
SPaMi-FTS: An Efficient Algorithm for Mining

Frequent Sequential Patterns

José Kadir Febrer-Hernández1, José Hernández-Palancar1,
Raudel Hernández-León1, and Claudia Feregrino-Uribe2

1 Centro de Aplicaciones de Tecnoloǵıas de Avanzada, 7ma A �21406 e/ 214 y 216,
Siboney, Playa, La Habana, C.P. 12200, Cuba

{jfebrer,jpalancar,rhernandez}@cenatav.co.cu
2 Instituto Nacional de Astrof́ısica, Óptica y Electrónica, Luis Enrique Erro �1, Sta.

Ma. Tonantzintla, Puebla, C.P. 72840, México
cferegrino@ccc.inaoep.mx

Abstract. In this paper, we propose a novel algorithm for mining fre-
quent sequences, called SPaMi-FTS (Sequential Pattern Mining based
on Frequent Two-Sequences). SPaMi-FTS introduces a new data struc-
ture to store the frequent sequences, which together with a new pruning
strategy to reduce the number of candidate sequences and a new heuris-
tic to generate them, allows to increase the efficiency of the frequent
sequence mining. The experimental results show that the SPaMi-FTS
algorithm has better performance than the main algorithms reported to
discover frequent sequences.

Keywords: Data mining, Sequential pattern mining, Frequent
sequences.

1 Introduction

Frequent sequences mining is a well-known data mining technique that aims to
compute all frequent sequences from a transactional dataset. Unlike an itemset,
in which an item can occur at most once, in a sequence an itemset can occur
multiple times. Additionally, in itemset mining, (abc) = (cba) but in sequences
mining, 〈 (ab) c 〉 �= 〈 c (ab) 〉.

Mining sequential patterns in transactional datasets, introduced in [1], has
been applied in several application areas, for example in web access analysis [2],
text mining [3], disease treatments [4], among others.

Let I = {i1, i2, ..., in} be a set of elements, called items. Let DS be a
set of transactions, where each transaction is a non empty list (or sequence)
〈 α1 α2 ... αm 〉, with αi ⊆ I. The size of an itemset is defined as its cardi-
nality, an itemset containing k items is called a k-itemset. Similarly, a sequence
containing k itemsets is called a k-sequence.

A sequence α = 〈 α1 α2 ... αn 〉 is a subsequence of (or contained in) a
sequence β = 〈 β1 β2 ... βm 〉 if there exists integers 1 ≤ j1 < j2 < ... < jn ≤ m
such that α1 ⊆ βj1 , α2 ⊆ βj2 , ... , αn ⊆ βjm . Additionally, we will call occurrence

E. Bayro-Corrochano and E. Hancock (Eds.): CIARP 2014, LNCS 8827, pp. 470–477, 2014.
c© Springer International Publishing Switzerland 2014

SPaMi-FTS: An Efficient Algorithm for Mining Frequent Sequential Patterns 471

position of α in β (occPos(α, β)) to the set of positions of all possibles βjm in
β. It is valid to clarify that a sequence α can have more than one occurrence
position in a sequence β.

The support of a sequence α is the fraction of transactions in DS containing
α. A sequence is called frequent if its support is greater than or equal to a given
support threshold (minSup).

The main contribution of this paper is a novel algorithm for frequent sequences
mining, called SPaMi-FTS, which introduces a new heuristic to generate the
candidate sequences. Additionally, SPaMi-FTS proposes a new data structure
to store the frequent sequences and a new pruning strategy to reduce the number
of candidate sequences.

This paper is organized as follows. The next section describes related work.
Section 3 introduces the SPaMi-FTS algorithm. In Section 4 the experimental
results are shown. Finally, the conclusions are given in Section 5.

