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Abstract. The last few years have seen an important increase in re-
search publications dealing with external typical testor-finding algorithms,
while internal ones have been almost forgotten or modified to behave as
external on the basis of their alleged poor performance. In this research
we present a new internal typical testor-finding algorithm called YYC
that incrementally calculates typical testors for the currently analized
set of basic matrix rows by searching for compatible sets. The experi-
mentally measured performance of this algorithm stands out favorably
in problems where other external algorithms show very low performance.
Also, a comparative analysis of its efficiency is done against some exter-
nal typical testor-finding algorithms published during the last few years.
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1 Introduction

Testor Theory [5], has repeatedly proven itself as one of the most useful tools for
feature selection problems in pattern recognition [4]. Typical testors have been
used for solving a wide range of practical problems like diagnosis of diseases
[8], text categorization [10], document summarization [9] and document clus-
tering [6]. Testor theory has had an important growth over the past ten years,
particularly regarding the development of new algorithms, like [3,7,13,14]. All
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those algorithms are generally refereed to as Typical Testor-finding Algorithms
(TTA).

Typical testor-finding algorithms follow two main strategies. On one hand, ex-
ternal algorithms induce an order over the power set of features used to describe
objects in some previously specified domain, and then some logical properties of
that order are used to optimally search for typical testors. On the other hand,
internal algorithms do not test the power set of features in the domain; their
strategy lies in iteratively selecting some entries from the basic matrix induced
by the studied domain, and use them to construct typical testor candidates.
Interestingly, in almost all published algorithms during the last ten years, re-
searchers have proposed external algorithms. There are even cases of internal
algorithms which were adapted to operate externally, as is the case for [13].

The performance of both, external and internal TTA is experimentally mea-
sured by counting the number of feature subsets tested by the algorithm when
applied over a specific problem, and comparing that quantity with the total
number of typical testors to be found on that same problem. For external TTA
efficiency heavily depends on the order in which the power set of features is tra-
versed, along with the magnitude of its jumps (i.e. the number of subsets not
tested according to the established order). On the contrary, for internal TTA
efficiency depends on how many elements from the basic matrix it combines to
construct a testor candidate.

In this paper we present a new internal TTA, named Y Y C (Y ablonsky &
Compatible sets)1, that progressively identifies the set of all typical testors con-
tained within a range of basic matrix rows comprasing from the first and up to
the current row. implied by each row of the basic matrix. We also propose a
fast procedure for finding those compatible sets and include it within the Y Y C
algorithm.

The rest of this paper is structured as follows. In Section 2, the theoretical
background for typical testors, compatible sets, and the Y Y C algorithm is set.
Section 3, presents the proposed procedure for finding compatible sets, as well
as the Y Y C algorithm in detail. Section 4, outlines the experiments carried out
comparing Y Y C’s performance versus some external TTA, and the analysis of
the yielded results. Finally, we draw some relevant conclusions in Section 5.

2 Theoretical Background

Practically all published researches in Testor Theory, work with a Boolean matrix
that holds all the information about the comparison of objects belonging to
different classes within a supervised sample; that matrix is called a difference
matrix (DM). Each column of the DM represents a specific feature perceived
from all objects under study, and each row holds the set of feature comparison
values for a pair of objects. In such a comparison matrix an entry 0 means

1 In honor of Sergey Y ablonsky, who published the first studies of testor theory (for
more information see [5]), and the term compatible sets, which are crucial for the
proposed algorithm.
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that the two objects being compared have a similar value in one feature, and
an entry 1 means that the value, for the corresponding feature, is dissimilar in
those compared objects.

Let RDM = {r1, ..., rm} and CDM = {x1, ..., xn} be the set of rows and
columns of a difference matrix, respectively. T ⊆ CDM is called a testor in DM
if the submatrix DM |T , obtained by eliminating from DM all columns not in
the subset T , doesn’t have any row composed exclusively by zeros. A testor is
then a set of features capable of discriminating all objects in a supervised sample
without causing confusion among those belonging to different classes. When that
set of features is also minimal with respect to the inclusion criterion, then it is
called a typical testor.

A row rp within a difference matrix is considered as sub-row of another row
rq if the following two conditions hold: each position of rp holds a value less than
or equal to the value in rq at the same position, and there is at least one position
where rp has a value strictly less than the corresponding one in rq. A row rp in
a difference matrix A, is called a basic row if it has no sub-rows within the same
matrix.

