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Abstract. This paper focuses on a novel image resolution enhancement method 
employing the wavelet domain techniques and hardware implementation of de-
signed framework. In novel resolution enhancement approach for better preser-
vation of the edge features, additional edge extraction step is used employing 
high-frequency (HF) sub-band images - low-high (LH), high-low (HL), and 
high-high (HH) - via the Discrete Wavelet Transform (DWT). In the designed 
procedure, the low resolution (LR) image is used in the sparse interpolation for 
the resolution-enhancement obtaining low-low (LL) sub-band. An efficiency 
analysis of the designed and other state-of-the-art filters have been performed 
on the DSP TMS320DM648 by Texas Instruments through MATLAB’s Simu-
link module and on the video card (NVIDIA Quadro K2000), demonstrating 
that novel SR procedure can be used in real-time processing applications. Expe-
rimental results have confirmed that implemented framework outperforms ex-
isting SR algorithms in terms of objective criteria as well as in subjective visual 
perception, justifying better image resolution. 

Keywords: super-resolution, edge extraction, wavelet transform, sparse inter-
polation, DSP, GPU. 

1 Introduction  

Exist recent advances in low-cost imaging solutions and increasing storage capacities; 
there is an increased demand for better image quality in a wide variety of applications 
involving both image and video processing. While it is preferable to acquire image 
data at a higher resolution to begin with, one can imagine a wide range of scenarios 
where it is technically not feasible. In some cases, it is the limitation of the sensor due 
to low-power requirements as in satellite imaging, remote sensing, radar, CCDs and 
surveillance imaging [1].  

In remote sensing monitoring and in navigation missions, with small airborne or 
unmanned flying vehicle platforms, LR sensors with simple and cheap hardware, such 
as unfocused SAR systems, optical cameras are using but cheap sensors sacrifice 
spatial resolution; additionally, the uncertainties that are connected with attributed to 
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random signal perturbations and imperfect system calibration additionally decrease 
the image resolution [2], [3]. 

The general image capture model combines the various effects of the digital image 
acquisition process such as point-wise blurring, motion, under-sampling, and mea-
surement noise. The problem in this point is to estimate an HR image ,  from 
measurements of an LR image ,  that were obtained through a linear operator  
that forms a degraded version of the unknown HR image, which was additionally 
contaminated by an additive noise , , and can be represented as the forward im-
aging model as follows: , , , , (1)

In most applications,  is a subsampling operator that should be inverted to re-
store an original image size and this problem usually should be treated as an ill-posed 
problem. Current proposal introduces a general class of nonlinear inverse estimators 
that were obtained with an adaptive mixing of linear estimators, with applications to 
image interpolation. 

Image resolution enhancement using wavelets is a relatively new subject, and re-
cently, many novel algorithms have been proposed [4, 5]. These algorithms have at-
tempted to improve the sharpness and fine features by using special procedures in the 
wavelet domain where such reconstructions are performed by manipulations in the 
different decomposition sub-bands. 

The principal contributions of current SR proposal in difference to other state-of-
the-art resolution-enhancement techniques consists of the mutual interpolation via 
Lanczos algorithm, which has good approximation capabilities [6], and nearest neigh-
bor interpolation (NNI) technique, which uses the closest pixels to an approximation 
point, and edge extraction procedure in wavelet transform space with adaptive direc-
tional LR image interpolation via sparse image mixture models in a DWT frame. The 
proposed framework additionally applies special denoising filtering based on the Non-
Local Means (NLM) for the input LR image performing better robustness in the reso-
lution enhancement process. Finally, all of the sub-band WT images are combined, 
generating a result HR image via IDWT demonstrating better resolution performance 
in terms of the objective criteria and subjective perception in comparison with the best 
existing algorithms. 

To justify that the novel algorithm of image resolution enhancement has real ad-
vantages, we have compared the proposed SR procedure with other similar tech-
niques, such as: Demirel-Anbarjafari Super Resolution (DASR) [7], Wavelet Domain 
Image Resolution Enhancement Using Cycle-Spinning (WDIRECS) [8], Image Reso-
lution Enhancement applying Discrete and Stationary Wavelet Decomposition 
(IREDSWD) [9], and Discrete Wavelet Transform-Based Satellite Image Resolution 
Enhancement (DWTSIRE) [10]. Numerous aerial optical, SAR and medical images 
from [11] and [12] databases that have different nature and physical characteristics 
were studied applying the designed and better existing SR procedures. 

