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Abstract. This paper describes an extension of fuzzy relational neural
networks (FRNNs) that aims at improving their classification perfor-
mance. We consider Pedrycz’s FRNN, which is one of the most effective
and popular models. This model has traditionally used a single relational
product (Circlet). The extension described in this paper consists in al-
lowing applying other relational products in the training phase to the ba-
sic FRNN, looking to increase its predictive capabilities. The relational
products considered for the extension are the so called BK-Products:
SubTriangle, SupTriangle and Square; in addition, we propose the use
of more general operators (t-norms and s-norms) in their definitions,
which are also applied to the Circlet relational product. We explore the
effectiveness of this extension in classification problems, through testing
experiments on benchmark data sets with and without noise. Experimen-
tal results reveal that the proposed extension improves the classification
performance of the basic FRNN, particularly in noisy data sets.

Keywords: Fuzzy Relational Neural Networks, Neuro-Fuzzy Systems,
Relational Products.

1 Introduction

Neural and fuzzy systems combine naturally to resemble an adaptive system with
sensory and cognitive components [12]; these methods are known as neuro-fuzzy
hybrid systems and can be grouped into [10]: (I) Fuzzy Neural Networks, where
the network is capable to process fuzzy information; and (II) Neuro-Fuzzy sys-
tems involving a Fuzzy Inference System combined with a neural network which
provide learning ability. This paper focuses on the first approach, where neurons
perform operations from fuzzy sets theory instead of the common arithmetic
operations, concretely we focus on Fuzzy Relational Neural Networks (FRNNs).

In FRNNs the weights are replaced by fuzzy relations, in this way, FRNNs
account for the uncertainty that may exist in training data. Several FRNNs
have been proposed so far, being the model from Pedrycz the most known
one [11]. However, this model is restricted to a single relational product (Circlet).
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We propose an extension to Pedrycz’s FRNN to incorporate alternative rela-
tional products that have not been considered yet for the training phase. Specif-
ically, we consider SubTriangle, SupTriangle and Square relational products,
additionally we consider more general operators (i.e., t-norms, s-norms) in their
definitions. We adapt the learning algorithm (a variant of the backpropagation
algorithm) described in [11] for training FRNNs with the alternative products.
We performed experiments with the extended FRNNs in benchmark data with
and without noise. Results reveal that FRNNs trained with different relational
products can improve the classification performance than the base model.

The rest of the paper is organized as follows. Section 2 introduces the ba-
sic FRNN. Section 3 reviews related work. Section 4 introduces the proposed
extension. Section 5 reports experimental results. Finally, Section 6 presents
conclusions and future work directions.

2 Fuzzy Relational Neural Networks

A feed-forward single-layer perceptron consists of a collection of input nodes
X = {x1, ..., xm}, a set of output nodes Y = {y1, ..., yl}, and a weights matrix
W = {wij |i ∈ m, j ∈ l}, where l are the classes to which input patterns can
belong to. The output of node yj is given by yj = f (

∑
i xiwij).

Pedrycz [11] replaces weights by fuzzy relations. The perceptron’s weight ma-
trix is replaced by a fuzzy relational matrix which represents a fuzzy relation
from X to Y , R = {xRy|x ∈ X, y ∈ Y }, so that the connection between xi and
yj has a relational value R(xi, yj). The output values Y are generated by the
relational product (RP) of the inputs set X and the relations R, i.e. Y = X ◦R.
For this network, Pedrycz uses the circlet product defined by the max-min com-
position [15]. This composition is represented by yj = max (min (xi, R (xi, yj))).
In [11], it is also proposed a fuzzy equality index that is based in the �Lukasiewicz
implication, this index provides a way to evaluate the model’s performance dur-
ing the training phase. This measure is used with gradient descent techniques to
update the weights of the matrix in a similar fashion to the standard backprop-
agation (BP) algorithm. Since gradient descent techniques require the objective
function to be derivable, Pedrycz also proposes an approximate of the derivative
for the max-min composition.