2 Related Work

In general, most of the sequential pattern mining algorithms can be separate into
two main groups: (1) apriori-like algorithms (AprioriAll, AprioriSome and Dy-
namicSome [1], GSP [7], SPIRIT [5], SPADE [8]) and (2) pattern-growth based
algorithms (PrefixSpan [6], LAPIN [11], ESPE [9], PRISM [10]). The algorithms
of the first group are based on a generate-and-test technique while the algorithms
of the second one are based on the divide and conquer technique.

In [7], the authors proposed the GSP algorithm, which includes time con-
straints and taxonomies in the mining process. In the experiments, the authors
show that the GSP algorithm runs from 2 to 20 times faster than AprioriAll,
AprioriSome and DynamicSome algorithms. Following similar ideas, the use of
regular expressions as a flexible constraint was introduced in [5], with the SPIRIT
algorithm.

The PrefixSpan algorithm, proposed in [6], is based on recursively constructing
the patterns by growing on the prefix, and simultaneously, restricting the search
to projected datasets. In this way, the search space is reduced at each step,
allowing for better performance in the presence of small support thresholds.

The LAPIN (LAst Position INduction) algorithm [11] uses an item-last-
position list and a prefix border position set instead of the tree projection or
candidate generate-and-test techniques introduced so far. LAPIN checks the last
position of an item i to decide if a frequent k-sequence can be extended to be a
candidate (k + 1)-sequence by appending the item i to it.

The ESPE algorithm, proposed by Hsieh in [9], enumerates all 2-sequences
avoiding to generate too many candidates and thus wasting memory space. This
algorithm reads a transaction and enumerates all of its 2-sequences. Simple math-
ematical equations are used to compute the index of all 2-sequences.

PRISM, the algorithm introduced by Gouda et al. in [10], uses a vertical
approach for enumeration and support counting, based on the novel notion of
primal block encoding, which is based on prime factorization theory.

472 J.K. Febrer-Hernández et al.

The algorithm that we propose in this paper follows some ideas from the
algorithms LAPIN and ESPE. As LAPIN, our algorithm stores a list of occur-
rence positions but unlike LAPIN that stores the last position of each single
item in each transaction, SPaMi-FTS stores for each frequent 1-sequence α, and
for each transaction t, a list with the occurrence positions of α in t. Regarding
the 2-sequences, SPaMi-FTS uses them to extend the candidate sequences while
ESPE employs them for enumerating all the 2-sequences from each transaction.

3 Our Proposal

In this section, we describe the proposed algorithm (SPaMi-FTS), including
the new data structure used to store the frequent sequences with their occurrence
lists, and the new pruning strategy used to reduce the number of candidate
sequences.

3.1 Storing Useful Information

Let α be a frequent sequence and T be a transactional dataset, the proposed
data structure stores, for each t ∈ T , a list Lt with the occurrence positions of α
in t. Additionally, a bit-vector of 1’s and 0’s is stored representing the presence or
absence of α in each transaction of T . For example, in Figure 1, five transactions
and the bit-vector associated to sequence 〈f〉 can be observed. Additionally, in
Table 1 the occurrence positions of the sequence 〈f〉 in the transactional dataset
of Figure 1 can be seen.

Tid Transac�on

1 〈 a b 〉

2 〈 cd a ef b 〉

3 〈 af f 〉

4 〈 af ef bf 〉

5 〈 b 〉

0

1

1

1

0

Bit-vector

Fig. 1. Example of five transactions and the bit-vector of the sequence 〈f〉

Table 1. Occurrence positions of sequence 〈f〉 in the dataset of Figure 1

Tid Occurrence positions

2 3
3 1, 2
4 1, 2, 3

SPaMi-FTS: An Efficient Algorithm for Mining Frequent Sequential Patterns 473

3.2 SPaMi-FTS Algorithm

Similar to the reported algorithms [1,6,10,11], in a first step, SPaMi-FTS com-
putes all the frequent 1-sequences. As we mentioned above, SPaMi-FTS stores
for each frequent 1-sequence α, and for each transaction t, a list with the occur-
rence positions of α in t. Also a bit-vector representing the presence or absence
of α in each transaction is stored.