The remainder of this paper is organized as follows. Section 2.1 presents a short in-
troduction to the NLM filtering method, and Section 2.2 shows an implementation of 
an image interpolation through the inverse mixing estimator. The proposed technique 
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for SR image reconstruction is presented in Section 3. Section 4 discusses the qualita-
tive and quantitative results of novel technique in comparison with other better con-
ventional techniques. In section 5, the real time implementation of the proposed and 
promising SR techniques are explained. And finally; the conclusions are drawn in 
Section 6. 

2 Problem Statement of Proposed Methodology 

2.1   Non-Local Means Denoising 

The NLM technique that we use in initial denoising stage is based on the assumption 
that the image content is likely to repeat itself within some neighborhood in the im-
age. The NLM algorithm computes a denoised pixel ,  by applying the weighted 
mean of the surrounding pixels of , , | , , , the estimated 
value for a pixel , , is computed as a weighted average of all the pixels in the  
image [13]: , ∑ , , ; ,, ,∑ , ; ,, , , (2)

where ,  stands for the neighborhood of the pixel , , and the term , ; ,  is the weight for the (i,j)-th neighbor pixel.  
The weights for the filter are computed based on radiometric (gray-level) similarity 

and geometric similarity between the pixels, namely: , ; , , ,∆ · , (3)

where the function G takes the geometric distance into account and the parameter ∆ 
controls the effect of the grey-level difference between the two pixels. This way, 
when the two pixels that is markedly different, the weight is very small, implying that 
this neighbor is not to be trusted in the averaging. The denoised image ,  is used 
in next steps of the proposed framework. 

2.2 Interpolations with Sparse Wavelet Mixtures 

The subsampled image ,  is decomposed with one level DWT in the sub-bands 
(LL, LH, HL, HH), which are treated as the matrixes Η whose columns (approxima-
tions and details) are the vectors of a wavelet frame on a single scale. A construction 
is performed with a dual frame matrix Η whose columns are the dual wavelet frames , . The wavelet coefficients are written as follows: ̂ , , , , .  (4)

The WT separates an LF image (an approximation)  that is projected over the 
sub-band image LL scaling filters ,  and an HF image (details)  that is pro-

jected over the finest scale wavelets LH, HL, and HH in three directions , , .  
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The LF image  has little aliasing, and it can be interpolated sufficiently well 
when applying a Lanczos interpolator . For interpolating the HF image , we 
employ directional interpolators  for Θ, where Θ is a set of angles that is un-
iformly discretized between 0 and . 

̂ 0, ,     ̂ , , . (5) 

For each angle , a directional interpolator  is applied over a block ,  
that is interpolated with a directional interpolator . The HF  and LF  
images are interpolated with a separable and Lanczos interpolator . The resulting 
interpolator can be written in the following form [14]: 

̂ , H , , ̂ . . (6) 

For each angle , an update is computed over wavelet coefficients of each block of 
direction  multiplied by their mixing weight , , with the difference between 
the separable interpolator  and a directional interpolator  along . This overall 
interpolator is calculated with |Θ|  operations, where number of interpolation 
angles |Θ| was 20 in performed numerical experiments, with blocks having a width 
of 2 pixels and a length between 6 and 12 pixels depending on their orientation. 

3 Designed SR Technique 

In designed framework, one level DWT applying different wavelet families is used to 
decompose an input image. DWT separates an image into different sub-band (LL, LH, 
HL, and HH) images where LH, HL and HH sub-bands contain the HF image compo-
nent. The interpolation process should be applied to all these sub-band images. Addi-
tionally, in the denoising stage, the NLM filter from (2) is applied, the neighborhood y 
is used in the simulation as 5x5 pixels, and the parameter Δ 2 is chosen in Noise 
Reduction Stage (Fig.1). 

In the proposed SR procedure, the LR image is used as the input data in the sparse 
representation for the resolution-enhancement process during Sparse Stage (Fig.1) 
where the algorithm computes the missing samples along the direction  from the 
previously calculated new samples, following the entire sparse process is performed 
with the Lanczos interpolation, reconstructing LL sub-band.  