To reduce a difference matrix, and take advantage of the last definition, for
each DM , a basic matrix (BM) can be constructed which contains all and
exclusively the basic rows from that DM . Moreover, since a BM has equal
or less rows than its original DM , and it has been demonstrated that the set
of all typical testors is exactly the same in both matrices, a great majority of
testor-finding algorithms work on the BM instead of the DM [11].

Within a BM , a set of elements are said to form a compatible set if, under
some row and column rearrangement, those elements shape into an identity
matrix. When some BM elements are known to form a compatible set, then their
corresponding subset of columns, form a typical testor in that BM (typicality
condition) iff the sub-matrix defined by those columns has no row exclusively
formed by zeros (testor condition).

The algorithm herein proposed (Y Y C), which is explained in the next section,
heavily relies on the idea that a row-by-row analysis of the BM provides two
significant advantages: 1) the set of typical testors can be initialized with the
typical testors found on the first row, which are extremely easy to find since
each column with a value 1 is a typical testor for that row. 2) for each successive
BM row added to the analysis, there are only two possible options: either each
previously known typical testor is preserved by virtue of some value 1 in any of
the columns that conform it (i.e. preserves its property of being a testor), or it
must be combined with some other columns to fulfill the testor condition. These
cases are handled by the Y Y C algorithm in the most efficient possible way; the
BM is analyzed and the set ψ∗of all typical testors is incrementally updated
for each new row of the BM . When a previously known typical testor looses
its property of being testor, the algorithm searches for other columns (typical
testor candidates) that could be combined with it, and that would preserve its
quality of being a typical testor. However, the typical testor candidates are only
selected from those columns of the most recent basic matrix row that have a
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value 1. That way the search space is reduced and not all possible combinations
of columns have to be tested, just those with a real chance of enhancing the
previously known set of typical testors.

3 The YYC Algorithm

As stated before, the fundamental idea underlying the Y Y C algorithm is that,
instead of analyzing the whole basic matrix in order to determine the set ψ∗ of all
typical testors within it, that process can be break down into an incremental one
that, during each iteration i, calculates the set of all typical testors embedded
within the first i rows of the basic matrix.

Following that idea, the Y Y C algorithm starts by extracting the typical
testors implied by the first row of the basic matrix. From that point on, each
new row ri of the BM that is analyzed, triggers an update on the known set
of typical testors. If a subset of columns was previously known to be a typical
testor, and the new BM row has, at least one value 1 in any of those columns,
then by definition the sub-matrix defined by those columns do not have any row
exclusively formed by zeros, and therefore it is still a testor (a typical testor).
Else, if the new row shows only zeros in the columns of a previously known
typical testor, then some new columns must be included in order to preserve its
testor condition. The candidate columns to be included can only be those with
a value 1 on the new BM row. Including any 1-valued column to the column
subset will certainly preserve its testor condition, however, to also be typical
the sub-matrix determined by those columns and rows must, under some row
and column rearrangement, include a compatible set. Algorithm 1 shows the
pseudo-code for the Y Y C algorithm.

Algorithm 1: Y Y C
input : a basic matrix BM
output : the set ψ∗of all typical testors embedded in that matrix.

Initialize ψ∗ = ∅
Read BM’s first row (r1) For each column xj, such that r1 [xj] = 1, Add {xj}to ψ∗

For each row ri, i = 2..bm do
Initialize ψAux = ∅
For each τj ∈ ψ∗ do
If (∃xp ∈ τj) [ri [xp] = 1] then

Add τj to ψAux

else

For each xp ∈ ri such that ri [xp] = 1 do
If FindCompatibleSet (τj , xp) then (Hit)

Add τj ∪ {xp}to ψAux

Let ψ∗ = ψAux

Return ψ∗

The critical performance-related step in Algorithm 1 is the search for com-
patible sets. Several different algorithms can be used for that goal; however, in
order to do so efficiently, we propose a specific procedure (see Algorithm 2). We
define the following function: Sum(<vector>), were vector can be either a row
or a column fron the BM , which returns the sum of elements in the provided
vector. Using this function we propose the following algorithm:
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Algorithm 2: FindCompatibleSet (τ, xp)
input : τ a subset of columns known to be a typical testor up to the last BM row.

xp the column id of an element from the new BM row which has value 1.
output : TRUE if a compatible set can be found within the sub-matrix defined by τ ∪ {xp},

FALSE otherwise.

Define RefSM as the sub-matrix of BM defined by the columns in τ ∪ {xp},
and the current read rows.

