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Abstract. DNA microarrays is a technology that can be used to diag-
nose cancer and other diseases. To automate the analysis of such data,
pattern recognition and machine learning algorithms can be applied.
However, the curse of dimensionality is unavoidable: very few samples
to train, and many attributes in each sample. As the predictive accuracy
of supervised classifiers decays with irrelevant and redundant features,
the necessity of a dimensionality reduction process is essential. In this
paper, we propose a new methodology that is based on the application of
Principal Component Analysis and other statistical tools to gain insight
in the identification of relevant genes. We run the approaches using two
benchmark datasets: Leukemia and Lymphoma. The results show that it
is possible to reduce considerably the number of genes while increasing
the performance of well known classifiers.

1 Introduction

A DNA microarray is a collection of microscopic DNA spots attached to a solid
surface. Each spot contains a clone of a gene. All genes in the microarray go
through a process called hybridization which may change their color. Fluores-
cence measurements are made with a microscope. These measurements are used
to determine the relative abundance of the sequence of each specific gene in the
mRNA or DNA samples [2]. Microarray images typically contain several thou-
sands of small spots, each of which represents a different gene in the experiment.
Figure 1a shows one commercial chip, and Figure 1b shows an example of a
microarray spot image with two different color dyes.

Although biopsy is still a standard diagnostic method for cancer, DNA
microarrays are becoming an alternative. One of the main advantages of mi-
croarrays is the huge amount of molecular information that can be extracted
and integrated to find common patterns within a group of samples. The two
main goals of microarray studies are: 1) to identify molecular signatures as-
sociated with known classes, and 2) to discover new classes. Machine learning
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(a) Affymetrix chips (b) Fluorescence spot image

Fig. 1. DNA Microarrays (images from Wikimedia Commons)

techniques can help via supervised methods (first goal), or unsupervised meth-
ods (second goal). Within the context of DNA Microarray, this basically means
to identify discriminant genes. This is of fundamental interest in Biology and
Medicine [9], [8].

A common problem in machine learning is Feature Selection, which consists in
finding ways to reduce the dimensionality n of the feature space F , to reduce the
risk of over-fitting as well as to allow efficient computation in the classifier. This
is a main topic in general machine learning research since some time ago [14]. The
approaches try, by different means, to identify and retain those attributes that
better represent the original information contained in every sample of a dataset.
In other words, the idea is to retain a subset F ∗ of F such that ||F ∗|| << ||F ||
and that the elements of F ∗ still represent F reasonably well.

However, the processing of DNA microarray data, is particularly complex
given that there are only a few tens of samples, and each sample contains sev-
eral thousands of attributes. This is called the curse of dimensionality. Almost
all of the datasets of DNA microarray data available up to now have such char-
acteristic [1], [7], [12]. Reducing this dimensionality becomes crucial.

In this paper, we propose a methodology to reduce the number of attributes
required to classify microarray data, based on Principal Component Analysis
(PCA). We consider that this method will enable obtaining more insight in
cancer characterization via DNA gene expression analysis. The rest of the paper
is organized as follows: Section 2 describes an overview of different computational
methods that have been used to perform feature selection as well as classification
for DNA microarray analysis. Section 3 presents our methodology, Section 4
describes experiments and results and finally, Section 5 presents the conclusions
and future work.

2 Previous Work

The methods for feature selection can be classified using different criteria [23].
They can be divided in univariate or multivariate methods, or, they can be
separated in: filter and wrapper approaches. Filter methods usually use some
measure to rank the attributes based on univariate functions, and then, the best
ranked attributes are selected [15]. Wrapper methods are usually multivariate
and they involve also a learning algorithm to evaluate the sets of attributes
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used [13], [17]. Usually the first choice is to try a filter approach, since it is
simple to run and requires O(n) time. However, the main disadvantage is that
it creates redundancy and evaluates attributes based on their individual scores,
ignoring their relevance in combination with other attributes [18]. There are
several examples on how this approach works on DNA microarrays data, like the
one reported in [4] where the authors explore the use of PCA, Class-separability,
Fisher ratio and t-test with a Support Vector Machine (SVM). Their results show
that t-test allowed the classifier to perform a very good selection of genes. In [25]
the authors test a three phase process for feature selection, using filters and
Markovian tools. In [24], the authors perform a comparison of three alternatives
using feature-ranking filters, correlation, and a wrapper.

There are also hybrid approaches, where a filter is applied and then a refine-
ment process through a wrapper, like in [5], where a Minimum Redundancy-
Maximum Relevance (MRMR) filter is used and then a Genetic Algorithm
is applied to select the highly discriminant genes. In [19], a PAC (Probably
Approximately Correct)-Bayes is proposed in combination with an SVM. Ant
Colony Optimization [26], Genetic Algorithms and Neural Networks [22],
Fuzzy-based [16], or as an optimization problem [6].

