the remaining two S7. Note, each of the loops (the inner loop of the



Practical Cryptanalysis of PAES 237

first loop) will produce two pairs, as the probability of the trail in the top (Δα
will be canceled by Δβ) is 2−6. In case no good trails with probability 2−6 exist,
the attacker can switch to ones with probability 2−7 and run the loops 28 times.
Furthermore, as we have seen from the previous analysis, a probability of false
positives is very low (around 2−80).

From the algorithm, it follows that the time complexity of the attack is
16 · 27 + 27 ≈ 211 computations. The data complexity is similar and comes in
a form of chosen plaintexts. To solve efficiently the differential equations, the
attack needs about 216 bytes in memory.

4 Practical Distinguisher for a Weak-Key Class of PAES

We continue our analysis by presenting a distinguisher for a class of 264 weak
keys (out of 2128 keys) in PAES-8. The distinguisher requires negligible time
complexity and only a single pair of known plaintext-ciphertext and a chosen
nonce. It exploits the lack of constants in the design and the symmetric properties
of the keyless AES round function. Although we give the distinguisher for PAES-8,
we note that a similar attack is applicable to the nonce-respecting mode PAES-4.

4.1 Symmetric Properties of the AES Round Function

We first recall the known symmetric property of the AES round function [7].
Namely, if a state is symmetric in the sense that its two halves are equal, then
the keyless round function AES0 of the AES maintains this property. We recall
the property of [7] using block matrices, and we introduce the following more
general notations:

U(A,B) =
(

A A
B B

)
, V (A,B) =

(
A B
B A

)
, W (A,B) =

(
A B
A B

)
.

Additionally, we denote by U , V and W the associated sets respectively for all
possible values of the 2 × 2 block matrices A and B. Finally, we denote M the
constant MDS matrix used in the AES round function, and observe that:

M =

⎛
⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠ =

(
M1 M2

M2 M1

)
= V (M1,M2) ∈ V.

Property 1. Let S ∈ U . Then, AES0(S) ∈ U .

Proof. Let S = U(A,B) ∈ U , and write the bytes in S as:

(
A A
B B

)
=

⎛
⎜⎜⎝

x0 x4 x0 x4

x1 x5 x1 x5

x2 x6 x2 x6

x3 x7 x3 x7

⎞
⎟⎟⎠ .
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As the SubBytes operation applies the same bijection to all the bytes in the state,
we ignore it here as it obviously preserves the structure. After the ShiftRows
operation, the state becomes⎛

⎜⎜⎝
x0 x4 x0 x4

x5 x1 x5 x1

x2 x6 x2 x6

x7 x3 x7 x3

⎞
⎟⎟⎠ def=

(
A′ A′

B′ B′

)
,

thus it still belongs to U . Then, the MixColumns operation results in:⎛
⎜⎜⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

x0 x4 x0 x4

x5 x1 x5 x1

x2 x6 x2 x6

x7 x3 x7 x3

⎞
⎟⎟⎠ =

(
M1 M2

M2 M1

)
×

(
A′ A′

B′ B′

)

=
(

M1A
′ ⊕ M2B

′ M1A
′ ⊕ M2B

′

M2A
′ ⊕ M1B

′ M2A
′ ⊕ M1B

′

)
def=

(
A′′ A′′

B′′ B′′

)
∈ U .

��
Property 2. Let S ∈ W. Then, AES0(S) ∈ V, and AES0(AES0(S)) ∈ W.

Proof. Let S = W (A,B) ∈ W, and write the bytes in S as:

(
A B
A B

)
=

⎛
⎜⎜⎝

x0 x2 x4 x6

x1 x3 x5 x7

x0 x2 x4 x6

x1 x3 x5 x7

⎞
⎟⎟⎠ .

Again, we ignore the SubBytes operation as the applied bijection preserves the
structure of the internal states. However, after the ShiftRows operation the state
becomes: ⎛

⎜⎜⎝
x0 x2 x4 x6

x3 x5 x7 x1

x4 x6 x0 x2

x7 x1 x3 x5

⎞
⎟⎟⎠ def=

(
A′ B′

B′ A′

)
∈ V,

which is transformed by the subsequent MixColumns transformation into the
state: (

M1 M2

M2 M1

)
×

(
A′ B′

B′ A′

)
=

(
M1A

′ ⊕ M2B
′ M1B

′ ⊕ M2A
′

M2A
′ ⊕ M1B

′ M2B
′ ⊕ M1A

′

)

def=
(

A′′ B′′

B′′ A′′

)
∈ V.

After applying a second keyless AES round, we get:

(
A′′ B′′

B′′ A′′

)
=

⎛
⎜⎜⎝

y0 y2 y4 y6
y1 y3 y5 y7
y4 y6 y0 y2
y5 y7 y1 y3

⎞
⎟⎟⎠ SR−→

⎛
⎜⎜⎝

y0 y2 y4 y6
y3 y5 y7 y1
y0 y2 y4 y6
y3 y5 y7 y1

⎞
⎟⎟⎠ def=

(
A′′′ B′′′

A′′′ B′′′

)
∈ W,
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and by the MixColumns:(
M1 M2

M2 M1

)
×

(
A′′′ B′′′

A′′′ B′′′

)
=

(
M1A

′′′ ⊕ M2A
′′′ M1B

′′′ ⊕ M2B
′′′

M2A
′′′ ⊕ M1A

′′′ M2B
′′′ ⊕ M1B

′′′

)

def=
(

A′′′′ B′′′′

A′′′′ B′′′′

)
∈ W,

which concludes the proof. ��
Finally, we can represent the action of the keyless AES round function AES0

on the three sets U , V and W as follows on Fig. 5.