Evaluate Condition1 to be TRUE iff |{rs ∈ RefSM, Sum (rq) = 1}| ≥ |τ ∪ {xp}|
Redefine RefSM = {rs ∈ RefSM, Sum (rs) = 1}
Evaluate Condition2 to be TRUE iff (∀xk ∈ RefSM) [Sum (xk) = 1]
Return the truth value of the Boolean expression [Condition1 AND Condition2]

Undoubtedly, several different procedures can be defined to find if a sub-
matrix defined by some columns in BM contain an identity matrix. Considering
its one-pass nature, Algorithm 2 was the selected choice for that task.

4 Comparative Performance Testing

For experimentally assessing the performance of the Y Y C algorithm we compar-
atively test it against some external algorithms, namely LEX [14], FastCTExt
[13], and BT [12]. For each experiment, a custom basic matrix was designed, fol-
lowing the method described in [2], and whose complete set of typical testors was
known a priori. Following the same method, we asses the efficiency of any TTA
by comparing the number of tested feature subsets against the previously known
number of typical testors found in the problem. Consequently, the efficiency of a
TTA is the ratio of the number of typical testors to be found in that problem and
the number of feature subsets tested by the TTA (labeled as Hits). Algorithm
1 marks when the Hits counter is to be incremented while running the Y Y C
algorithm. All of the following experiments are summarized in tables showing
the number of rows, columns, and typical testors to find (labeled TT), as well as
the number of registered hits and the resulting efficiency for each tested TTA.
Please note that, the method used for assessing the performance of a TTA is
completely independent from the hardware platform it runs on. Nevertheless, we
proclaim that all the following experiments were run on an Intel i7 processor,
with 4GB in RAM, and with a GNU/Linux operating system.

Finding the only typical testor embedded in an identity matrix has always
proven to be a formidable challenge for almost all TTA. For that reason ex-
periment number one tested the compared TTA against variable size identity
matrices. Each one of those runs has only one typical testor embedded into a
matrix of successive bigger sizes. All four algorithms were tested against each
matrix, and Table 1 summarizes the obtained results.

Table 1 clearly shows how the Y Y C algorithm slightly outperforms the LEX
and BT algorithms whose performance turns out to be exactly the same, while
the FastCTExt algorithm shows a surprisingly low perform. Both, the initial
reorder of the basic matrix, and the use of Algorithm 2 can be regarded as the
reasons behind the higher efficiency of Y Y C during this experiment.

Experiment number two set test matrices with a constant number of rows,
a successive polynomial increase in the number of columns, but an exponential
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Table 1. Comparative performance test against identity matrices

Rows Cols TT
LEX FastCTExt BT YYC

Hits Efficiency Hits Efficiency Hits Efficiency Hits Efficiency

5 5 1 6 16.67% 16 6.25% 6 16.67% 4 25.00%
10 10 1 11 9.09% 512 0.20% 11 9.09% 9 11.11%
15 15 1 16 6.25% 16384 0.01% 16 6.25% 14 7.14%
20 20 1 21 4.76% 524288 0.0002% 21 4.76% 19 5.26%
25 25 1 26 3.85% 16777216 0.000006% 26 3.85% 24 4.17%

Table 2. Performance test with exponential growth in the number of typical testors

Rows Cols TT
LEX FastCTExt BT YYC

Hits Efficiency Hits Efficiency Hits Efficiency Hits Efficiency

16 10 8 153 5.23% 186 4.30% 94 8.51% 76 10.53%
16 20 50 2648 1.89% 5666 0.88% 8861 0.56% 1056 4.73%
16 30 156 15635 1.00% 59536 0.26% 444459 0.04% 5652 2.76%
16 40 356 57311 0.62% 246700 0.14% 19762606 0.002% 19984 1.78%
16 50 680 160001 0.42% 1153242 0.06% 75336732 0.001% 54700 1.24%

Table 3. Performance test with exponential growth in the number of rows

Rows Cols TT
LEX FastCTExt BT YYC

Hits Efficiency Hits Efficiency Hits Efficiency Hits Efficiency

4 5 4 11 36.36% 11 36.36% 9 44.44% 9 44.44%
16 10 8 106 7.55% 154 5.19% 93 8.60% 90 8.89%
64 15 12 918 1.31% 1431 0.84% 767 1.56% 684 1.75%
256 20 16 7618 0.21% 13538 0.12% 5194 0.31% 4128 0.39%
1024 25 20 70278 0.03% 82456 0.02% 49395 0.04% 22365 0.09%

increase in the number of typical testors to find. Table 2 summarizes experiment
two’s results

The performance of all compared algorithms decreases while the number of
typical testors to find increases. Notably the Y Y C algorithm shows the lowest
decreasing efficiency rate. After maintaining the number of rows constant during
the last experiment, it seems just fair to perform another experiment with just
the opposite scenario: an exponential (quadratic) growth in the number of rows
of the test matrix, albeit just a polynomial increase in the number of columns
and typical testors to find. Table 3 summarizes the results for this experiment.