Reyes-Garćıa proposed in [12] a framework to take advantage of Pedrycz’s
FRNN, with the particularity that this FRNN uses different relational products
in the processing phase (described shortly). In this architecture the input layer
is formed by N×n neurons, each of which corresponds to one of the N linguistic
terms assigned to each of the n inputs. The output layer is composed by l neu-
rons, each of which belongs to one of l classes. There exists a connection between
each node in the input layer to every node in the output layer. Figure 1 shows
the framework proposed. The FRNN operation is divided in two phases: (1) the
learning phase is responsible for directing the adjustment of the values of the
relations matrix: (2) the processing phase is in charge of calculating the mem-
bership degree to the classes of each input pattern; in this point the outputs are
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fuzzy values, here the Decision Making Module (DMM) interprets the outputs
depending on the application, e.g., for classification tasks the DMM assigns the
label with the highest membership degree to the input pattern.

Fig. 1. Block diagram of the framework of the system based FRNN from [12]

3 Related Work

Themax-min composition is one of the most frequently used for training FRNNs,
see e.g., [5,6,7,11,12,13]. W. Pedrycz proposed the basic structure of the
FRNN [11] and Blanco et al. integrated the concept of “soft derivation” to
approximate the actual derivative [5]. Valente de Oliveira [7] expanded the com-
position to max-t. Whereas Reyes-Garćıa [12] extended the network developed
by Pedrycz[11] to incorporate the BK relational products in the processing
phase [2]-[8]. Davis & Kohout [6] incorporated generalizations of the BK RPs.
In [4] Barajas & Reyes develop a genetic algorithm (to select the number of lin-
guistic terms, type of membership functions, and learning rate); with the same
approach Rosales et al. [14] select, in addition to the aforementioned parame-
ters, the values for the membership functions. Other works (see e.g., [1]) focus
on the use of derivable norms. From the above reviewed works we note that most
methods use the max-min composition for training FRNNs.

4 Incorporating Alternative RPs for Training FRNNs

This paper proposes to use different RPs in the training phase of FRNNs, as well
as the use of t-norms and s-norms in the RP’s definitions. Our work is inspired
in part by the observations of Bandler & Kohout in [3], related to the use of
particular implication operators adequate to specific applications. It follows that
if we only trains an FRNN with a specific composition (max-min in this case), its
ability to represent other relationships between structures is limited. Therefore,
it is necessary to provide the FRNN with the ability of replacing the training
RP by another more suitable to the problem under analysis. In the rest of this
section we describe the way in which alternative RPs can be incorporated in the
training phase of FRNNs.
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4.1 Training Phase

Switching from one RP to another for training an FRNN is not a trivial task
and it cannot be done in a transparent way. This is mainly due to the fact that
the learning algorithm (BP) used by the FRNN is a method based on gradient
descent and therefore requires derivable operators.

Pedrycz incorporates an equality index Q expressed by fuzzy implications [11],
this index serves as a measure to evaluate the network’s error, when calculating
the derivative of this error with respect to the weights, we obtains the following:

Δw =
∂Q

∂w
= −

∑

i:yi>ti

∂f(xi;w, ϑ)

∂w
+

∑

i:yi<ti

∂f(xi;w, ϑ)

∂w
(1)

where xi is the input pattern, w is the relation matrix and ϑ is the bias vector.
The rest of the derivative (Δw) can be calculated when the function f is specified.
For example, if we take into account the definition of the circlet RP (◦) with
a bias, yk = ∨ (∨ (xij ∧ wkj) , ϑk) where k = 1, .., l, we have (the indexes have
been omitted for clarity):

∂(∨(w ∧ x) ∨ ϑ)

∂w
=

∂(∨(w ∧ x) ∨ ϑ)

∂ ∨ (w ∧ x)
∗ ∂(∨(w ∧ x))

∂(w ∧ x)
∗ ∂(w ∧ x)

∂w
(2)

this derivative is given in terms of t-norms and s-norms, these operators have
to be replaced by implementations that comply with the restrictions inherent
to these. Thus if we replace the t-norms by the min operator and the s-norms
by the max operator (considering that we know the approximation of their
derivatives [11,5]), the derivative stays as follows:

∂(∨(w ∧ x) ∨ ϑ)

∂ ∨ (w ∧ x)
=

{
1 ∨(w ∧ x) ≥ ϑ,

0 otherwise.