In a second step, SPaMi-FTS computes the frequent 2-sequences from the
frequent 1-sequences. For this, SPaMi-FTS first generates the candidate 2-
sequences by combining the 1-sequences obtained in the first step and later,
it applies a new pruning strategy to reduce the number of support counting.

Let 〈i〉 and 〈j〉 be two frequent 1-sequences, the new pruning strategy in-
tersects (using AND operation) the bit-vectors of 〈i〉 and 〈j〉, respectively.
The obtained bit-vector stores the highest possible support value (number of
bits equal to 1) of the sequence 〈i j〉. If the highest possible support is less
than the minimum support threshold then the real support counting of 〈i j〉
is not computed. In the other case, SPaMi-FTS requires to iterate the oc-
currence lists of 〈i〉 and 〈j〉 to compute the real support of 〈i j〉 because
it is not enough that sequences 〈i〉 and 〈j〉 appear in the same transaction,
also it is needed that occPos(β) > occPos(α) (see Section 1). The pseudo
code to compute the frequent 2-sequences is shown in Algorithm 1, where the
method pruningMethod(〈i〉, 〈j〉) works as follows: the bit-vectors of 〈i〉 and 〈j〉
are intersected to compute the highest possible support value of 〈i j〉, named
highPosSup. If highPosSup < minSup then the sequence 〈i j〉 is pruned.

Algorithm 1. Pseudo code for computing the frequent 2− sequences

Input: Transactional dataset T and support threshold minSup.
Output: Set of frequent 2− sequences.

L1 = oneFrequentSequences(T)
L2 = ∅
foreach 〈i〉 ∈ L1 do

foreach 〈j〉 ∈ L1 do
prune = pruningMethod(〈i〉, 〈j〉)
if not prune then

Sup = 0
foreach t ∈ T do

if occPos(〈j〉, t) > occPos(〈i〉, t) then
Sup = Sup+ 1

end

end
if Sup ≥ minSup then

L2 = L2 ∪ {〈i j〉}
end

end

end

end
return L2

474 J.K. Febrer-Hernández et al.

Similar to frequent 1 − sequences, SPaMi-FTS stores for each frequent 2 −
sequence α, and for each transaction t, a list with the occurrence positions of α
in t and additionally, a bit-vector representing the presence or absence of α in
each transaction is stored. Before continuing, let us to introduce the following
definition:

Definition 1. Let α = 〈α1 α2 ... αm〉 be a frequent m− sequence (m ≥ 2) and
β = 〈αm β1〉 be a frequent 2−sequence, we will call the sequence 〈α1 α2 ... αm β1〉
the union of α and β, and we will use the operator

⊕
to indicate this union.

Finally, in a third stage, the procedure used to compute the frequent 2 −
sequences is extended to compute the frequent k − sequences (k > 2). For
this, the candidate (k+1)− sequences are obtained by combining each frequent
k − sequence α = 〈α1 α2 ... αk〉 with all frequent 2 − sequences of the form
β = 〈αk β1〉. Later, the proposed pruning strategy is used to reduce the number
of support counting. The pseudo code to compute the frequent k − sequences
(k > 2) is shown in Algorithm 2, where the method pruningMethod(α, β) works
in a similar way to the pruning method of Algorithm 1.

Algorithm 2. Pseudo code to compute the frequent (k + 1)− sequences

Input: Transactional dataset T , set of frequent k − sequences kFreq, set of
frequent 2− sequences twoFreq and support threshold minSup.

Output: Set of frequent (k + 1)− sequences.