3 Methodology

The methodology proposed in this paper involves six steps, and it is based on
using Principal Component Analysis (PCA) to reduce the dimensionality of the
dataset. However, although PCA compresses the information contained in a
number p of original variables into a smaller set of q factors [10], each factor
is a linear combination of all the p original variables. Therefore, PCA does not
actually reduce the number of attributes, it only creates a different representation
of the same data. Our methodology uses PCA as an intermediate step to reduce
the number of attributes used in the analysis, and it can be summarized as
follows:

1. Perform PCA and select the first q components.
2. Apply logistic regression using the q components and identify the d most

relevant ones.
3. Analyze the d selected components as a group and eliminate the attributes

whose weights are below a defined threshold.
4. Create a new dataset using only the remaining attributes of the last step.
5. Perform PCA on the new dataset and select the first q2 components.
6. Classify the patterns.

3.1 Datasets

We used two publicly available, bi-class datasets in order to test our proposed
methodology: The Leukemia Dataset [7] and the Lymphoma Dataset [20]. Each
one contains 7,129 genes. The first dataset is divided in two subsets: training set
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with 38 samples, and test set with 34 samples. The second dataset contains a
total of 77 samples. We randomly divided it in a training set with 22 samples
(11 of each class), and a test set with the remaining 55 samples.

3.2 Principal Component Analysis

The basic idea behind PCA is that, unless there is perfect correlation between
two or more of the variables, p principal components are required to account
for the p-dimensional variable space. PCA replaces the p original variables by
a smaller number, q, of derived variables, the principal components, which are
linear combinations of the original variables. Often, it is possible to retain most
of the variability in the original variables with q much smaller than p. PCA
projects p-dimensional data into a q-dimensional sub-space (q ≤ p) in a way that
minimizes the sum of squared distances from the points to their projections.

3.3 Logistic Regression

Logistic regression is a statistical technique used when the dependent variable is
categorical. This technique is limited to bi-class problems, and focuses on identi-
fying the independent variables that impact class membership in the dependent
variable. Its basic model is described by:

Logiti = b0 + b1X1 + b2X2 + · · ·+ bnXn (1)

where Logiti represents the logit transformation used with the dependent vari-
able of the sample i, Xn represents the nth attribute, and bn represents its corre-
sponding coefficient. The higher the absolute value of the coefficient, the higher
the influence of the corresponding attribute for the class membership decision.
An explanation of how to implement logistic regression is available in [10].

3.4 Classification

We implemented a Lattice Neural Network with Dendritic Processing (LNNDP)
using the training method proposed by Sossa and Guevara in [21]. One of the
advantages of this method is that it requires no parameter configuration. At the
same time, it does not require random initialization values.

For the case of Support Vector Machines, we used the LIBSVM Library and
trained the classifier as suggested in [3]. We used two different kernels: linear
and radial basis function (RBF). In order to find the best parameters, we divided
the training set in two parts: one for training, and the other for cross validation.
The cross validation set was composed of 33% of the elements of the samples in
the training set, chosen randomly.

For the case of Extreme Learning Machine [11], we used the basic ELM
implementation of the Nanyang Technological University available at
http://www.ntu.edu.sg/home/egbhuang/elm_codes.html. The only parame-
ter to configure in this implementation is the number of neurons in the hidden
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layer. We used a similar methodology than the one used for the SVM. We di-
vided the train set in two subsets and then used cross validation to find the best
number of neurons to use. To select the number of neurons we searched in the
range [1,100].

4 Experiments and Results

We implemented PCA on the normalized training set and selected the q first
components needed to retain at least 90% of the variance in order to create a
new training set Q with the same amount of samples, but each being represented
by q attributes (the chosen principal components). In the case of the Lymphoma
dataset q = 15, while in the Leukemia dataset q = 27. Given that our interest
is to identify which of the q components discriminate between the two classes of
the dataset, we applied logistic regression over the training set Q and, retained
the components whose coefficient’s magnitude were above a certain treshold α.
Both, α and the percentage of variance retained were chosen empirically. Table 1
shows in bold the coefficients selected in the Lymphoma dataset (components 3,
5, 6 and 10). A similar procedure was implemented over the Leukemia dataset.
In this last case we selected components 3, 11, and 26.