This experiment clearly shows that all TTA, regardless of whether they are
internal or external, have a hard time finding typical testors within this type of
test matrix, but again, Y Y C shows a slightly lower decrease rate in efficiency.

For the last experiment we wanted to test the hypothesis that, since the Y Y C
algorithm processes only those basic matrix elements with value 1, its efficiency
could depend on the density of the basic matrix. In order to test that hypothesis
a single general model for a basic matrix, with 4 rows and from 5 to 100 columns,
was modified to change its density and then tested with the Y Y C algorithm.
Table 4 shows the results of the experiment.

As Table 4 shows, the behavior of Y Y C’s performance is not clearly related
to the basic matrix density. While in some instances of the experiment, the
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Table 4. Performance test with different matrix densities

Rows Cols
Density = 0.3 Density = 0.4 Density = 0.6 Density = 0.7

TT Hits Efficiency TT Hits Efficiency TT Hits Efficiency TT Hits Efficiency

4 5 2 5 40.00% 4 7 57.14% 4 9 44.44% 8 11 72.73%
4 25 750 1525 49.18% 500 675 74.07% 180 525 34.29% 200 275 72.73%
4 50 11000 22100 49.77% 4000 5200 76.92% 1210 3600 33.61% 800 1100 72.73%
4 75 54000 108225 49.90% 13500 17325 77.92% 3840 11475 33.46% 1800 2475 72.73%
4 100 168000 336400 49.94% 32000 40800 78.43% 8820 26400 33.41% 3200 4400 72.73%

efficiency of the Y Y C algorithm increases along the number of columns and
typical testors, in some others it behaves on the opposite way. There is even
the case of the last three columns in table 4, where the efficiency kept constant,
disregarding the hypothesis of direct dependency on the basic matrix density.

5 Conclusions

We have presented a new internal typical testor-finding algorithm with two high-
lighted features: incremental row-by-row analysis of the basic matrix, and high
efficiency. The set of all typical testors is initialized with the typical testors em-
bedded in the first row of the basic matrix, and then it is updated with each
new basic matrix row the algorithm receives. Also, by processing only those ba-
sic matrix elements with value 1, the YYC algorithm achieves better efficiency
than the other tested external TTA.

By proceeding with its incremental strategy, and by taking advantage of the
compatible set concept, Y Y C strictly tests for those column combinations that
show the highest possibility to conform a typical testor, unlike external algo-
rithms whose ordering over the power set of columns severely limits their perfor-
mance. We also proposed an efficient procedure to find a compatible set within
the reference sub-matrix determined by the previously known typical testors and
the elements with value 1 within the next basic matrix row. This procedure not
only reduces the search space, but also takes advantage of the local properties
of a compatible set to establish a one-pass efficient algorithm.

Four experiments were designed and run to comparatively test the perfor-
mance of the Y Y C algorithm against some widely used external TTA. Each
experiment targeted a different scenario regarding the number of rows, columns,
and typical testors to be found. Also, the last experiment aimed at discovering
a possible relationship between the density of the basic matrix and the perfor-
mance of the Y Y C algorithm. Evidently, all possible structural characteristics
for the initial basic matrix are not accounted for by the presented experiments,
so a general best-performance claim is not appropriate. Nevertheless, experimen-
tal experience with previous TTA, both internal and external, seems to show
that there is no TTA that can run on any basic matrix configuration and always
yield the best possible performance.

In conclusion, this paper strengthens the idea that research on testor theory is
far from done. During its early days internal TTA dominated the scene. Later,
on the argument of a better performance, external TTA stood out. Now we
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look again at some properties of the internal TTA that can open new directions
and trends in testor theory that still has to fill the gap between theoretical
developments and practical implementations.
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13. Sanchez-Diaz, G., Lazo-Cortes, M., Piza-Davila, I.: A fast implementation for the
typical testor property identification based on an accumulative binary tuple. In-
ternational Journal of Computational Intelligence Systems 5(6) (2012)

14. Santiesteban-Alganza, Y., Pons-Porrata, A.: LEX: A new algorithm for calculating
typical testors. Revista Ciencias Matematicas 21(1), 85–95 (2003)


	YYC: A Fast Performance IncrementalAlgorithm for Finding Typical Testors
	1 Introduction
	2 Theoretical Background
	3 The YYC Algorithm
	4 Comparative Performance Testing
	5 Conclusions
	References