The calculated difference between the interpolated LL sub-band image (with factor 
2) and the LR input image are in their HF components that why it has been proposed 
the intermediate process to correct the estimated HF components applying this differ-
ence image. In designed framework (Fig.1), this difference is performed in HF sub-
bands by interpolating each band via NNI process, including additional HF features 
into the HF images. It has been noticed that this intermediate process generates a sig-
nificantly sharper reconstructed SR image. This sharpness is boosted by the fact that 
the interpolation of the isolated HF components in HH, HL, and LH appears to pre-
serve more HF components than interpolating from the LR image directly. 
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To preserve edges and to obtain a sharper enhanced image, we have proposed an 
extraction step of the edges using HF sub-bands images, following the edge informa-
tion is used into HF sub-bands employing NNI during Edge Extraction Stage (Fig.1). 
The edge extracted image is calculated as follows [15]: , (7) 

Finally, we perform an additional interpolation with Lanczos interpolation (factor 
2) to obtain the requized size for the IDWT during IDWT and SR Stage (Fig.1).  

 

 

Fig. 1. Block diagram of the proposed super-resolution algorithm 

4 Experimental Results and Discussion 

In order to show the effectiveness of the proposed method over the conventional and 
state-of-the-art image resolution enhancement techniques, we have used objective 
assessment criteria, such as: PSNR (Peak Signal-to-Noise Ratio), and SSIM (Struc-
tural Similarity Index Measure) [16]. Different test images from mentioned databases 
with different image features are used for comparison of the proposal against other 
competitor algorithms. In this paper, the following families of classic wavelet func-
tions are used: Symlet (Sym), and Coiflet (Coif). 

Referring to the test image Aerial-A, the super-resolution results are exposed in 
Fig. 2 for designed and competitor techniques, reconstructing a 512x512 pixels reso-
lution enhanced image from a LR 128x128 pixels image. The novel resolution en-
hancement algorithm appears to perform better in terms of objective criteria (PSNR 
and SSIM), as well as in terms of subjective perception, especially using wavelet 
Sym-2. The visual subjective perception can be verified in the zoomed part of the 
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Aerial-A image, where fine details appear to be preserved better in the proposed SR 
framework. 

In the SAR-S image (Fig. 3), it is easy to see better performance in accordance with 
the objective criteria and via subjective visual perception in SR when our proposal is 
employed with the wavelet Sym-2. Novel algorithm presents better sharpness and less 
smoothing at the edges, blurred details, and ringing artifacts around edges. 

 
LR Image DASR [7] WDIRECS [8] DWTSIRE [10] 

Proposed SR 

algorithm 

  
LR=128x128 

SR=512x512 

PSNR=27.58 

SSIM=0.626 

PSNR=28.13 

SSIM=0.625 

PSNR=27.74 

SSIM=0.626 

PSNR=31.77 

SSIM=0.623 

Fig. 2. SR results for the Aerial-A image contaminated by Gaussian noise (PSNR=17 dB) 

LR Image DASR [7] IREDSWD [9] DWTSIRE [10] 
Proposed SR 

algorithm 

  
LR=128x128 

SR=512x512 

PSNR= 28.29 
SSIM= 0.717 

PSNR= 28.33 
SSIM= 0.729 

PSNR= 28.19 
SSIM= 0.707 

PSNR= 34.52 
SSIM= 0.754 

Fig. 3. SR results for the SAR-S image contaminated by Gaussian noise (PSNR=17 dB) 

LR Image DASR [7] WDIRECS [8] DWTSIRE [10] 
Proposed SR 

algorithm 

  
LR=128x128 

SR=512x512 

PSNR=25.31 

SSIM=0.919 

PSNR=26.37 

SSIM=0.912 

PSNR=23.50 

SSIM=0.921 

PSNR=26.46 

SSIM=0.926 

Fig. 4. SR results for the Medical-M image contaminated by Gaussian noise (PSNR=17 dB) 

In the SR reconstructed Medical-M image, one can observe from analyzing Fig. 4 
that the novel algorithm performs better in PSNR and SSIM criteria, especially  
using wavelet Sym-2, and presents a better perception especially in the well-defined 
borders (see the zoomed part of the image). The complete comparison evaluation of 
average objective measures (PSNR and SSIM values) throughout all images from the 
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databases ([11] and [12]) for the designed framework and competitor techniques has 
confirmed the best quality of our proposal: PSNR = 31.12 dB and SSIM = 0.672 
against  PSNR =28.62 dB and SSIM = 0.614 for the better SR algorithm DASR [7]. 
Given that the textures and chromaticity properties of the test images are different, the 
performance results confirm the robustness of the current proposal. 