Table 1. Coefficients obtained after applying logistic regression to the training set Q
of the Lymphoma dataset

Coefficient Magnitude Coefficient Magnitude Coefficient Magnitude

b1 -0.0967 b6 0.4252 b11 0.2309
b2 0.0452 b7 0.2781 b12 0.1347
b3 0.4591 b8 -0.0559 b13 -0.0543
b4 -0.1747 b9 0.0275 b14 0.03943
b5 0.3073 b10 -0.4174 b15 0.1210

Each principal component has the form: zi = θ1x1 + θ2x2 + · · ·+ θnxn, where
zi is the ith principal component obtained using PCA, xn is the nth attribute
and θn is its corresponding weight. In order to reduce the number of attributes,
we define a threshold t and apply the following rule:

θi =

{
θi, if |θi| > t
0, if |θi| ≤ t

, i ∈ {1, 2, . . . , n} (2)

Thus, the threshold t was determined by analyzing the coefficients’ magnitude
distribution of the selected components based on a box-plot. We set tlymphoma =
0.006 and tleukemia = 0.01 and analyzed how many attributes (genes) had a
coefficient different than zero in each component and analyzed which of them
where present in more than one component. The results are shown in Table 2. By
removing the genes with less contribution to the class discrimination capability of
the logistic regression, we were able to reduce the dimensionality of the datasets
from 7,129 attributes to only 972 for Lymphoma and 422 for Leukemia, which
represent 13.63% and 5.91% of the original ones. In addition, these attributes
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Table 2. Number of genes that are present in different components

Dataset Threshold 0-times 1-time 2-times 3-times 4-times

Lymphoma 0.006 236 1117 2296 2508 972
Leukemia 0.01 1846 2861 2000 422 -

Table 3. Comparison of classification precision using PCA over the original Lym-
phoma(above) and Leukemia(below) datasets, and using PCA over the proposed re-
duced dataset. In bold the highest precision of each method.

q2 LNNDP SVM RBF SVM LIN ELM

Orig. Prop. Orig. Prop. Orig. Prop. Orig. Prop.

3 74.55% 65.46% 60.49% 50.82% 63.69% 53.64% 64.36% 57.40%
5 69.09% 83.64% 64.00% 65.15% 70.76% 69.06% 62.47% 66.13%
7 60.00% 81.82% 64.91% 63.67% 72.47% 73.95% 64.26% 66.64%
15 61.82% 72.73% 49.75% 59.95% 71.31% 71.22% 67.38% 68.22%

q2 LNNDP SVM RBF SVM LIN ELM

Orig. Prop. Orig. Prop. Orig. Prop. Orig. Prop.

3 79.41% 76.47% 69.73% 80.15% 70.56% 85.88% 66.73% 79.27%
5 73.53% 76.47% 71.00% 77.29% 71.15% 78.50% 69.09% 75.47%
7 70.59% 76.47% 72.09% 77.97% 71.74% 79.62% 66.68% 76.77%
15 73.53% 88.24% 77.35% 82.59% 78.21% 83.24% 72.68% 79.21%

might have biological and medical significance, considering that they represent
the actual genes. We then created a new Lymphoma dataset, and a new Leukemia
dataset, using only the genes present in all the selected components.

Having reduced the actual number of attributes in the dataset, we imple-
mented again PCA over the new datasets and tested different classification algo-
rithms on the test set using the first 3, 5, 7 and 15 components, that is, q2. For
comparison purposes, we also implemented the classification algorithms over the
PCA implemented over the original dataset with 7,129 attributes using the same
number of components. The results are shown in Table 3. These results suggest
that classifying the patterns directly after the implementation of PCA yields
suboptimal results. By reducing the number of genes used we not only reduced
the computational cost of the analysis, but also improved the accuracy of all the
tested classification methods. In some cases the improvement was above 10%.
LNNDP is a relatively new method for classification that outperforms the other
well known methods.

5 Conclusions

PCA is a common tool in pattern recognition used to reduce the dimensionality
of a dataset. However, it uses all the original attributes to create a reduced set
of factors. Therefore, we have the same number of attributes, but represented
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in a different way. Besides, because PCA uses no information of the class labels,
there is no guarantee that the variance retained by the first k components is the
variance needed to discriminate among classes. Using the proposed methodology
we related the principal components to the desired class labels and determined
which attributes have more influence to perform discrimination. We diminished
the number of attributes from 7,129 to less than a thousand attributes in both
datasets while improving the precision performance of the classification algo-
rithms by 15% in the best case. One remarkable point of this methodology is
that it found that, at least in the dataset used for the experiments, the most
relevant components were not the first ones. This finding suggest that applying
PCA over a dataset and use the first k components is not enough to achieve
optimal classification; however, using it as a tool for attribute reduction using
the methodology here proposed could improve the performance of the classifiers.
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