U V W

AES0

AES0

AES0

Fig. 5. Action of AES0 of the symmetrical states from U , V and W.

4.2 Symmetric Properties of the PAES Transformations

Along with AES0, PAES uses a few more transformations, in particular, the XOR
and the linear transformation L. We investigate here how these two transforma-
tions preserve the class belongings.

Property 3. Let X be either U , V or W, and let S1, S2 ∈ X . Then, S1 ⊕ S2 ∈ X .

Proof. Let S1 = U(A1, B1), S2 = U(A2, B2) ∈ U . Then:

S1 ⊕ S2 =
(

A1 A1

B1 B1

)
⊕

(
A2 A2

B2 B2

)
=

(
A1 ⊕ A2 A1 ⊕ A2

B1 ⊕ B2 B1 ⊕ B2

)
∈ U .

The cases for V and W can be proven similarly. ��
Property 4. Let S ∈ W. Then, L(S) ∈ W.

Proof. Let S = W (A,B) ∈ W, and write the bytes in S as:

S =
(

A B
A B

)
=

⎛
⎜⎜⎝

x0 x2 x4 x6

x1 x3 x5 x7

x0 x2 x4 x6

x1 x3 x5 x7

⎞
⎟⎟⎠ .

Then:

L(S) = L

⎛
⎜⎜⎝

x0 x2 x4 x6

x1 x3 x5 x7

x0 x2 x4 x6

x1 x3 x5 x7

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x2 x4 x6 ⊕ x0 x0

x3 x5 x7 ⊕ x1 x1

x2 x4 x6 ⊕ x0 x0

x3 x5 x7 ⊕ x1 x1

⎞
⎟⎟⎠ ∈ W.

��
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4.3 The Distinguisher

To distinguish PAES, we use the first ciphertext C0 produced during the encryp-
tion of an arbitrary plaintext P0 with a secret key K ∈ W and nonce N ∈ W.
The key K can be any of such 264 keys (the first two rows equal to the second
two rows), and the same structure holds for the nonce N .

We first inspect how the state words S1, S2, . . . , S8 change the class belong-
ings (either W or V) from the very first to the last steps of the initialization
phase:

• K,N ∈ W. By Properties 3 and 4 S1, S2, . . . , S8 ∈ W after the initial assign-
ments in the initialization.

• After the first update. By Property 3, the XORs do not change the class
belongings, thus each S6, S7, S8 stay in W after the XORs at the top of the
StateUpdate. Further, according to the Property 2, AES0 changes the class
from W to V. Consequently, at the end of the first update, Si ∈ V, i = 1, . . . , 8.

• The second update is similar to the previous one, but this time the class of
Si changes to W.

• . . .
• After the tenth update. The classes of all Si are W.
• After the XORs of the key. As each Si is in W and the key is in W, by

Property 3, it follows that each Si will be in W.

We now focus on the production of the ciphertext C0. Obviously, tmp = S7 =
W (A1, B1) ∈ W and after the application of the StateUpdate, S7 = V (A2, B2) ∈
V by Property 2. Thus, from the definition of the ciphertext C0 = P0⊕tmp⊕S7,
we get:

C0 ⊕ P0 =
(

A1 B1

A1 B1

)
⊕

(
A2 B2

B2 A2

)
=

(
A1 ⊕ A2 B1 ⊕ B2

A1 ⊕ B2 B1 ⊕ A2

)
=

(
X Z
Y T

)
.

Obviously X ⊕ Y ⊕ Z ⊕ T = 0, hence the xor of the four 32-bit blocks of
the first ciphertext and plaintext must result in a zero block. Therefore, we
have a distinguisher which requires negligible complexity and only a single block
of plaintext/ciphertexts to distinguish PAES when instantiated with any of the
264 keys and nonces from the class W. We note that our computer simulation
confirmed the correctness of the distinguisher.

5 Conclusion

We have shown two practical attacks on the CAESAR candidate PAES: a uni-
versal forgery attack and a distinguisher, which contradict the security claims of
this authenticated encryption scheme.

Our analysis gives insights into possible misuses of the AES round function.
Although this transformation per se provides excellent resistance against differ-
ential and linear attacks (once it has been iterated several times), by no means it
is sufficient proof of security against all attacks. The designs based on the round
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function that does not apply any constants, as we have seen on the example of
our distinguisher and the chosen-key rotational distinguisher [10] of PAES, are
susceptible to attacks that exploit the symmetry of the AES transformations.
Consequently, using random constants in such designs should be taken as a
requirement to destroy those symmetric behaviors. Furthermore, as our forgery
attack shows, evaluating the differential properties in a straightforward manner
(providing the best in terms of probability differential characteristic), does not
guarantee security against differential attacks in the nonce-repeating mode.

We would also like to emphasize the importance of the technique used in the
forgery attack on the nonce-repeating mode. Due to the mode and the attack
framework, there is no need to provide a valid tag at the beginning of the attack
(forgery or state recovery). Hence the attacker can focus only on finding a differ-
ential characteristic that will leak differences in state words sufficient for recovery
based on solving differential equations. The characteristic does not necessarily
need to hold with a high probability, but for the forgery on PAES this was required
in the first two rounds only because there was an alternative path that does not
permit state recovery. In general, the probability of the characteristic is irrel-
evant, however, it is important for the characteristic to leak input and output
differences of non-linear operations which subsequently will be used to recover
the state bits. We believe that this technique (improved or modified variants)
can be a valuable approach for cryptanalysis of other CAESAR submissions and
authenticated encryption schemes.
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