Table 1. Objective criteria results of the resolution enhancement from 128x128 to 512x512 

Resolution-Resolution  

Algorithms 

Aerial-A SAR-S Medical-M 

PSNR SSIM PSNR SSIM PSNR SSIM 

IREDSWD [9] 
Sym-2 27.02 0.577 28.33 0.729 22.94 0.904 

Coif-1 26.99 0.535 27.92 0.703 20.33 0.837 

DWTSIRE [10] 
Sym-2 27.74 0.626 28.19 0.707 23.50 0.921 

Coif-1 27.64 0.594 28.18 0.687 21.46 0.873 

DASR [7] 
Sym-2 27.58 0.626 28.29 0.717 25.31 0.919 

Coif-1 27.49 0.601 27.99 0.706 23.37 0.879 

WDIRECS [8] 
Sym-2 28.13 0.625 27.91 0.680 26.37 0.912 

Coif-1 27.78 0.587 27.93 0.661 24.06 0.909 

PROPOSED SR 

TECHNIQUE 

Sym-2 31.77 0.623 34.52 0.754 26.46 0.926 

Coif-1 31.78 0.613 34.53 0.745 24.13 0.911 

5 Real Time Implementation 

The designed framework that appears to demonstrate the best quality performance has 
been implemented in different hardware to demonstrate the possibility processing an 
image in real-time mode using a DSP (TMS320DM648), CPU i7-3770 (3.4 GHz), 
and GPU (NVIDIA® Quadro® K2000: CUDA Parallel-Process. Cores: 384, Frame 
Buffer Memory: 2 GB-GDDR5) platform. In first hardware, using MATLAB’s Simu-
linkTM module, a SR project was created, in which the DSP model EVM DM648TM 
and its respective task BIOS were selected.  

Table 2. The processing time values for GPU, DSP and PC, i7-3770 processor 

IMAGES HARDWARE PROCESSING 
TIME 

POWER 
CONSUMPTION 

Aerial-A 

NVIDIA® Quadro® K2000 0.391 sec 51 W 

CPU i7-3770 (3.4 GHz) 1.083 sec 166 W 

DSP DM648 (900 MHz) 2.479 sec 5.02 

SAR-S 

NVIDIA® Quadro® K2000 0.391 sec 51 W 

CPU i7-3770 (3.4 GHz) 1.083 sec 166 W 

DSP DM648 (900 MHz) 2.479 sec 5.02 W 

Medical-M 

NVIDIA® Quadro® K2000 0.323 sec 51 W 

CPU i7-3770 (3.4 GHz) 1.021 sec 166 W 

DSP DM648 (900 MHz) 2.411 sec 5.02 
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Processing time values were computed for GPU, MATLABTM and DSP hardware 
implementations. Table 2 exposes the processing time values for analyzed framework 
performing resolution enhancement for all three mentioned hardware. Here, the tested 
images were: Aerial-A, SAR-S and Medical-M (initial format: 128×128 pixels, output 
format 512×512 pixels).  

The presented processing time values in table 2 are consistent with the devices 
speeds; this is because the CPU is faster than the DSP processor, but on other hand, 
the DSP module has in more than 30 times less power consumption. The third imple-
mentation on the GPU (NVIDIA Quadro K2000) platform is the fastest one because it 
can work performing framework operations in parallel. 

6 Conclusions 

In this study, a novel resolution-enhancement technique based on the interpolation of 
the HF sub-band images in the wavelet domain and the input image via sparse inter-
polation has been presented. In contrast with state-of-the-art algorithms, the designed 
framework applies the edge and fine features information obtained from the HF sub-
band images in wavelet transform space, involving them in the SR restoration 
process. The designed technique has been tested on well-known benchmark images, 
presenting its superior performance in terms of objective criteria, as well as in the 
subjective perception via the human visual system. The quality analysis of the de-
signed framework has been performed on DSP and on GPU platforms demonstrating 
the possible real-time application of the SR technique. 
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