L1 = ∅
L2 = ∅
foreach α = 〈α1 α2 ... αk〉 ∈ kFreq do

foreach β = 〈αk β1〉 ∈ twoFreq do
prune = pruningMethod(α, β)
if not prune then

Sup = 0
foreach t ∈ T do

if occPos(β, t) > occPos(α, t) then
Sup = Sup+ 1

end

end
if Sup ≥ minSup then

L2 = L2 ∪ {α⊕
β}

end

end

end

end
return L2

SPaMi-FTS: An Efficient Algorithm for Mining Frequent Sequential Patterns 475

4 Experimental Results

In this section, we present the results of our experimental comparison between
SPaMi-FTS and the main sequence mining algorithms reported in the litera-
ture: GSP [1], PrefixSpan [6], LAPIN [11] and PRISM [10]. All codes (imple-
mented in ANSI C standard) were provided by their authors. Our experiments
were carried out over seven datasets, built with a synthetic dataset genera-
tor (see its main parameters in Table 2) developed by the Data Mining Re-
search Group at the Department of Computer Science, University of Illinois
(http : \\illimine.cs.uiuc.edu).

Table 2. Main input parameters for synthetic dataset generator

Parameter Description

C average number of itemsets per sequence
T average number of items per itemset
N number of items
D number of transactions (sequences)

All the tests were performed on a PC with an Intel Core 2 Quad at 2.5 GHz
CPU with 4 GB DDR3 RAM, running Windows 7. We considered CPU time,
without input and output times, as runtime for all the algorithms compared in
this paper. Several experiments were conducted to evaluate the performance of
the algorithms when these parameters change (see Fig. 2).

0

50

100

150

200

250

50 40 30 20 10

�m
e

(s
ec

.)

support (%)

SPaMi-FTS

PRISM

PrefixSpan

LAPIN

GSP

(a) C = 20, T = 3, N = 20, D = 10000.

0

50

100

150

200

250

50 40 30 20 10

�m
e

(s
ec

.)

support (%)

SPaMi-FTS

PRISM

PrefixSpan

LAPIN

GSP

(b) C = 40, T = 3, N = 20, D = 20000.

0

50

100

150

200

250

10 5 3 1

�m
e

(s
ec

.)

support (%)

SPaMi-FTS

PRISM

PrefixSpan

GSP

(c) C = 40, T = 3, N = 50, D = 5000.

0

50

100

150

200

250

300

350

10 5 3 1

�m
e

(s
ec

.)

support (%)

SPaMi-FTS

PRISM

PrefixSpan

GSP

(d) C = 40, T = 3, N = 50, D = 10000.

Fig. 2. Runtime comparison using (a) DS1, (b) DS2, (c) DS3 and (d) DS4 datasets

476 J.K. Febrer-Hernández et al.

In the first experiment we used the parameter values most employed in the
literature (see their parameter values in Fig. 2(a)). As it can be seen in Fig. 2(a),
SPaMi-FTS obtains the best result, followed by PRISM algorithm.

For the second experiment, we simultaneously increased D (from 10000 to
20000) and C (from 20 to 40). In this case, GSP and PrefixSpan were the most
affected algorithms, in both cases the runtimes were over 250 seconds (see Fig.
2(b)).

In the third and fourth experiments, we increased N (from 20 to 50) keeping
C set to 40 and varying D from 5000 in Fig. 2(c) to 10000 in Fig. 2(d). In
both figures, we show the runtime of all evaluated algorithms except for LAPIN
algorithm because it crashed with support thresholds under 10%.

With the last experiments, we studied the scalability of the evaluated algo-
rithms. Three tests were performed with C = 10, T = 20, N = 100 and D set
to 1000, 5000 and 10000, respectively. The support thresholds were 80 %, 75 %,
70 % and 65 %. Since GSP failed to run on these datasets, we could not report
on its scalability. As it can be seen in Fig. 3, the trend is approximately linear,
only changing the order of PRISM and LAPIN algorithms, PRISM beats LAPIN
in this case.

0

20

40

60

80

100

120

140

160

80 75 70 65

�m
e

(s
ec

.)

support (%)

SPaMi-FTS

PRISM

PrefixSpan

LAPIN

(a) C = 10, T = 20, N = 100, D =

1000.