∂(w ∧ x)

∂w
=

{
1 a ≤ x,

0 otherwise.

∂(∨(w ∧ x))

∂(w ∧ x)
=

{
1 (w ∧ x) ≥ (∨(w ∧ x),

0 otherwise.

as can be seen, the max−min derivative is reduced to a number of cases, which
are identical to those shown by Pedrycz [11]. By adopting this approach we can
add more RPs for training, we just need to define the derivative of the RP to
the point shown in Equation (2) and the rest of the process is transparent. In
this work, the RPs that are incorporated to the training phase of FRNNs are the
BK products (by Bandler-Kohout): SupTriangle, SubTriangle and Square; this
is due to their proved quality to represent relationships between structures [9].
We provide the derivative and definitions of each of these products in Table 1,
these definitions are one of the main contributions of this work. To complete
the training process we need to define the t-norms, s-norms and implications,
with their respective derivatives, that will be used by the RPs. The operators
were chosen for their wide use in the literature, we provide the details of these
in Table 2 (the operators used for training are those in which the derivative has
been defined).
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Table 1. RPs to be incorporated in the training phase of FRNNs

Rp Definition Derivative

Circlet(◦) ∨j(Rij ∧ Sij)
∂(∨(w∧x)∨ϑ)

∂∨(w∧x) ∗ ∂(∨(w∧x))
∂(w∧x) ∗ ∂(w∧x)

∂w

SubTriangle(�) ∧j(Rij → Sjk)
∂(∧(x→w)∨ϑ)
∂(∧(x→w))

∗ ∂(∧(x→w))
∂(x→w)

∗ ∂(x→w)
∂w

SupTriangle(�) ∧j(Rij ← Sjk)
∂(∧(x←w)∨ϑ)
∂(∧(x←w))

∗ ∂(∧(x←w))
∂(x←w)

∗ ∂(x←w)
∂w

Square(�) ∧j(Rij ↔ Sjk)
∂(∧(x↔w)∨ϑ)
∂(∧(x↔w))

∗ ∂(∧(x↔w))
∂(x↔w)

∗ ∂(x↔w)
∂w

Table 2. Fuzzy operators to be used in RPs definitions

RP Definition Derivative

Implication
a → b

�Lukasewicz min(1, 1 − a + b) − ∂min(1,1−b+a)
∂a

Kleene-Diens ∨(1 − a, b)
Gaines ∧(1, b/a)

Equality
a ↔ b

∧(a → b, b → a)

∂min(a→b,b→a)
∂a

=
∂min(a→b,b→a)

∂a→b
∗ ∂a→b

∂a

+
∂min(a→b,b→a)

∂b→ ∗ ∂b→a
∂a

t-norm
∧(a, b)

Minimum min(a, b)
∂min(a,b)

∂a
=

{
1, a <= b

0, otros

Product a ∗ b
Einsten prod. (a ∗ b)(2 − a + b − a ∗ b)
Hamacher prod. (a ∗ b)(a + b − a ∗ b)

Drastic t-norm

⎧⎪⎨
⎪⎩

b if a == 1

a if b == 1

0 otherwise

Nilpotent

{
min(a, b) if (a + b) > 1

0 otherwise

s-norm
∨(a, b)

Maximum max(a, b)
∂max(a,b)

∂a
=

{
1, a >= b

0, otros

Prob. sum a + b − a ∗ b
Einsten product (a + b)/(1 + a ∗ b)
Hamacher sum (a + b − 2 ∗ (a ∗ b))(1 − a ∗ b)

Drastic s-norm

⎧⎪⎨
⎪⎩

b if a == 0

a if b == 0

1 otherwise

Nilpotent

{
max(a, b) if (a + b) < 1

1 otherwise

4.2 Processing Phase

As described earlier, FRNNs have been extended using different RPs in the pro-
cessing phase. This work adopt a similar approach using as processing bases the
RPs Circlet, Suptriangle, Subtriangle and Square (see Table 1). The instances
of t-norm, s-norm and implication considered are shown in Table 2.

