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Abstract. The Place Recognition (PR) problem is fundamental for real
time applications such as mobile robots (e.g. to detect loop closures) and
guidance systems for the visually impaired. The Bag of Words (BoW) is a
conventional approach that calculates a histogram of frequencies. One of
the disadvantages of the BoW representation is that it loses information
about the spatial location of features in the image. In this paper we study
an approximate index based on the classic q–gram paradigm to recover
images. Similar to the BoW, our approach detects interest points and
assigns labels. Each image is represented by a set of q–grams obtained
from triangles of a Delaunay decomposition. This representation allows
us to create an index and to recover images efficiently. The proposed
approach is path independent and was tested with a publicly available
dataset showing a high recall rate and reduced time complexity.
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1 Introduction

Visual place recognition is helpful and sometimes is the only alternative for
GPS-denied areas. Many approaches estimate the location of the robot from a
sequence of images instead of a single image. For example, [1] compares short
sequences of images to recognize coherent sequences; showing good results even
when the perceptual change in the datasets is extreme. FAB-MAP [2] defines
a probabilistic model; an image is represented by a binary vector indicating
whether a word is present in the image or not. Analyzing sequences of images
is powerful but for some applications it is inadequate since the camera does not
necessarily follow the same path.

The place recognition problem can also be stated as an image retrieval system:
the query image is the current sensory measurement, and the database contains
measurements recorded along the robot trajectory. Many representations have
been proposed but the standard way of representing an image is by using interest
points –so called keypoints– . Ideal keypoints must be invariant to viewpoint
changes, illumination and occlusions; keypoint detectors such as SIFT [3], SURF
[4], MSER [5] have been successfully used for many applications.

Keypoints and their local descriptors are commonly used within the context
of the Bag-of-Visual Words (BoVW) framework. The BoVW approach requires
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a dictionary that is usually generated by clustering a set of descriptors obtained
from a generic–image database. When a new image is analyzed, its keypoints
are labeled by finding the most probable cluster in the dictionary. That is, if the
dictionary clusters are represented by their centroids then a descriptor point is
labeled according to its closest centroid. In order to create a scalable indexing
and retrieval scheme, histograms of visual–words frequencies are represented in
a more compact way by hashing. The major drawback of this approach is that
there are many similar images for large databases; hence a verification step is
time consuming.

This paper focuses on solving the PR problem from the image retrieval per-
spective. Our approach preserves the minimal geometrical information required
for an efficient system. Our contributions are (i) based on the Delaunay triangu-
lation of labeled keypoints we define geometric q–grams, and, (ii) we propose an
inverted index to quickly locate an image without having to search every image
in the dataset.

The rest of this work is organized as follows: Section 2 reviews the most
relevant work related to our technique. Section 3 introduces the geometrical
q–grams based on Delaunay Triangulation. Section 4 describes the q–gram in-
dex (for q ∈ {2, 3}), and the indexing and querying process. Section 5 presents
the methodology and results of the experimental evaluation. Finally, Section 6
concludes this work and presents some ideas for future work.

2 Related Work

There are several approaches based on the Delaunay triangulation (DT) for pat-
tern recognition. For example, to find affine transformations of point patterns,
[6] uses the largest maximal clique of the consistency graph for each triangle to
obtain the largest set of mutually consistent point pairs. Hence, it allows addi-
tions and deletions of points and some random perturbations in their relative
locations. Instead of the RANSAC approach to find keypoints correspondences,
[7] proposes to analyze DT of keypoints to detect robust matches even for large
viewpoint changes. For fingerprint identification [8] creates an index based on
DT; invariants of side lengths and angles of the minutiae triangulation are calcu-
lated to create an index that reduces memory requirements without sacrificing
recognition accuracy.

In many problems of pattern recognition, objects in an image may be ef-
ficiently represented by a set of labeled points. The min–Hash algorithm [9]
describes a small image patch by selecting independently visual words as global
descriptors. Unlike the bag-of-words approach, min–Hashing algorithms combine
visual appearance (visual words) with semi-local geometric information to find
small objects. Often, a label assigned to a keypoint can vary from scene to scene.
This variability arises from many sources: image noise, varying scene illumina-
tion, instability in the feature detection process and non–affine changes in the
measurement regions. To reduce quantization problems [10] maps each visual
region to a weighted set of words, allowing the inclusion of features which were
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lost in the quantization stage. Our approach does not use a large vocabulary, but
it uses combinations of labels obtained from a reduced–size vocabulary aiming
to alleviate some feature labeling problems but maintaining a high selectivity.

Image graph representations are common in the literature; for example, [11]
uses a graph of interest points clusters and a matrix of commute times be-
tween the different nodes of the graph to obtain a description of their relative
arrangement that is robust to large intra class variation, which partially pre-
serves the spatial information. In the context of the 3D world applied to the
problem of non-rigid shape retrieval in large databases [12] shows that consid-
ering pairs of geometric words (”geometric expressions”) allows one to create
spatially-sensitive bags of features that are more discriminative.