0

20

40

60

80

100

120

140

160

80 75 70 65

�m
e

(s
ec

.)

support (%)

SPaMi-FTS

PRISM

PrefixSpan

LAPIN

(b) C = 10, T = 20, N = 100, D =

5000.

0

100

200

300

400

500

600

700

80 75 70 65

�m
e

(s
ec

.)

support (%)

SPaMi-FTS

PRISM

PrefixSpan

LAPIN

(c) C = 10, T = 20, N = 100, D =

10000.

Fig. 3. Runtime comparison using (a) DS5, (b) DS6 and (c) DS7 dataset

In general, the SPaMi-FTS algorithm had the best performance of all tested
algorithms both in scalability and in runtime.

SPaMi-FTS: An Efficient Algorithm for Mining Frequent Sequential Patterns 477

5 Conclusions

In this paper we have introduced a novel algorithm for mining frequent sequences,
called SPaMi-FTS. In order to reach fast candidate sequence generation, SPaMi-
FTS introduces a new data structure to store the frequent sequences and a new
pruning strategy to reduce the number of candidate sequences. Additionally,
SPaMi-FTS proposes a new heuristic to generate the frequent sequences based on
the frequent two-sequences. The experiments showed that SPaMi-FTS has better
performance than the main algorithms reported in the literature to discover
frequent sequences both in scalability and in runtime.

References

1. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Agrawal, R., Srikant, R.
(eds.) Proceedings of 1995 International Conference Data Engineering, ICDE 1995,
pp. 3–14 (1995)

2. Yu, X., Li, M., Gyu Lee, D., Deuk Kim, K., Ho Ryu, K.: Application of Closed Gap-
Constrained Sequential Pattern Mining in Web Log Data. Advances in Control and
Communication 137, 649–656 (2012)

3. Garćıa-Hernández, R.A., Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A fast
algorithm to find all the maximal frequent sequences in a text. In: Sanfeliu,
A., Mart́ınez Trinidad, J.F., Carrasco Ochoa, J.A. (eds.) CIARP 2004. LNCS,
vol. 3287, pp. 478–486. Springer, Heidelberg (2004)

4. Liao, V.C.-C., Chen, M.S.: An Efficient Sequential Pattern Mining Algorithm for
Motifs with Gap Constraints. In: Proceedings of the 2012 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM), vol. 1, pp. 1–1 (2012)

5. Garofalakis, M., Rastogi, R., Shim, K.: SPIRIT: Sequential Pattern Mining with
Regular Expression Constraints. In: Proceedings of the 25th International Confer-
ence on Very Large Data Bases, pp. 223–234 (1999)

6. Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: PrefixS-
pan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth,
pp. 215–224 (2001)

7. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Per-
formance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996)

8. Zaki, M.J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. Ma-
chine Learning Journal 42, 31–60 (2001)

9. Ying Hsieh, C., Lin Yang, D., Wu, J.: An Efficient Sequential Pattern Mining
Algorithm Based on the 2-Sequence Matrix. In: IEEE International Conference on
Data Mining Workshops, pp. 583–591 (2008)

10. Gouda, K., Hassaan, M., Zaki, M.J.: PRISM: A Prime-Encoding Approach for
Frequent Sequence Mining. Journal of Computer and System Sciences 76, 88–102
(2010)

11. Yang, Z., Wang, Y., Kitsuregawa, M.: LAPIN: Effective Sequential Pattern Mining
Algorithms by Last Position Induction for Dense Databases, pp. 1020–1023 (2007)

	SPaMi-FTS: An Efficient Algorithm for MiningFrequent Sequential Patterns
	1 Introduction
	2 Related Work
	3 Our Proposal
	3.1 Storing Useful Information
	3.2 SPaMi-FTS Algorithm

	4 Experimental Results
	5 Conclusions
	References