5 Experimental Results

The performance of the proposed extension is evaluated in classification prob-
lems. Recall that for approaching classification tasks the DMM assigns to an
input pattern the label with the highest membership degree. The goal of the
experimental evaluation is to show evidence that the alternative RPs consid-
ered are competitive with the base FRNN. Accordingly, we evaluate the perfor-
mance of each possible configuration of an FRNN with the alternative RPs in
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a suite of classification problems. The evaluation was performed using 10-fold
cross-validation, next we report the achieved accuracy. For the experiments, we
considered 9 data sets from the UCI Repository, a summary of the properties of
the data sets is given in Table 3. Since one of the strengths of fuzzy algorithms is
their tolerance to noise, we also considered data sets with added noise. The noisy
databases were taken from the KEEL 1 repository, the noise was introduced with
the pattern proposed in [16] with a scheme of Noisy Train - Noisy Test to 20%.

Table 3. Statistics of the data
sets. For the ‘#Features’ column
R=reals, I=integers, N=nominals.

Data set # Features
(R/I/N)

#sam-
ples

#cla-
sses

iris 4 (4/0/0) 150 3
car 6 (0/0/6) 1728 4

ecoli 7 (7/0/0) 336 8
pima 8 (8/0/0) 768 2
glass 9 (9/0/0) 214 7
wine 13 (13/0/0) 178 3
heart 13 (1/12/0) 270 2

twonorm 20 (20/0/0) 7400 2
ionosphere 33 (32/1/0) 351 2

Table 4. Performance comparison of the
original FRNN (FRNN column) and the
proposal of this paper (EFRNN column)

Noise-free Noisy-data sets
Dataset FRNN EFRNN FRNN EFRNN

iris 96.66±3.51 97.33±3.44 82.66±5.62 91.66±7.82

car 78.47±1.57 79.39±2.73 70.02±0.17 73.02±0.32

ecoli 65.79±4.03 74.12±6.39 59.26±6.38 63.06±3.50

pima 74.35±3.16 76.43±1.99 71.22±3.29 72.13±4.56

glass 59.87±6.09 64.06±9.31 55.64±7.06 62.61±5.56

wine 87.09±5.92 97.22±3.92 80.35±8.10 91.01±6.65

heart 76.29±8.76 84.81±8.63 72.96±7.20 79.25±7.02

ionosphere 83.75±5.73 88.04±4.00 81.29±4.02 89.46±4.23

twonorm 90.39±1.88 92.66±1.18 87.10±1.74 89.50±2.44

79.18±4.24 83.26±4.58 73.38±4.84 78.22±5.76

An FRNN requires the specification of the following parameters: RP for pro-
cessing, RP for training, number of linguistic terms, type of membership function
and number of epochs. The RPs for processing are the result of all possible combi-
nations that arise from replacing the operators (Table 2) in the general definition
of the RPs (Table 1). For training the network the listing RPs in Table 1 were
taken, combined with the Table 2’s operators. The number of linguistic terms
can be set to 3, 5 or 7 [12]. The membership functions are used to calculate
the membership degree of an input pattern to a class, possible choices are Pi,
Triangular and Trapezoidal. These functions are uniformly distributed over the
feature interval, expansion factors of 1, 1.25 and 1.5 can be selected. The number
of epochs was set to 10 due to that it was observed that additional training had
no significant effect in the performance on the test data sets.