We analyze triangulations of keypoints to describe images. To the best of the
authors’ knowledge this is the first paper presenting an index for place recogni-
tion based on triangulations of labeled keypoints. Our work is inspired by the
success of algorithms used for the approximate string matching problem. This
problem consists in finding a query string in a larger text allowing a limited
number of errors in the matches [13].

3 Geometrical 2–Grams and 3–Grams from DT

In the context of the approximate text searching, a q–gram is a contiguous se-
quence of q items from a given sequence. There are many ways of measuring
errors between two sequences; the most used is the Levenshtein distance de-
fined as the minimum number of single-character operations (insertion, deletion,
substitution) required to change one sequence into the other [13]. Indices based
on q–grams are widely used for approximate string matching because they are
easily scalable for large databases. Specifically, we use some ideas of the q–gram
filters; a q–gram is a subsequence of q symbols from a given sequence. Intuitively,
a string containing an approximate match must contain a minimum number of
q–grams.

To find similar images in a big dataset, the definition of sequential q–grams
must be extended to q–grams in the plane. As sequential q–grams are obtained by
analyzing sequences of characters within a text, q–grams in a plane are obtained
by analyzing subgraphs of a planar graph. In the following discussion we focus
on bigrams and trigrams, for q > 3 we could use other subgraphs. For q ∈ {2, 3},
the grams can be easily obtained by iterating over the edges (for q = 2) or faces
(for q = 3). Let us review the definition of Delaunay Triangulation:

Definition 1 (Delaunay Triangulation). Let P be a set of points in the Eu-
clidean plane, with | P |≥ 3. Let us assume that no three points are collinear
and that no four points are cocircular. A Delaunay triangulation is a triangula-
tion DT(P ) such that no point in P is inside the circumcircle of any Delaunay
triangle.

The empty circumcircle property implies that the insertion of a new point in
a Delaunay triangulation affects only the triangles whose circumcircles contain
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Fig. 1. Finding 3–grams representation of an image: (a) the DT is calculated from
locations of keypoints (b) using the label l(v) of each keypoint v, iterate faces of the
DT to find the 3–grams; for example, t1 = [l(v1), l(va), l(vb)] is obtained from face T1,
t2 = [l(v1), l(vb), l(vc)] is obtained from face T2 and so forth

that point. Hence, noise only affects locally and the DT is stable under single
point perturbations [14]. On the other hand, it is known that there exists a unique
Delaunay triangulation for the non–degenerate case; this property implies that
DT can be used for indexing.

As shown in Figure 1, given an image I we find its q–gram representation
gramsq(I) by four steps:

1. find keypoints and descriptors,
2. assign a label l(v) to the keypoint v based on its descriptor and the available

dictionary,
3. calculate a Delaunay Triangulation based on the coordinates of keypoints,

and,
4. iterate over edges (or faces) to find 2–grams (or 3–grams).

4 Image Indexing

An Inverted Index (II) is a data structure that improves the speed of data
retrieval operations on a dataset at the cost of increasing the storage complexity.
An image indexing structure is built to support fast access to images previously
stored. An II consists of two major components: terms and posting lists. The
set of terms, T , consists of all terms tj ∈ T seen previously; each term tj maps
to a posting list. Each posting is in the format (Ii, ni) where ni is the number
of occurrences of the term tj within image Ii. Figure 2 shows an example of a
3–gram index;

When indexing a place the system simply includes the terms t ∈ gramsq(I)
and its count in the inverted index. For querying an image, the system recovers
the posting list for every t ∈ gramsq(I). The union of all images in the posting
list produces a set of indexed images that contains at least one term of the query
image I. To reduce the search space, we only want to retrieve images that are
closely similar to the image query I. We use the Jaccard similarity coefficient
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(JC) to measure the similarity of the query image and every recovered image.
Given two sets A and B, the Jaccard coefficient is defined as

JC(A,B) =
| A ∩B |
| A ∪B | (1)

The JC is 0 when the two sets are disjoint, 1 when they are equal, and strictly
between 0 and 1 otherwise. It is a commonly used indicator of the similarity
between two sets: two sets are more similar when their Jaccard index is closer to
one, and more dissimilar when their Jaccard index is closer to 0. A multiset U is
defined as a 2-tuple (U,m) where U is some set and m : U → N≥1 is a function
from U to the set N≥1 = {1, 2, 3, . . .} of positive natural numbers representing
the number of occurrences of elements of U in the multiset U .

Analogously to (1); for two multisets U : (U,mU ) , V : (V,mV ), the Jaccard
coefficient can be stated as

JC(U, V ) =

∑
e∈U∩V min{mU (e),mV (e)}

∑
e∈U∪V max{mU (e),mV (e)} (2)

After the query, we have some images and their corresponding multisets that
represent the q–grams common with the query. Then equation 2 is used to cal-
culate the similarity between the query and each recovered image. An image is
considered a putative match when the Jaccard coefficient is bigger than a given
threshold value. The output of the query is a list of images ranked in decreasing
order of Jaccard Index. Finally, a spatial validation step is performed in order
to find the set of images that match the query.

term posting list
[0, 0, 1] (I1, 1); (I2, 2)
[0, 0, 2] (I1, 2); (I2, 1)
[2, 4, 8] (I2, 1)
[5, 6, 7] (I2, 1)

Fig. 2. An inverted index for two images I1 and I2 represented by 3–grams
[[0, 0, 1], [0, 0, 2], [0, 0, 2]] and [[0, 0, 1], [0, 0, 1], [0, 0, 2], [2, 4, 8], [5, 6, 7]], respectively

Spatial Verification

We apply the verification to small sets of images obtained by querying the index,
this step improves the precision. For each image we check geometric consistency
with the current observation by means of RANSAC [15]. Candidate interest point
correspondences are derived from the vertices used to create the geometrical q–
grams, hence they are already computed. The spatial verification is applied to
those images returned from the index that have a minimum Jaccard Coefficient.
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5 Experimental Evaluation

To evaluate the performance of our approach we use the New College Dataset [2].
This dataset was obtained by a mobile robot traversing a complex trajectory of
1.9 km with multiple loop closures. This dataset contains images of the left and
right camera of the robot. Since many applications only use a single camera, we
only use images obtained by the left camera. The ground truth is provided by the
authors of [2] and this information was verified by visual inspection. A Gaussian
filter with σ = 9 was included in the preprocessing step. For each image we find
SURF keypoints with 2 octaves and 1 layer and select those features within the
second octave. We obtain the Delaunay triangulation for the keypoints and use
their labels to find representations based on 2 and 3–grams. To find the label of
each vertex we use a dictionary of 256 words obtained from images of random
city locations.

Figure 3 shows some images with partial match but correctly found by our
approach. Note that Figures 3a and 3b cannot be matched by path–dependent
techniques because they follow different paths.

(a) (b) (c) (d)

Fig. 3. Example scenes with partial match but correctly found by Del–Map from the
New College dataset: (a) and (b) Occlusion by pedestrian, (c) and (d) Different point
of view

We obtain the precision–recall curve shown in Figure 4(a) by varying the
minimum Jaccard coefficient. For many applications –including loop closure– the
precision must be 100%; for this precision, the best performance was obtained
by the Del–Map algorithm based on 3–grams with a recall of 0.55 (table 1).
Figure 4(b) shows the timing results for each image in the route. For the purpose
of comparison, timing results exclude the time required for detection of the
keypoints.

Discussion

The results presented in the Table 1 demonstrate that the Del–Map algorithm
achieves a high recall. Our strategy of using a reduced–size dictionary to alle-
viate some feature labeling problems gives good performance as shown in the
experimental results. In recognizing places, the 3–gram representation outper-
forms the 2–gram representation. We argue that this result is an effect of the
better distinctiveness of the 3–grams; hence, the index recovers fewer places but
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Table 1. Comparison of the proposed approach against FAB–Map. Timing results are
for a 1.7 GHZ Intel Core i5.

Algorithm Del–Map FAB Map
2–grams 3–grams

Precision 100 % 100 % 100 %
Recall 45.5 % 55.01 % 47 %

Run Time (ms/place) 12 2.4 1.94
path dependent NO YES
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Fig. 4. (a) Precision–Recall curve for the proposed approach (b) Elapsed time for each
place

the recognition is more precise. and because the verification step is costly, the
time complexity is also reduced.

Another advantage of Del–Map is that it could detect places even when there
exists occlusions or a partial view of the indexed scene. Del–Map could recover
images obtained from the same place even when the camera does not follow the
same path. A path–independent algorithm such as the proposed one can be an
advantage for mobile robots moving in real environments, and other applications
where the camera does not follow the same path. Finally, Figure 4b shows that
the time complexity grows linearly when the number of indexed images increases.
This bounded complexity may be an advantage for robots that move in larger
environments.

6 Conclusions and Future Work

We show that composed representations obtained from a DT of labeled key-
points are a good choice to solve place recognition problems because they give
high selectivity. An important research question about the n–gram index is:
which is the optimum value of n to improve the performance of the proposed



Geometric Indexing for Recognition of Places 555

algorithm without reducing the recall rate? This issue will be tackled in future
work; we plan to use Fan Graphs for generating q–grams (q > 3) that represent
images because they allow redundancy. Although we use SURF in this work, we
are working on keypoints that are more robust to illumination changes, we are
working on replacing the current verification step for one based on the DT such
as the one proposed in [7].
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