Every possible FRNN configuration, varying the above parameters, was tested
on each of the databases. Table 4 shows the results obtained with the base
FRNN (column FRNN) and the best FRNN configuration (EFRNN). It can be
seen from Table 4 that the best configuration of FRNN found for each data
set clearly outperformed the base FRNN. Therefore, we can argue that adding
alternative RPs into the training process of FRNNs results in models of better
performance; confirming the main hypothesis of this work. It is interesting that
the improvements were slightly more important for the noisy data sets. Hence,
considering other RPs when training FRNNs reduces the model uncertainty in

1 http://sci2s.ugr.es/keel/

http://sci2s.ugr.es/keel/
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Table 5. FRNN settings that obtained the best results for each data set.
The lower section shows the configurations for databases with noise.

Dataset Membership
function

# ling.
terms

RP Training | RP Processing Accuracy

iris Triangular 3
◦{∧ :Min,∨ :Max}

97.33 ± 3.44
�{∧ :Min, → {KleeneDiens{∧ :HamacherSum}}}

car Trapezoidal 3
�{∧ :Min, → {�Lukasewicz{∧ :BoundedSum}}}

79.39 ± 2.73◦{∧ :Min, ∨ :Max}
ecoli Trapezoidal 7

�{↔ {�Lukasewicz{∧ :Min}}, ∧ :Min}
74.12±6.39◦{∧ :TLukasewicz}, ∨ :EinstenSum}

pima Pi 3
◦{∧ :Min, ∨ :Max}

76.43±1.99�{↔ {�Lukasewicz{∧ :Min}}, ∧ :Min}
glass Trapezoidal 7

�{∧ :Min, → {�Lukasewicz{∧ :Min}}}
64.06 ± 9.31◦{∧ :TLukasewicz, ∨ :HamacherSum}

wine Pi 5
�{↔ {Lukasewicz{∧ :Min}}, ∧ :Min}

97.22 ± 3.92◦{∧ :HamacherProd, ∨ :EinstenSum}
heart Pi 5

�{∧ :Min, → {Lukasewicz{∧ :Min}}}
84.81 ± 8.63◦{∧ :HamacherProd, ∨ :HamacherSum}

ionosphere Trapezoidal 5
�{↔ {Lukasewicz{∧ :Min}}, ∧ :Min}

88.04±4.00◦{∧ :Min, ∨ :EinstenProduct}
twonorm Triangular 7

◦{∧ :Min, ∨ :Max}
92.66±1.18◦{∧ :TNilpotent, ∨ :EinstenSum}

iris Pi 3
�{∧ :Min, → {Lukasewicz{∧ :Min}}}

90.66 ± 7.82◦{∧ :Min, ∨ :Prob.Sum}
car Pi 5

�{↔ {Lukasewicz{∧ :Min}}, ∧ :Min}
73.02±0.32◦{∧ :TDrastic,∨ :Max}

ecoli Trapezoidal 5
◦{∧ :Min,∨ :Max}

63.06±3.50◦{∧ :HamacherProduct, ∨ :Max}
pima Trapezoidal 7

◦{∧ :Min, ∨ :Max}
72.13 ± 4.56◦{∧ :Min, ∨ :SNilp.}

glass Pi 7
�{∧ :Min, → {�Lukasewicz{∧ :Min}}}

62.61±5.56
�{∧ :Min, → {�Lukasewicz{∧ :Min}}}

wine Trapezoidal 5
�{↔ {Lukasewicz{∧ :Min}}, ∧ :Min}

91.01±6.65�{↔ {→ {KD{∨ :Max}}, ∧ :Min}, ∧ :Product}
heart Triangular 7

�{∧ :Min, → {Lukasewicz{∧ :Min}}}
79.25±7.02◦{∧ :Ham.Prod.}, ∨ :ProbSum}

ionosphere Triangular 7
�{∧ :Min, → {Lukasewicz{∧ :Min}}}

89.46±4.23◦{∧ :EinstenProd.}, ∨ :EinsteSum.}
twonorm Trapezoidal 5

�{↔ {Lukasewicz{∧ :Min}}, ∧ :Min}
89.50±2.44◦{∧ :HamacherProd, ∨ :EinstenSum}

1 The description of the selected RP is given in JSON format, this format consists of an unordered set
of name/value pairs. An object begins with ‘{’ (left brace) and ends with ‘}’ (right brace). Each
name is followed by ‘:’ and the name/value pairs are separated by ‘,’ (comma).

highly noisy environments. This is a very positive result as the main target of
fuzzy algorithms is precisely uncertain environments.

Table 5 shows the best FRNN configuration for each of the considered data
sets. It is worth noticing that the Circlet product is highly competitive in most
of out experiment on noise free data. In noise free data sets, it was selected in
the best FRNN for about half of the data sets. However, for noisy data sets it
was in the best model for a two out of the nine data sets only. The diversity of
RPs in the training phase is a somewhat expected result (different RPs perform
better for different data sets), and confirms our hypothesis and the claims of [3].
This result is evidence supporting the argument that considering alternative
RPs for training FRNNs allows us to obtain better performance. Likewise this
result reveals that a model selection procedure may be necessary for selecting
the adequate RP for training and processing phases.

6 Conclusions and Future Work

We explored the incorporation of alternative RPs into the training phase of
FRNNs. A way to add different RPs, which can be more appropriate for a spe-
cific application, was outlined. We found that, for some databases, training the
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FRNN with the proposed RPs (Circlet, SubTriangle, SupTriangle and Square)
outperforms the traditional compositions, proving the validity of our proposal.
A limitation of this approach is that, by adding a large number of operators, it
makes prohibitive to evaluate all possible combinations, so that as future work
we consider to use model selection methods to find the best FRNN configuration
for the database under analysis. Also, considering that the outputs of the FRNN
represent membership levels of the processed pattern to each class, this approach
will be used in problems that give more use to this information.

References

1. Ashtiani, A.A., Menhaj, M.B.: Numerical solution of fuzzy relational equations
based on smooth fuzzy norms. Soft Computing 14(6), 545–557 (2010)

2. Bandler, W., Kohout, L.: Mathematical relations, their products and generalized
morphisms. Tech. Report Man-Machine Systems Lab. Dept Electrical Engin Univ
Essex, pp. 77–3 (1977)

3. Bandler, W., Kohout, L.: Semantics of implication operators and fuzzy relational
products. Int’l Journal of Man-Machine Studies 12(1), 89–116 (1980)

4. Barajas, S.E., Reyes, C.A.: Your fuzzy relational neural network parameters opti-
mization with a genetic algorithm. In: The 14th IEEE Int’l Conf. on Fuzzy Systems,
pp. 684–689 (2005)

5. Blanco, A., Delgado, M., Requena, I.: Identification of fuzzy relational equations
by fuzzy neural networks. Fuzzy Sets and Systems 71(2), 215–226 (1995)

6. Davis, W.L.: Enhancing Pattern Classification with Relational Fuzzy Neural Net-
works and Square Bk-products. PhD thesis, Tallahassee, FL, USA (2006)

7. de Oliveira, J.V.: Neuron inspired learning rules for fuzzy relational structures.
Fuzzy Sets and Systems 57(1), 41–53 (1993)

8. Kohout, L.: Boolean and fuzzy relationsboolean and fuzzy relations. In: Encyclo-
pedia of Optimization, pp. 189–202. Springer (2001)

9. Kohout, L., Kim, E.: The role of bk-products of relations in soft computing. Soft
Computing 6(2), 92–115 (2002)

10. Pal, S.K., Mitra, S.: Neuro-fuzzy pattern recognition: methods in soft computing.
John Wiley & Sons, Inc. (1999)

11. Pedrycz, W.: Neurocomputations in relational systems. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 13(3), 289–297 (1991)

12. Reyes, C.A.: On the design of a fuzzy relational neural network for automatic
speech recognition. PhD thesis, The Florida State University, Tallahassee, Fl (1994)

13. Reyes, C.A., Bandler, W.: Implementing a fuzzy relational neural network for pho-
netic automatic speech recognition. In: Fuzzy Modelling, pp. 115–139 (1996)
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